SC749.

Introduction To The Theory Of Interconnection Networks For Multicomputers.
Prerequisites:
SC-513, SC-534, SC-546

Professor:

Mark Karpovsky

Room:

PHO-331

Tel:

x9592

Email:

markkar@bu.edu
Literature

· Lecture Notes

· “Interconnection Networks”, J. Duato, S. Yalamanchili, L. Ni, IEEE Computer Society Press, 1997

MAIN TOPICS:

1. Network Architectures

2. Network Topologies

3. Testing, Diagnosis and Fault-Tolerance

4. Deadlock Prevention

5. Wormhole Routing

6. Unicasting, Multicasting and Broadcasting

7. Fault-Tolerant Routing In The Presence Of Faulty Nodes And Links

Classification Of Networks
	
	
NAME
	DISTANCE

	[image: image277.wmf]H

D

1

D

2

D

3

...

D

T-1

D

T

TAIL FLIT

DATA FLITS

HEADER FLIT

WORMHOLE PACKET STRUCTURE

[image: image278.wmf]
1
	Multicomputer

Interconnection

Network – MIN
	(1 m

	2
	System Area Network – SAN

Network Of Workstations-NOW
	(100 m

	3
	Local Area Networks – LAN
	(1 km

	4
	Metropolitan Area Networks- MAN
	(50 km

	5
	Wide Area Networks- WAN

Internet
	Global

In SC749 we’ll study MINs, SANs and NOWs

For MINs topologies of interconnections (physical links) are regular (Switched Networks)

(Examples: 2-D meshes and tori or wrapped-around meshes by Paragon)

The Paragon is a multiprocessor system with distrib-

uted memory. Each of its nodes contains two or three

i860XP processors that share a local memory with a

size of 16 to 128 MBytes. One of the processors usu-

ally acts as a dedicated message passing processor

while the others execute user tasks. The nodes are

interconnected by a two dimensional mesh of worm-

hole routed communication channels with a raw band-

width of 200 MByte/s in each direction. Existing

installations reach up to 1792 nodes.

For SANs or NOWs topologies are irregular.

Classification of Networks by Topology
· SHARED MEDIUM

e.g. LANs, Ethernet, Arcnet, IBM Token Ring

· Direct Networks (Router Based) MINs
· Point-to-point Communications

· 2-D Mesh (Intel Paragon)

· 3-D Mesh (MIT J-Machine)

· 2-D Torus (CMU Intel iwarp)

· 3-D Torus (Cray T3D and T3E)

· Hypercube (nCube, Intel iPSC)

· Fractahedron (Tandem Computers)

· Trees

· Cube Connected Cycles

· Stars (Hexagonal meshes, tori)

· NOWs

· Indirect Networks (Cray, IBM RP3, IBM SP)

· Hybrid

· Hierarchical Networks (Bridged LANs)

· Cluster-based networks

Shared-Medium Networks (LANs)

· Least complex interconnect

· Only one device (transmitter) is allowed to use the network at a time

· Arbitration policy for conflict resolution (busses)

· Simple Broadcasting

· Contention bus, shared-medium, back-plane bus

[image: image279.wmf]Message 1

Message 2

Message 3

Message 4

Node

Communication

Channel

[image: image280.wmf]N=7

I=3

[image: image281.wmf].

:

0

1

2

3

p-1

1

p-1

0

[image: image282.wmf]...

.

:

p

p

Ethernet (10Mb / sec, 250 meters)

Shared Medium – Coax cable ~1970

 Twisted pair ~ 1980

 Hubs, Full duplex ~ 1990

 1 Gigabit / sec

Bridges and Switches for LANs
-Extending LANs

-Interaction between several LANS (segments)

[image: image283.wmf]p = 4

[image: image284.wmf]p = 3

1

2

3

4

5

6

6

1

2

3

4

5

6

1

7

8

9

10

7

8

9

10

Transparent Bridge

[image: image285.wmf]p = 4

[image: image286.wmf]1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

12

9

10

11

13

14

15

p = 4

[image: image287.wmf]d

e

h

b

f

a

c

g

k

[image: image288.wmf][image: image289.emf]

[image: image290.emf]

[image: image291.emf]

[image: image292.emf]

receives messages and forwards (floods) to all other segments

LEARNING BRIDGES
-Learning locations of hosts without knowing the topology

-Hosts may move between segments
[image: image293.emf]

[image: image294.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

8

8

 - Wheel graph with nodes

21

31

1,

2

.. For 8

8,

14

,

2

2

14

4

21

N

N

N

WN

MN

ZWMNNz

egN

ZWz

NN

T

N

W

NN

W

æö

ç÷

ç÷

èø

=-

-

³-++³

=

³

-+

=

³

-+

³

[image: image295.wmf]10,15,3

()16 (1)

1

()-17 (3)

2

or

()7/30

 (3')

NM

ZGMN

ZGMN

zG

d

d

æö

ç÷

ç÷

èø

===

³-+³

-

³++³

³

[image: image296.wmf](

)

(

)

(

)

(

)

10,15

4747

7

66

47

6

7

.

330

77

Since , then =

3030

and CB is optimal.

NM

N

ZG

N

zG

N

zGzG

êúêú

êúêú

ëûëû

êú

êú

ëû

==

+

££=

+

££

³

[image: image297.wmf](

)

(

)

(

)

11,16

143

6527

66

7

31

.

7

Lower bound using ()

()31

7

Hence and CB is Optimal.

31

NM

ZGMN

zG

R

zG

rTG

zG

êúêú

êúêú

êúêú

ëûëû

æö

ç÷

èø

==

£-+£=

£

³=

=

[image: image298.wmf](

)

(

)

. For any degree-3 regular graph with 4

47

6

27

.

918

 ,

and

CorollaryGN

N

ZG

zG

N

êú

êú

êú

ëû

>

+

£

£+

[image: image299.emf]Experimental Platform

Node Processor

16BIT

MCU

J1

J2

DIP-SW

J3

J1: Communication Connector

J2: Router Connector

J3: Power Supply Connector

DIP-SW: Node ID (0 - 255) switch

FLASH: (128K/256K) Monitor Memory

DRAM: 500K Program Memory

COMM: Serial Communication Block

ROUTER I/F: Router Interface.

COMM DRAM FLASH

ROUTER

IF

[image: image300.emf]Experimental Platform (Router)

J1: Power Supply/Programming/Processor Connector

J2: West Router Connector

J3: South ROuter Connector

J4: North Router COnnector

J5: East ROuter Connector

WEST SOUTH EAST

PROC.

I/F

J1

PS JTAG

NORTH

CONTROL

INTERCONNECTION MATRIX

J2 J3 J4 J5

[image: image301.wmf]H

D

1

D

2

D

3

...

D

T-1

D

T

TAIL FLIT

DATA FLITS

HEADER FLIT

WORMHOLE PACKET STRUCTURE

[image: image302.wmf][image: image303.wmf]Message 1

Message 2

Message 3

Message 4

Node

Communication

Channel

I

[image: image304.png]

[image: image305.wmf]Data

Tail

MESSAGE

T2

T1

T0

D7

D6

D5

D4

D3

D2

D1

D0

Type

Data

FLIT

DAdd

SAdd

MLen

T2 T1 T0 Flit Type

0 0 0 Data Flit

0 0 1 Dest Address Flit

0 1 0 Src Address Flit

1 1 0 Message Length Flit

1 1 1 Tail Flit

[image: image306.wmf]N=7

I=3

[image: image307.wmf].

:

0

1

2

3

p-1

1

p-1

0

[image: image308.wmf]...

.

:

p

p

[image: image309.wmf]

I

Level

II

III

[image: image310.wmf]p = 4

[image: image311.wmf]p = 4

[image: image312.wmf]p = 3

1

2

3

4

5

6

6

1

2

3

4

5

6

1

7

8

9

10

7

8

9

10

[image: image313.wmf]1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

12

9

10

11

13

14

15

p = 4

[image: image314.wmf]d

e

h

b

f

a

c

g

k

1. [image: image315.wmf]Message 3 1 (first time)

Forwarded to I

[image: image316.png]55

50

[image: image317.png]Lemma 1 [191. A graph is Eulerian iff one of the following
conditions holds true:

1. All rodes have even degrees, o
2. All nodes, except exacily two nodes, have even degrees.

[image: image318.png]&)

Fig. 1. (a) A system graph containing a Euler path o = [f,a,b,f,
9.61¢,6,h,,d, 1 c,d], &N b) @ system graph which s not Eulerian, but
s Eulerian aftr inks ., (d,). and (7. J)are femoved. Euler paths are
shown in gray linos.

Interconnection table (IT)

[image: image319.png]G(@) - -

Dz
»
(£,7) (2,2) ®,3) (£,4) (3,51 () (2,7} (5,8) (1,9} (c, 10K, 11X, 12, 13Ke, 14)

Gy,

2. [image: image320.wmf]10,15,3

()16 (1)

1

()-17 (3)

2

or

()7/30

 (3')

NM

ZGMN

ZGMN

zG

d

d

æö

ç÷

ç÷

èø

===

³-+³

-

³++³

³

Message 1 3

[image: image321.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

8

8

 - Wheel graph with nodes

21

31

1,

2

.. For 8

8,

14

,

2

2

14

4

21

N

N

N

WN

MN

ZWMNNz

egN

ZWz

NN

T

N

W

NN

W

æö

ç÷

ç÷

èø

=-

-

³-++³

=

³

-+

=

³

-+

³

[image: image322.wmf](

)

(

)

. For any degree-3 regular graph with 4

47

6

27

.

918

 ,

and

CorollaryGN

N

ZG

zG

N

êú

êú

êú

ëû

>

+

£

£+

[image: image323.wmf](

)

(

)

(

)

11,16

143

6527

66

7

31

.

7

Lower bound using ()

()31

7

Hence and CB is Optimal.

31

NM

ZGMN

zG

R

zG

rTG

zG

êúêú

êúêú

êúêú

ëûëû

æö

ç÷

èø

==

£-+£=

£

³=

=

Not Forwarded to I

[image: image324.wmf](

)

(

)

(

)

(

)

10,15

4747

7

66

47

6

7

.

330

77

Since , then =

3030

and CB is optimal.

NM

N

ZG

N

zG

N

zGzG

êúêú

êúêú

ëûëû

êú

êú

ëû

==

+

££=

+

££

³

Passive Learning

-Useful for loop-free topologies (trees)

-Bridges select interfaces (ports) where they will forward messages

-Traffic reduction

Problems for Networks with Loops
-Livelocks – message can go into a loop

-Deadlocks – created by backpressure

Generalization to Networks with Loops
Example

I. The Spanning Tree Approach
1. Select as a root the bridge with the smallest ID (or bridge with a max number of ports)

The root bridge always forwards messages to all of its ports

For our example: root = B1

2. Each bridge computes the

shortest path to the Root
B2-I-B1

B5-E-B1

B3-C-B2-I-B1
B6-J-B1

B4-D-B1

B7-K-B1

3. All bridges connected to a given LAN elect a “designated” bridge for forwarding messages to the root

Designated bridge is the bridge which is the closest to the root (if two bridges are at the same distance from the root, the designated has the smallest ID)

A-B4

F-B5

B-B4

I-B1

C-B2

J-B1

D-B1

K-B1

E-B1

R-B6

S-B7

4. Every bridge B forwards messages to LANs which are on the selected path from the bridge to the root and to LANs L1,…,Li , such that B is designated bridge for L1,…,Li
For our example:

Bridges B3 and links B4-B5, B6-B7 will not be used

Disadvantages:
-some links and bridges are not used (B3 and links

B4-B5, B6-B7)

-contention at the root

II. Turn Prohibitions

1. Select min set T of turns such that prohibiting these turns breaks all cycles but keeps connectivity:

[image: image1.wmf](

,

,

)

a

b

c

T

Î

(a,b,c are switches or routers)

turn prohibitions T are symmetric, i.e.

[image: image2.wmf](

,

,

)

(

,

,

)

a

b

c

T

c

b

a

T

Î

®

Î

2. Bridge b do not forward messages coming from port c to port a if

[image: image3.wmf](

,

,

)

a

b

c

T

Î

Example

-with the spanning tree approach link B3-B4 is not used

-with the turn prohibition approach turn(B2,B4,B3) is prohibited but messages from A to C or D and from B to C or D can use link B3-B4

-Reduction in the average delivery time.

Indirect Networks
· Communication not by direct connection but through switches.

E.g.

[image: image4.wmf]Processors

Switches

Bidirectional

Links

Unused

Inputs

· The interconnection of Switches define a topology

· 0,1 or several processors may be connected to the same switch (For direct networks only 1)

Hybrid Networks

· Hierarchical Networks

· Hierarchical Networks

[image: image5.wmf]Cluster Bus

Global Bus

(fast, optical)

· Cluster-based Networks, e.g. Cluster-based 3-ary 2D mesh

[image: image6.wmf]...

...

...

...

...

...

...

...

...

Routers

Cluster

Bus

Switches

The purpose of switching is to provide interconnection between all the nodes on a network without the need for single connections between each pair of nodes (Figure

).

 [image: image8.png]

Figure: Direct connection between nodes is in efficient

We require switching technology that provides a mechanism to establish connectivity as and when required. As we saw in the last subsection, the nature of the switching required depends on the transfer mode. In this subsection, we discuss something of the physical nature of the switches themselves. Before we go on to describe the types of switches, it is worth defining some terminology:

Switching element: This is a basic building block of a switch. A switching element will consist of a input controllers and output controllers which provide the input and outputs, respectively, to an interconnection network (Figure

).

Switching fabric: This is an interconnection of switching elements to facilitate a particular switching mechanism. The switching fabric is characterised by the types and interconnection of its switching elements.

Switching elements have have many forms, however they have the following two common problems that must be resolved:

· Collisions: This occurs when more than one inputs are destined for the same output.

· Blocking: This occurs when the progress of one message through the interconnection network is stopped by a message that is not destined for the same output.

 [image: image10.png]

Figure: The main components of a switching element

In a matrix switch (or space division switch), the interconnection of network consists of a rectangular matrix of cross-points (Figure

). This is the simplest form of switch. Buffering can be used at the inputs, at the outputs, at the cross-points or at any three of these in combination.

 [image: image12.png]uuuuuuuuuuuuuu

Figure: A matrix switching element

Buffers placed at the inputs (Figure

) can be used to prevent collisions. If FIFOs are used, collisions will still occur if the messages at the head of the FIFOs are destined for the same port. Further, this will have the effect of blocking other messages in the queue. This problem can be overcome by the use of RAM buffers, but this may give rise to sequencing problems, and increase the complexity of the switching element.

 [image: image14.png]

Figure: A matrix switching element with input buffers

Buffers placed at the outputs (Figure

)can produce a non-blocking switching element if the switch is speeded up by a factor of N for a [image: image16.png]N X IV

switch. If the speed up is not possible, then buffers must additionally be used at the inputs.

 [image: image17.png]

Figure: A matrix switching element with output buffers

Buffers can be placed at the cross-points of the interconnection matrix (Figure

), resulting in a Butterfly switching element. This requires logic to prevent collisions, based on some fairness and timeliness metric. A Butterfly switch may require a large increase in the complexity of the switching element, as each cross-point now requires memory.

 [image: image19.png]10

Figure: A matrix switching element with buffers at the matrix cross-points

In the time slot interchange (TSI) technique (Figure

), the line is logically partioned, with respect to time, into regular time slots. Users on each side of the TSI switch are allocated a time slot. For two users, one on each side of the switch to communicate requires only that as the slot passes through the switch, its time slot is interchanged with that of the use on the other side. The size of this kind of switching element is limited by the memory access speed of the hardware. This switching element demonstrates an example of time domain multiplexing (TDM).

 [image: image21.png]

Figure: A time slot interchange switching element

Although single stage switching elements and switches are possible using one of these two, many useful switching fabrics can be realised with just these two switching elements used in multi stage switches. They are usually written as an enumeration of the order in which the stages are connected, with a S representing the matrix (space division switch), and a T representing a time division switch. Common fabrics are TST or STS.

In a central memory switching element (Figure

), the input controllers and output controllers are connected by central memory, which can be programmed to provide input and output buffering. This requires a highly parallel machine architecture for the purposes of memory access.

 [image: image23.png]

Figure: A central memory switching element

The interconnection network could also be arranged as a Bus-Type switching element, using a TDM bus (Figure

. This is similar to a computer bus system. However, the bus would have to be at least as fast as the sum of the speeds of its inputs to prevent messages being dropped.

 [image: image25.png]uuuuuuuuuuuuuu

Figure: A TDM bus switching element

A Ring-Type switching element (Figure

) passes round a time-slot that can be used by the input and output controllers connected to the ring, while having some of the constraints of the Bus-Type of switching element, the slot can be used several times in one cycle of the token.

 [image: image27.png]uuuuuuuuuuuuuu

Figure: A Ring-Type switching element

When a large number of (often identical) switching elements are connected together in a network, we have a multistage interconnection network (MIN). Probably the most famous MIN is the Delta Banyan network. This is a regular network of [image: image28.png]4% 2

switching elements. An [image: image29.png]N X IV

Delta Banyan switching fabric have the following useful properties:

1. They consist of [image: image30.png]N X IV

identical switching elements.

2. They have the self-routing property, i.e. regardless of which input the message arrives at, it will always be routed to the same input. Such routing requires [image: image31.png]log;, ¥

bits of information.

3. They consist of [image: image32.png]foga iV

stages, with each stage having [image: image33.png]N2

switching elements.

4. As they are regular networks, and have a simple interconnection pattern, they are suited to VLSI techniques.

An example of a 4-stage Delta-Banyan network is given in Figure

.

 [image: image35.png]

Figure: A Delta-2 4-Stage network

However, they are susceptible to blocking. This can be reduced by using a preceding distribution network (Figure

), but then this may cause sequencing problems without a complementary resequencing function at the outputs.

 [image: image37.png]

Figure: Structure of a distribution Banyan network

An alternative solution is to use a sorting network preceding the inputs, which orders the messages in a monotonous sequence, dependent on its destination output line. To prevent blocking, a trap network is placed after the sorting network, which feeds back messages with the same destination. Any fed back messages receive priority through the sorting network, in order to preserve sequencing. An example of such a network is the Batcher Banyan network.

 [image: image38.png]

Figure: Structure of a sort-trap Banyan network

Networks consist of:

· Nodes (Processors, RAM, ROM, BUS)

· Links (Electrical or optical)

· Routers (Switches)

Packet Switching

Nodes send discrete blocks of data to each other.

Block = Packet = Message

e.g. Block – e-mail, image, file,…

Every node has a unique address
E.g. For meshes addresses are coordinates of the nodes

Types of transmission:
1. Unicast
one-to-one

2. Multicast
one-to-many

3. Broadcast
one-to-all

Every network does not necessarily support multicast and broadcast but multicasting and broadcasting can be implemented by multiple unicasting.

The process of determining systematically how to forward messages toward the destination nodes based on their addresses is called routing.

For MINs routing is implemented a decentralized way by the routers.

Routing algorithms (protocols) are implemented in hardware or in software within routers.

Architecture Of A Router

2D-meshes-

[image: image39.wmf]PP

PS

PE

PN

PW

South Link

North Link

Processor

Link

West

Link

East

Link

PE,PN,PW,PP,PS are ports with buffers

ROUTER is a small and fast processor implementing the routing protocol.

Router may have several (4-8) ports and small (50KB) memory.

For a destination address and an input port routing protocols compute one (or several for the case of multicasting) output ports.

[image: image40.wmf]5-1

MUX

5-1

MUX

5-1

MUX

5-1

MUX

5-1

MUX

INPUT

FLIT

BUSES

INPUT

SELECTS

PROCESSOR

SOUTH

EAST

NORTH

WEST

Experimental Platform (Router)

 EMBED Designer.Drawing.7

Communication links are very fast.

(Transmission time for a HOP is several ns)

To protect data transmitted over links, error-detecting/correcting codes can be used.

(See SC561)

Switching vs Routing

Routing:
-Determines the path(s) selected by a packet to reach its destination

-Source Routing

-Deterministic / Adaptive Routing

Switching:-Mechanism by which data is removed from input channel and placed on output channel

-Store-and-forward switching (Latency=(L/B)/D).

-Virtual cut-through (Latency = (Lh/B)D+L/B).

(packet is stored at the node where it is blocked)

-Circuit switching (Latency = (Lc/B)D+L/B).

(A short control packet establishes the path to the destination)

L=packet length, B=channel bandwidth, Lh =header length, D=distance between source and destination, Lc =control packet length

Types Of Routing
1. Store-and-forward

Each node first receives a complete package over some link, stores the packet in its local memory and forwards the complete packet to the next node.

· This approach is slow and requires large memory at the routers

· Not efficient for MINs and NOWs:

The delivery time (latency) is proportional to the distance

between the two communicating nodes.

Virtual Cut-Through Routing

When a message is blocked it is buffered at the blocked node’s router and is removed from the network. (recovery after deadlock)

Virtual Cut-through requires more buffer memory at the routers.

Pipelined Circuit-Switching

Data flits DO NOT immediately follow the routing flit or the header flit.

If the header is blocked it may backtrack and attempt an alternative path.

After the header reaches the destination, an acknowledgement-flit returns to the source. Then the data flits are routed to the destination via the previously reserved path by the header.

Pipelined Circuit Switching needs longer path setup time and it is not suitable for short messages.

Parameters of Some of the Exisitng Supercomputers

NEC, CRAY, QUADRICS, CALTECH

3-d meshes (tori), 7 ports for every router

Performance 10 –50 teraflops

NEC: 5,120 nodes

QUADRIC : 4,000 nodes

Bidirectional links

Bandwidth : 2.5 –3.0 Gbytes/sec

 Major faults: one in 10 days

Wormhole Routing

(virtual cut-through, pipelined circuit-switching)

Most popular in MINs and NOWs.

E.g.:

· Intel Touchstone Delta

· Intel Paragon

· MIT J-Machine

· Caltech MOSAIC

· CRAY T3D and T3E

Each packet consists of elementary flow control units of equal length (e.g. 8-bits) called FLITs. Destination Address in Header FLIT.

[image: image41.png]node

_ time
(a) Store-and-forward switching.

node

packet

Legend:

header data

time

Y

(b) Circuit switching.

node

time

(c) Wormhole routing.

Comparison of different switching techniques

Interconnection Networks With Wormhole Routing

· Multiprocessors

Regular Topology: 2D and 3D Meshes,Tori, Fractahedron, Hexagonal, Hypercubes, …

· Multiprocessors with faulty nodes isolated (Irregular Topology)

· Clusters of Multiprocessors (SANs)

· Networks of Workstations (NOWs) e.g. Myrinet

Wormhole Routing (continued)

· As the HEADER FLIT advances along a path the subsequent flits follow up in a pipelined fashion along the same path.

· Wormhole routing provides for low communication latencies that is almost independent of the distance between the source and the destination nodes.

· Data flits follow immediately the header

· Whenever the header flit is blocked at an intermediate node by another message, the remaining flits stop advancing.

Processors

 Routers

[image: image42.png]He=

= E,J

packet 2

packet 3
?
O
packét 1

An example of channel deadlock involving four packets

Wormhole Routing (continued)

· If the header and remaining flits are blocked they block all the links (channels and buffers at the corresponding ports) they occupied.

Deadlocks (major problem for wormhole routing): Several messages blocking each other in such a way that no message can advance or be unblocked.

Livelock: Message can not reach the destination since it is using non-minimal path.

 Message path

Example Of A Deadlock

· Messages are waiting for each other and thus no message can advance

Virtual Cut-Through Routing
When a message is blocked it is buffered at the blocked node’s router and is removed from the network.

(recovery after deadlock)

Virtual Cut-Through requires more buffer memory at the routers.

Pipelined Circuit-Switching

Data flits DO NOT immediately follow the routing flit or the header flit.

If the header is blocked it may backtrack and attempt an alternative path.

After the header reaches the destination, an acknowledge-flit returns to the source. Then the data flits are routed to the destination via the previously reserved path by the header.

Pipelined Circuit Switching needs longer path setup time and it is not suitable for short messages.

CRITERIA FOR ROUTING

1) RELIABILITY – the probability that a message will be delivered to the destination node if there exists a path between the source and the destination.

2) DILATION – additional length of message path compared with the shortest path.
3) COMPLEXITY- number of computations (in a router) required for routing.
4) Amount of additional information stored in a message
5) Sizes of routing tables stored in routers. Routing function R(input_port, destination)=output_port
6) Length of pre-routing stage required for construction of routing tables
7) Complexity of information updates (after new faults occur, new users join to NOW)

8) SATURATION POINT – Maximal throughput. Maximal message generation rate which does not result in accumulation of messages in the network

[image: image43.png]fouayeab e Ny

Msg. Gen. Rate

9) SCALABILITY

[image: image44.png]T—

Network Size

Many routing strategies (particularly for NOWs) require pre-routing stage.

· Trade-off between complexity of pre-routing and efficiency of routing.

· Pre-routing is needed only when there is a change in topology (new faults, etc…)

CLASSIFICATION OF ROUTING PROCEDURES:
1) Exact vs- non-exact. Exact – if a message is sent it will reach the destination. For non-exact: DIRECTIONAL ROUTING if message can not be sent one step closer to the destination it will be cancelled.

2) Adaptive vs non-adaptive. Adaptive routing takes into account loads (existing queue sizes) of the neighbors. Non-adaptive routing can be transformed into adaptive if it permits multiple paths to the destinations.

3) Topology oriented vs general. Topology oriented routing for a given topology such as 2-D meshes usually produce better results than general routing applicable to any topology.

4) Fault-Free vs Fault –Tolerant. In the case of fault-tolerant routing every node knows status (fault-free or faulty) of its neighbors. This info is obtained by testing and diagnostic procedures.

Topological Parameters Of Interconnection Networks
· Network is represented as a non-oriented graph G with bi-directional links.

N – number of nodes

M – number of edges

di – number of neighbors of node i (also number of ports of node i)

[image: image45.wmf]d

M

i

i

N

=

=

å

2

1

Distance in G is the minimum number of edges (links) between two nodes

Diameter D of G is the maximum distance

[image: image46.wmf]D

N

£

-

1

PATH
[image: image47.wmf]P

v

v

v

v

v

v

i

L

L

i

i

=

=

-

+

0

1

2

1

0

1

2

1

,

,

,

.

.

.

,

,

,

,

,

.

.

.

,

.

b

g

b

g

 is a sequ

ence of (n

ot necessa

rily diffe

rent) node

s such

that

 is neighb

or of

CYCLE is a path
[image: image48.wmf]v

v

v

v

L

0

1

2

,

,

,

.

.

.

,

b

g

 such that
[image: image49.wmf]v

v

L

0

=

· Lower the diameter D (shorter are the message paths (lower is the average delivery time or latency.

· Relationship between D and the degree di of nodes

MOORE’S BOUND:

[image: image50.wmf]Let

 for all

Then numbe

r of nodes

 N,

d

d

i

N

d

d

d

d

d

N

d

d

i

D

D

d

=

£

+

+

-

+

-

+

-

+

+

-

-

-

-

-

£

+

1

1

1

1

1

1

1

1

2

2

3

1

1

b

g

b

g

b

g

b

g

e

j

b

g

.

.

.

or

[image: image51.wmf]D

d

N

d

d

³

-

-

-

+

L

N

M

O

Q

P

log

1

1

2

1

b

g

b

g

b

g

Examples: for d=2 (Ring),

[image: image52.wmf]N

d

d

d

d

d

N

N

N

D

D

N

D

D

D

£

+

+

-

+

-

+

-

+

+

-

£

+

+

-

+

-

+

-

+

+

-

£

+

+

+

+

+

+

£

+

³

-

-

-

-

1

1

1

1

1

1

1

2

1

2

1

2

1

2

1

2

1

1

2

1

1

1

1

1

1

2

1

2

1

2

3

1

2

3

1

2

3

1

b

g

b

g

b

g

b

g

e

j

b

g

b

g

b

g

b

g

e

j

c

h

b

g

b

g

.

.

.

.

.

.

.

.

.

For d = 3, (K4, i.e. N = 4,d = 3 and, N=6,d=3,D=1)

[image: image53.wmf]D

D

D

D

d

N

d

d

N

N

N

³

³

³

³

-

-

-

+

L

N

M

O

Q

P

-

-

+

L

N

M

O

Q

P

-

+

L

N

M

O

Q

P

+

L

N

M

O

Q

P

log

log

log

log

1

2

2

2

1

2

1

1

3

2

3

1

1

3

3

2

3

b

g

b

g

b

g

b

g

b

g

b

g

For Peterson Graph (N = 10, d = 3, d = 2)

[image: image54.wmf]
For d = 4,

[image: image55.wmf]D

D

D

N

N

N

³

³

³

-

-

-

+

L

N

M

O

Q

P

-

+

L

N

M

O

Q

P

+

L

N

M

O

Q

P

log

log

log

4

1

3

3

1

4

2

4

1

1

2

4

1

1

2

b

g

b

g

b

g

b

g

2-D p-ary mesh with N = p2 (p x p mesh)

has diameter D = 2p (far from optimal!)

[image: image56.wmf]D

D

N

p

p

³

³

»

+

L

N

M

O

Q

P

+

L

N

M

O

Q

P

log

log

log

3

3

2

3

1

2

1

2

2

b

g

BISECTION WIDTH – b

WHEN A GIVEN NETWORK IS CUT INTO TWO EQUAL HALVES, THE MAXIMUM NUMBER OF EDGES (CHANNELS) ALONG THE CUT IS CALLED CHANNEL BISECTION WIDTH b.

THE WIRE BISECTION WIDTH B = bw, where w is the number of bits per channel.

THE BISECTION WIDTH PROVIDES A GOOD INDICATIOR OF THE MAXIMUM COMMUNICATION BANDWIDTH ALONG THE BISECTION OF A NETWORK.

THE WIRE LENGTH (CHANNEL LENGTH) BETWEEN NODES MAY AFFECT THE SIGNAL LATENCY, CLOCK SKEWING, OR POWER REQUIREMENTS.

SYMMETRY-

IF THE TOPOLOGY IS THE SAME LOOKING FROM ANY NODE

There are three types of cycles (v0, v1, v2, v3,…,vL), v0 = vL.

1) Simple cycles vi (vj
2) “Figure Eight” type cycles – Nodes (but not edges) appear several times in the cycle.

3) “Spectacles” type cycles (connected cycles). Here edges appear several times in a cycle.

A path (cycle) is Hamiltonian if it is simple and contains all nodes of a graph. (L = N)

If di (N/2 for all i then there exists a Hamiltonian path.

A path is an Euler path if it contains all the edges exactly once.

A graph contains an Euler path iff di is even for all nodes (except for two: beginning and the end of the path)

Spanning Tree is a subgraph (set of edges) of the graph without cycles, containing all nodes.

There are many spanning trees for the same graph.

For any spanning tree number of edges is N – 1.

Spanning trees are widely used for routing.

Many recursive algorithms for graphs are based on deletion from graph G node a with the edges connected to a, and then applying the algorithm to the remaining G – a.

If a is a leaf in a spanning tree for a connected G, then G – a is connected.
There exists a path between any two nodes of G.

A node v is a cut node or articulation node G-v consists of several connected components.

In every graph there at least 2 non cut nodes (leaves of a spanning tree).

A complexity of computing all cut nodes and all connected components is at most O(dN)

“Introduction to Algorithms”, Cormen, Leiserson, Rivest, 1997

In the spanning tree nodes of degree 1 are called leaves.

Hamiltonian path is a spanning tree with two leaves.

Not every graph is Hamiltonian.

E.g.

d=3

Non-Hamiltonian

Graph G is bi-partite (t-partite) iff nodes of G can be partitioned into 2 (into t) disjoint subsets in such a way that there are no edges between nodes of the disjoint subsets.

E.g. K3,3 is (t=2) is bi-partite.

Sphere of radius l and center v is a set of nodes at a distence exaclty l from v.

Area A of a sphere is the number of nodes in the sphere.

· If G is d-regular (di = d for all i) then A (dl
Ball of radius l and center v is a set of all nodes at a distance at most l from the v.

Volume V of a ball is the number of nodes in it.

For d-regular graphs

[image: image57.wmf](1)1

1

2

l

d

Vd

d

--

£+

-

Covering set for G is a subset of nodes such that every node in G belongs to at least one ball of radius 1 with the center in the subset (dominating set).

· Every graph has a covering set

· For d-regular graphs the size C of a covering subset satisfies the condition:

[image: image58.wmf]C

N

d

³

+

L

M

M

O

P

P

1

A covering subset is perfect iff

[image: image59.wmf]C

N

d

=

+

L

M

M

O

P

P

1

i.e. every node belongs to exactly one ball.

E.g. 5 x 5 Torus, N = 24, d = 4, C = 5

[image: image60.wmf]
The problem of constructing minimal covering sets is still open
(Even for such simple graphs as binary cubes!).

The problem of constructing a minimal covering is important for testing (error detection) in networks when nodes of the covering set (testers or monitors) first test themselves (self-test) and then test their immediate neighbors (system tests).

Identifiying(or diagnostic,or error locating) set is a set of nodes such that every node in the graph belongs to a unique collection of balls of radius 1 with center in the identifying sets.

E.g.:

· Not every graph has an identifying set ,

· E.g. K4

[image: image61.wmf]
Estimations on minimal sizes, I, of identifying sets

[image: image62.wmf]I

N

H

p

p

p

p

p

I

N

H

d

N

³

+

=

-

-

-

-

³

+

+

F

H

I

K

L

M

M

M

M

M

O

P

P

P

P

P

log

log

log

log

2

2

2

2

1

1

1

1

1

a

f

a

f

a

f

a

f

a

f

Let

binary

entropy

For d

-

regular gr

aphs

· The problem of constructing minimal identifying sets is important for diagnosis (error location) when monitors (nodes from the identifying set) test themselves and then their neighbors and report to the host whether or not at least one of their neighbors or themselves are faulty. Then the host can locate the faulty node.

· The problem of constructing minimal identifying sets is still open (even for such simple graphs as 2-D meshes or binary cubes).

Testing and Diagnosis by Migrating Software

 (Covering and Identification by Dynamic Agents)

Set of monitors for covering or diagnosis form a path in G.

Length of the path for a dynamic agent, L, is lowerbounded by a number of monitors for static testing or diagnosis.

Example 1. Tesing in
[image: image63.wmf]2

q

Z

. Node Faults. Dynamic Covering.

x x x x x x x o
q=9

Monitors “x” , Non-monitors ”o”
o o o o o o x o

o o o o o o x o

x x x x x x x o
Total: 30 monitors Density: 30/81

x o o o o o o o

x o o o o o o o

x x x x x x x o
Density is converging to 1/3 as q is growing

o o o o o o x o

o o o o o o x o

Lower bound for the length of dynamic covering agents for

d-regular graphs:

[image: image64.wmf]/(1)2/1

LNVNd

³-=-

Example 2. Diagnosis in
[image: image65.wmf]2

q

Z

. Node Faults.

Dynamic Identification

x x x x x x o

q=7

x o o o o o o

x x x x x x o

o o o o o x o
Density of monitors is converging to 0.4 as q is growing

o o o o o x o

x x x x x x o

x o o o o o o
This dynamic agents are asymptotically optimal for
[image: image66.wmf]2

q

Z

Lower Bound on lengths of dynamic identifying agents:

[image: image67.wmf]2/

LNd

³

Covering nodes (links) by a minimal number of simple paths. If G=Z2d d-dim binary cube than one path (Gray code) is sufficient.

This covering is important for testing by path sensitization (see below)

· Identifying nodes (links) by a minimal number of P of simple paths

Every node belongs to a unique collection of paths

· For node identification P [log2(N+1)]

· For link identification P [log2(M+1)]

· Diagnosis by path sensitization
Ex. G=Z2d d=3

P1 = (000,001,011,010)

P2 = (000,001,101,100)

P3 = (000,010,110,100)

P4 = (000,001,011,111)

011 P1, 011 P4, 011 P2, 011 P3,

101 P1, 101 P2, 101 P3, 101 P4

For Z2d Pi (i=1,2,...,d) is the Gray code with bit i equal to 0

Pd+1 = ((00…000),(00,…001),(00…011),…(01…111),(11…1))

Thus for Z2d P=d+1

Every graph has an identifying set of simple paths (both for nodes and links)

For identifying nodes by paths

P  N (every path is one node)

E.g. Zq1 (Ring, N=q, M=N=q)

P = [q/2] +1

q=5

P1(1,2,3), P2 = (2,3,4), P3 = (3,4,5)

Link identification by simple paths

P M (every path is a link)

E.g.1.

P1=(1,2,4)

P2=(1,3,4)

P3=(1,2,3,4)

P= [log2(M+1)]=3

(1,2)  P1, (1,2)  P2, (1,2)  P3
(2,3)  P1, (2,3)  P2, (2,3)  P3
E.g.2.

G=Zq1 P= [(q+1)/2]+1

q=5

P1 = (1,2,3), P2 = (2,3,4), P3 = (3,4,5), P4 = (4,5,1)

Robustness of Fault-Tolerance of Network Graphs

· Graph G is l-fault tolerant if there are at least l node-disjoint (or edge disjoint) paths between any pair of nodes.
E.g. G = K3,3

[image: image68.wmf]
K3,3 is 3-fault tolerant (Kn,n is n-fault tolerant) (bi-partite

· If G is l-fault tolerant then l-1 node (link) faults in the system can be tolerated.
· Robustness = max l such that G is l-fault tolerant.
Criteria for selecting a topology for multiprocessors

· Regularity of interconnections

· Small degree (d is independent on N and d (8)

· Small diameter D

D = max length of a path between a source and a destination

· Robustness

Standard Topologies of Multiprocessors
1) p-ary 2-D meshes (Intel Paragon)

[image: image69.wmf]N

p

M

p

p

p

p

d

D

p

i

=

=

-

=

-

Î

=

-

2

2

2

1

2

2

2

3

4

2

1

a

f

k

p

a

f

,

,

2-D meshes are Hamiltonian but not Euler

Node addresses are node coordinates

2) p-ary 2-D tori (Wrapped around meshes)

[image: image70.wmf]N

p

M

p

d

D

p

i

=

=

=

=

M

N

M

P

Q

P

2

2

2

4

2

2

(

)

regular

2-D Tori are Hamiltonian and Euler.

3) 3-D Meshes and Tori (Cray 3D, Cray 3E)

[image: image71.wmf]N

p

d

p

D

p

N

p

d

D

p

M

p

i

i

=

Î

>

=

-

=

=

=

M

N

M

P

Q

P

=

3

3

3

3

4

5

6

2

3

1

6

3

2

3

,

,

,

,

,

,

,

,

,

k

p

a

f

Meshes

Tori

[image: image72.wmf](

,

,

)

 and

(

,

,

),

are connec

ted by a l

ink iff

(Lee dista

nce)

x

x

x

y

y

y

x

y

p

d

x

y

i

i

i

i

i

1

2

3

1

2

3

1

3

0

1

1

1

,

,

,

.

.

.

,

,

Î

-

=

=

å

k

p

b

g

b

g

[image: image73.wmf]d

x

y

x

y

p

y

x

p

d

i

i

i

i

i

i

,

min

,

,

(

,

)

min

,2

b

g

c

h

a

f

=

-

+

-

=

=

=

E.

g.

5

1

4

3

2

Hypercubes (p=2) (NCUBE, CAM)

[image: image74.wmf]N

d

d

D

d

M

d

d

i

d

=

=

=

=

-

2

2

1

,

,

,

Hamiltonian Path = GRAY CODE

[image: image75.wmf]x

x

x

x

y

y

y

y

iff

d

d

=

=

-

-

0

1

1

0

1

1

,

,

.

.

.

,

,

,

.

.

.

,

b

g

b

g

and

 are conne

cted

by a link

 x and y

 differ in

 exactly o

ne compone

nt

(Hamming o

r Lee metr

ic)

Fractahedrons (Tandem Computers)

[image: image76.wmf]I

II

Level

III

Fractahedrons with l levels can be obtained from the tree by replacing every node by K4,
[image: image77.wmf].

[image: image78.wmf]N

D

l

M

i

i

l

l

l

=

F

H

G

I

K

J

=

-

=

+

=

×

-

=

-

å

4

4

4

3

4

1

1

1

3

7

4

10

0

1

c

h

c

h

Cube Connected Cycles (CCC)

Binary n-cube where each node is replaced by cycle of n-nodes of degree 3.

[image: image79.wmf]
· Small degree, di = 3
· Small diameter D (2.5n

[image: image80.wmf]N

n

M

n

n

n

=

=

2

1

5

2

.

[image: image81.png]0 f 2 3
O—O0—6—06—
7 6 5 4)
—6—0—06 0o
C/B\ 9 10 11
Y fan o0
Nt A ¢ d v\
15 14 13 12)
< o © &)

(a) Linear array

(c) /Chordal ring of degree 3 . (d) Chordal ring of degree 4 (same

as [lliac mesh)
e eena——

P-ary Hexagonal Meshes

[image: image82.wmf]N

p

p

M

p

d

D

p

i

=

+

=

-

Î

=

+

2

1

3

2

2

3

3

1

2

b

g

l

q

,

Number of nodes of degree 2 is 4p

P-ary Hexagonal Tori

[image: image83.wmf]N

p

M

p

d

D

p

i

=

=

=

=

-

2

3

3

2

1

2

2

a

f

Any cycle in any one of the three directions has a length 2p

p-ary Triangular Meshes

[image: image84.wmf]N

p

M

p

p

d

D

p

i

=

=

-

-

Î

=

-

2

1

3

1

2

4

6

2

1

a

f

a

f

k

p

a

f

,

,

p-ary Triangular Tori

[image: image85.wmf]N

p

M

p

d

D

p

=

=

=

=

-

M

N

M

P

Q

P

2

2

3

6

2

1

2

	Network type
	Node degree

d
	Network diameter

D
	No. of links,

l
	Minimal Bisection width,

B
	Symmetry
	Remarks on network size

	Linear Array
	2
	N-1
	N-1
	1
	No
	N nodes

	Ring
	2
	[N/2]
	N
	2
	Yes
	N nodes

	Completely Connected
	N-1
	1
	N(N-1)/2
	(N/2)2
	Yes
	N nodes

	Binary Tree
	3
	2(h-1)
	N-1
	1
	No
	Tree height h=[log2N]

	Star
	N-1
	2
	N-1
	[N/2]
	No
	N nodes

	2D-Mesh
	4
	2(r-1)
	2N-2r
	r
	No
	rxr mesh where r=(N)1/2

	Illiac Mesh
	4
	r-1
	2N
	2r
	No
	Equivalent to a chordal ring of r=(N)1/2

	2D-Torus
	4
	2[r/2]
	2N
	2r
	Yes
	rxr torus where r=(N)1/2

	Hypercube
	n
	n
	nN/2
	N/2
	Yes
	N nodes, n=log2N (dimension)

	CCC
	3
	2k-1+[k/2]
	3N/2
	N/(2k)
	Yes
	N=kx2k nodes with a cycle length k3

	k-ary

n-cube
	2n
	n[k/2]
	nN
	2kn-1
	Yes
	N=kn nodes

Testing (Fault Detection) For Interconnection Networks

FAULT MODELS

Permanent (hard) faults vs Intermittent (transient, soft) Faults

Permanent Faults detected off-line in a testing mode when the network or a component of it is idle (not doing any computation) (Off-Line TEST) (SC-752)

Intermittent Faults are detected on-line

(Error detecting /correcting codes, redundancy in data, SC-753)

· Processor Faults (PFs)

· Link Faults (LFs)

· Router Faults

· Total Router Faults (TRFs)

· Partial Router Faults (PRFs) – some of the turns in the router can not be implemented

Partial fault in e,

i.e. fault (d,e,h) – data can not be routed from d to h.

· Hybrid Faults

For many systems links are less reliable that processors

Number of Faults S with multiplicity of at most l

[image: image86.wmf]S

N

i

S

M

i

S

N

i

S

R

i

R

N

d

PF

i

l

LF

i

l

TRF

i

l

PRF

i

l

=

F

H

G

I

K

J

=

F

H

G

I

K

J

=

F

H

G

I

K

J

=

F

H

G

I

K

J

=

F

H

G

I

K

J

=

=

=

=

å

å

å

å

1

1

1

1

2

every node

 has one P

rocessor

 and

 one Route

r

where

for symmet

rical faul

ts

i.

e.

 if

a,

b,

c

 is faulty

 then so i

s

c,

b,

a

a

f

a

f

Off-Line Testing of Networks

1. Selft Test (SC-752) – Every node tests itself. If it fails it stops sending “I am alive” message to its neighbors (or to the host in centralized systems). LFs, TRFs, and PRFs are not tested

1.1 Pseudorandom self test

Testing procedure consists of a sequence of T pseudorandom instructions on pseudorandom data. The precomputed results (signature) is stored in local memory and verified after the completion of the test.

[image: image87.wmf]100

c

0

T

0

cut-off point

easy to detect

hard to detect

T

test length

testing time

Let

p be the probability of fault manifestation for one instruction

PAL – aliasing probability – probability that a fault manifested itself for one instruction in a testing procedure but it is masked in the final signature.

For r-bit processors and independent faults

[image: image88.wmf]C

p

T

AL

r

®

-

=

-

®

¥

-

1

1

2

as

 (e.g., r =32)

Fault Coverage, Probability of Fault Detection

[image: image89.wmf]C

p

p

T

AL

=

-

-

-

1

1

1

a

f

d

i

b

g

[image: image90.wmf]C

p

T

AL

r

®

-

=

-

®

¥

-

1

1

2

as

[image: image91.wmf]If

-

 required

fault cove

rage is gi

ven then

c

T

c

p

p

AL

0

0

1

1

1

=

-

-

F

H

G

I

K

J

-

log

log

a

f

[image: image92.wmf]Slope

 is impor

tant for d

etermining

 cut

-

off

point

dC

dT

c

dC

dT

C

c

0

0

:

=

£

e

· Pseudorandom test is a good first step in testing procedure

Experimental Results

[image: image93.wmf]dC

dT

C

=

-

a

a

b

b

1

a

f

where

,

 are const

ants.

((grows with the complexity of the processor under test)

Generation of Pseudorandom Vectors

Linear Feedback Shift Registers (LFSRs)

[image: image94.wmf]x

D

0

x

2

D

1

x

r-1

D

r-2

x

r

D

r-1

C

1

C

2

C

r-1

FFs

XOR

...

[image: image95.wmf]P

x

C

x

C

x

C

x

C

x

x

c

r

r

r

i

a

f

k

p

=

Å

Å

Å

Å

Å

Å

Î

¹

-

-

1

0

1

1

2

2

3

3

1

1

.

.

.

,

,

where

initial st

ate

 0000.

.

.0

 r

E.g. For r = 3

[image: image96.wmf]D

0

D

1

D

2

[image: image97.wmf]P

x

x

x

a

f

=

Å

Å

Å

1

3

where

=

 XOR (modu

lo 2 sum)

Polynomial P(x) is primitive if for the corresponding LFSR

[image: image98.wmf]000...0

...

one cycle

of length 2

r

-1

If a polynomial P(x) can be represented as

P(x) = Q(x)R(x) (P(x) is reducible), then P(x) is not primitive. The opposite is not true!

E.g.
[image: image99.wmf]P

x

x

x

a

f

a

f

=

Å

=

Å

2

2

1

1

is reducib

le and the

refore

is not pri

mitive.

· For every degree r there exists at least one polynomial P(x): deg P(x)=r and P(x) is irreducible and primitive.

· There are no simple criteria to determine whether a given P(x) is primitive or not.

· Tables of primitive polynomials can be found in “Bardell, McAnney, Savir, ‘Built-in Test for VLSI’, John Wiley, 1987”

· Primitive LFSRs for any non-zero seed generate a pseudorandom sequence.

· Primitive LFSRs can be also used for compression of test responses (signature analyzers)

[image: image100.wmf]D

0

D

1

D

r-2

D

r-1

...

Signature

Test Vector

LFSRs can be implemented both in Hardware and Software

Hardware Implementation of Built-In Self-Test (BIST)

Signature Analysis

[image: image101.wmf]PROC.

MUX

L

F

S

R

L

F

S

R

Data In

Mode

Signature

To Be Verified

Most Processors on the market have BIST.

Self-Tests based on Functional Verification
(Functional Tests)

[image: image102.wmf]R

Link

Link

Link

Link

Processor

Bus

CPU

RAM

ROM

1. Linear Checks
For an n-bit processor

Verify:

[image: image103.wmf]f

x

y

f

x

y

f

x

y

f

x

y

x

y

f

f

n

i

i

i

i

i

i

i

,

,

,

,

a

f

a

f

a

f

a

f

a

f

+

+

+

=

-

k

k

for all

,

 Instructi

on number

i

 is a co

nstant (do

es not dep

end on x a

nd y

 but

depends on

 and

)

Example 1.

[image: image104.wmf]f

x

y

Add

x

y

x

y

n

x

y

x

y

Add

x

y

Add

x

y

Add

x

y

Add

x

y

Add

Add

Add

Add

i

n

,

,

,

,

,

,

,

,

,

,

,

,

,

a

f

a

f

c

h

a

f

a

f

a

f

a

f

a

f

a

f

a

f

a

f

c

h

=

=

+

Þ

=

-

=

=

=

=

=

=

=

=

=

+

+

+

=

=

+

+

+

=

=

-

k

4

2

1

4

5

0101

3

0011

10

1010

12

1100

5

3

5

12

10

3

10

12

60

4

2

1

4

Example 2.

[image: image105.wmf]f

x

y

MPY

x

y

x

y

n

x

y

x

y

MPY

x

y

MPY

x

y

MPY

x

y

MPY

x

y

i

n

,

,

*

,

,

,

,

,

,

,

,

*

*

*

*

a

f

a

f

c

h

a

f

a

f

a

f

a

f

c

h

=

=

Þ

=

-

=

=

=

=

=

+

+

+

=

+

+

+

=

=

-

k

2

1

4

5

3

10

12

5

3

5

12

10

3

10

12

225

2

1

2

4

2

LINEAR CHECKS FOR BASIC ALU Instructions

	
	Instruction
	f(x,y)
	(
	(for n=8

	1
	Clear
	0
	0
	0

	2
	Transfer
	
[image: image106.wmf]x

	
[image: image107.wmf]2

2

1

n

-

c

h

	510

	3
	Complement
	
[image: image108.wmf]x

	
[image: image109.wmf]2

2

1

n

-

c

h

	510

	4
	Increment
	
[image: image110.wmf]x

+

1

	
[image: image111.wmf]2

2

1

n

+

c

h

	514

	5
	Decrement
	
[image: image112.wmf]x

-

1

	
[image: image113.wmf]2

2

3

n

-

c

h

	506

	6
	2’s complement
	
[image: image114.wmf]x

+

1

	
[image: image115.wmf]2

2

1

n

+

c

h

	514

	7
	Left Shift
	
[image: image116.wmf]x

x

x

n

2

3

0

,

,

.

.

.

,

,

b

g

	
[image: image117.wmf]2

2

2

n

-

c

h

	508

	8
	Right Shift
	
[image: image118.wmf]0

1

2

1

,

,

,

.

.

.

,

x

x

x

n

-

b

g

	
[image: image119.wmf]2

2

1

1

n

-

-

c

h

	254

	9
	Rotate Left
	
[image: image120.wmf]x

x

x

x

n

2

3

1

,

,

.

.

.

,

,

b

g

	
[image: image121.wmf]2

2

1

n

-

c

h

	510

	10
	Rotate Right
	
[image: image122.wmf]x

x

x

x

n

n

,

,

.

.

.

,

,

1

2

1

-

c

h

	
[image: image123.wmf]2

2

1

n

-

c

h

	510

	11
	AND
	
[image: image124.wmf]x

y

Ù

	
[image: image125.wmf]2

1

n

-

	255

	12
	OR
	
[image: image126.wmf]x

y

Ú

	
[image: image127.wmf]3

2

1

n

-

c

h

	765

	13
	XOR
	
[image: image128.wmf]x

y

Å

	
[image: image129.wmf]2

2

1

n

-

c

h

	510

	14
	ADD
	
[image: image130.wmf]x

y

+

	
[image: image131.wmf]4

2

1

n

-

c

h

	1020

	15
	SUB
	
[image: image132.wmf]x

y

-

	0
	0

	16
	MPY
	
[image: image133.wmf]x

y

*

	
[image: image134.wmf]2

1

2

n

-

c

h

	65025

SOME DIAGNOSTIC CAPABILITY

LINEAR CHECKS-

· Use every general purpose and data-address register as a source register for operands such as x,y and as a destination register for f(x,y).
EXERCISE MAX NUMBER OF ADDRESSING MODES

· Select operands such as x,y to force all FFs in registers to both 0 and 1

· Force 0s and 1s on all bus lines

E.g. To test Carry (Borrow) generation and propagation -

For ADD take as (x,y):

[image: image135.wmf]1111

0001

1111

0010

1111

0100

1111

1000

,

,

,

,

,

,

,

a

f

a

f

a

f

a

f

For SUB take as (x,y):

[image: image136.wmf]0000

0001

0000

0010

0000

0100

0000

1000

,

,

,

,

,

,

,

a

f

a

f

a

f

a

f

Test exhaustively every bit of Adder/Subtractor

Linear Checks test ALU, general purpose and data, address registers, decoding of op-codes and decoding of register addresses.

2. Fix Input Data Method
1. Choose
[image: image137.wmf]$

,

$

x

y

a

f

 such that

[image: image138.wmf]f

x

y

f

x

y

i

j

$

,

$

$

,

$

a

f

a

f

¹

for any two ALU instructions fi and fj .
2. Run all ALU instructions for the chosen
[image: image139.wmf]$

,

$

x

y

a

f

for
[image: image140.wmf]f

x

y

f

x

y

i

j

$

,

$

$

,

$

a

f

a

f

®

 diagnostic capability

For example, for most microprocessors we can take

[image: image141.wmf]$

.

.

.

,

$

.

.

.

x

y

=

=

1000

0101

1000

0011

E.g.

[image: image142.wmf]n

x

y

=

=

=

=

=

8

10000101

133

10000011

131

10

10

,

$

,

$

	
	Instruction i
	Reference Output (n=8)

[image: image143.wmf]f

i

131

133

,

a

f

	1
	Clear
	0

	2
	Transfer
	133

	3
	Complement
	122

	4
	Increment
	134

	5
	Decrement
	132

	6
	2’s Complement
	123

	7
	Left Shift
	10

	8
	Right Shift
	66

	9
	Rotate Left
	11

	10
	Rotate Right
	194

	11
	AND
	129

	12
	OR
	135

	13
	XOR
	6

	14
	ADD
	264

	15
	SUB
	2

	16
	MPY
	17,423

All reference outputs are different!

Identification of functional errors.

· Fixed input method detects errors in ALU, general-purpose and data/address registers, OPCODE and Register address decoders.

· Linear checks and fixed input methods should be complemented by direct verification of non-AL instructions e.g. branches

Functional Testing of (processors
Register-Transfer LEVEL

Instructions and RTL descriptions are given by system graphs (S-graphs)

{R1, R2,…, RM} – Set of registers (nodes of the S-graph

 (general-purpose, scratch-pad, on-chip stacks, program counters, index registers, stack-pointers, etc)

Two additional nodes labelled “IN” and “OUT” (represent main memory and I/O devices

{I1, I2,…, IQ} – instruction set (edges of the S-graph

Structure of S-Graphs

Execution of instruction Ij:

1. There exists a labeled directed edge from Rp to Rq if data flow occurs from register Rp to register Rq.

2. There exists a labeled directed edge from “IN” to Rp if data flow occurs from the main memory or I/O to register Rp.

3. There exists an edge from Rq to “OUT” if data flow occurs from register Rq to the main memory or I/O

All data flows may be with or without data manipulation.
SELF LOOPS represent stack-pointer incrementing or decrementing, program counter incrementing, etc.

Labeling of Edges of an S-Graph

Preserving logical dependence

Every instruction Ij is represented by a set of edges
[image: image144.wmf]I

I

I

j

j

j

1

2

3

,

,

,

.

.

.

If
[image: image145.wmf]p

q

<

, then data flow represented by the edge
[image: image146.wmf]I

j

P

 must take place before
[image: image147.wmf]I

j

q

.

The edges have the same label (corresponding data flow can occur simultaneously.

Test Generation Based on S-Graph Model

Generate a sequence of instructions covering all edges and nodes of the S-Graph by paths from “IN” to “OUT”

Every register and every bus is loaded at least twice with all 0s and all 1s.

System Tests

[image: image148.wmf]1

2

3

4

5

6

Original Network

[image: image149.wmf]j

i

i tests j

[image: image150.wmf]6

5

4

3

1

1

1

1

1

1

0

6

4

1

1

0

2

3

1

1

1

1

5

TEST GRAPHS

I- Session Results

1,6 Fault-Free

2,5 Faulty

3,4 Not Known

Syndrome:

111110

123456

[image: image151.wmf]II-Session Results

Syndrome:---------

111

135

3 - Faulty

110

246

Syndrome:---------

4 - Fault-Free

· System Tests require complex procedure for decoding syndromes by the host (centralized fault location)

· System tests do not detect some PRFs

· Construction of Test Graphs (Connection Assignment Problem) is difficult.

Combining Self-Test and System Test

Testing with Monitors

Testing Procedure:

1. Some nodes selected as monitors (testers). Monitor Placement Problem.

2. The monitors execute the test generation program P and generate test sequence X=(x1, x2, …xT) (when they are idle)

3. Every monitor executes a self-test using X. It executes a function f(X). The function, f, is implemented in software f(X) stored in the local memory of monitors (reference value) and verified

4. Every monitor regenerates X. (Test X is not stored because it may be too long, e.g. T=106 for pseudorandom X) Monitors broadcast X to its neighbors

5. Every idle non-monitor executes a self-test by computing f(x)

6. The monitors collect the test responses f(x) from their neighbors and verify them one by one

Monitor Placement Problem:

Find min. numbers and locations of monitors such that every node is contained in at least one of the balls of radius 1 around the monitor:

Denote

R - min number of monitors for graph G with N nodes

D - diameter of G

di - degree of node i of G

Lower Bounds on Number, R, of Monitors

1. R D/3 K
2. Let d1 d2 … dN . Then R  K such that (di + 1) N

 i = 1

3. If di = d for all I then R  N/d+1

 If R = N/d+1 the placement is perfect

Monitor Placement for p-ary Trees

p-ary trees with l-levels

 I level

 1 2 P

 …

 … …

P P P

N = 1 + p + p2 + … + pl = (pl+1 –1) / (p-1)

M = (pl+1 –1) / (p-1) –1 = p(pl –1) / (p-1) number of edges

Solution: Monitors can be placed on nodes at levels

 1, 4, 7, 10, … or

 2, 5, 8, 11, …

 3, 6, 9, 12, …

Example

p = 2, l = 6, R = 18

For p-ary trees with l-levels

 ((pl-3 –1) / (p2 –1)) + pl-2 , l odd

(pl –1) / (p-1)(p+2)  R 

 (pl –1) / (p2 –1) , l even

R  (pl-2 –1) = ¼ N

r = R / N = ¼ - density of monitors

Monitor Placement for Hypercubes

N = 2d, M = d 2d-1

Perfect Monitor Placement only if d = 2m – 1 based on perfect single error-correcting Hamming codes

Example

d = 3, R = 2
 110 111

 100 101

 010 011

 000 001

Monitors are at the distance at least 3 from each other

For d = 2m – 1. Construct matrix

 2m – 1

G = P 2m – m – 1

 m

where P has different rows and does not have the row 00…0 and rows with 1 one.

 m

 (G is a generating matrix of the Hamming code of length d = 2m – 1)

Monitors have addresses which are linear combinations mod 2 of rows of G

Placement is perfect

R = N / d + 1 = 2d / 2m
 = 2^(2m - m - 1) for any m.

Example

M = 3, d = 7, N = 128, R = 10

 G =

Monitors (0000 000, 0001 101, 0010 110, 0011 011, … , 1111 111)

For d-dim. Hypercubes

r = R / N = 2d / (d+1)2d = 1 / (d+1)

density of monitors r 0 as d 

The problem of placement of monitors for hypercubes with arbitrary d is still open

	d
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	Lower Bound on R
	2
	4
	7
	12
	16
	32
	55
	105
	177
	342

	Upper Bound on R
	2
	4
	7
	12
	16
	32
	62
	120
	192
	380

Monitor Placement for Meshes and Tori

For a-dim. P-ary tori (cubes) with p > 2 there exists a perfect monitor placement if

a = ½ (pm – 1).

(d=2a)

for this case N = pa .

Construct matrix H = (hi,j) = (h1, h2, …, ha)

hi,j  (0, 1, …, p-1)

h1 h2 . . . ha

H = m

 ½ (pm - 1) = a

such that hi  0, hi hj
hi hj (mod p) (i, j = 1, …, a)
Monitor Placement for P-ary tori

Addresses A1, …, AR of monitors for perfect covering satisfy the equation Hai = 0 (mod p)

E.g.1. a = 2 , p = 5, m = 1

H = [1 2] A1 = 0,0; A2 = 1,2;

A3 = 2,4; A4 = 3,1

A5 = 4,3

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

E.g. 2 p = 5, m = 2, a = 12

H =

A1 = 000…0 , A2 = 0011111 22222, A3 = 1201234 01234, A4 = 1212340 23401 …

R = 510
r = 5-2 = 4%

For the general case with a = ½ (pm – 1)

R = pa-m = p^(1/2(pm – 1) – m)

r = p-m 0

if p 

or m 

For arbitrary d the problem is still open

Monitor Placement for Hexagonal (d = 3) and Triangular (d = 6) Tori

For Hexagonal p-ary tori

N = 2p2 M = 3p2 d = 3

p-even

R = p2/2 , r = ¼
 4
 1 2 3 4

p = 2

R = 2

E.g.

p = 4

N = 32

M = 48
R = 8

 13 14

 13

Perfect placement for p even

Monitor Placement for Triangular Tori

N = p2 M=3p2 d = 6

E.g. p = 7 R = 7

[image: image152.wmf]
Perfect placement for p = 7K

R = N/ 7 = p2 / 7 r = 1/7

Diagnosis of Processor Faults

-All single faults are located by monitors

-A multiple fault is not diagnosable if it includes at least one monitor and a neighboring non-monitor processor

-For faults with a multiplicity exactly l 2. The fraction of diagnosable faults

 Rd

N = 1

0

Monitor Placement for Binary n-dim cubes.
1. Construct a code
[image: image153.wmf]C

 with covering radius 2 with a minimal numbers of codewords. (Any n-din binary vector is at a distance at most 2 from one of the codewords of
[image: image154.wmf]C

).
2. Asymptotically (
[image: image155.wmf]n

®¥

) optimal identifying code
[image: image156.wmf]V

consists of all vectors at distance 1 from each one of the codewords of
[image: image157.wmf]C

.

Example. n=5.

[image: image158.wmf]{00000,11111},{00001,00010,00100,01000,1

0000,11110,11101,11011,10111,01111}

CV

==

Diagnosis for Perfect Monitor Placement

R = N / d+1

fl = 1 – N (d/d+1)

1 – (l(l-1) / (N-1)) d / d+1

For a 15-dim hypercube (N=215)

f  0.95 for up to 30 faults

Testing for Link Faults

-Links are in many cases less reliable than processors

-For monitor placement for processor faults only Rd links are covered for perfect placement and

Rd/M = Rd2/Nd = N2/N(d+1) = 2/d+1

For perfect placement

for d=4 fractions of links covered is 40%.

Monitor Placement Problem for Link Faults:

-Min. number of monitors R such that every link is contained in at least one ball of radius 1 around a monitor

-All Link faults with any multiplicity are located
R  M/d = N/2 (M = Nd/2)
If R = N / 2 the placement is perfect

2d p-ary meshes and tori

Perfect checkerboard placement

p-even
Even parity code: For monitors sums of coordinates are even

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

p-ary Tori and binary hypercubes:

perfect placement based on even parity codes

p-even
E.g. p = 8, d = 2, ring

One-dim. tori

E.g. p =2, d =3, hypercube

Perfect Placement for Hexagonal p-ary (meshes) tori (p-even, link faults)
d=3

p=4

Optimal Placement for Triangular p-ary (meshes) Tori (p-even, link faults)

R=3/4 N=1.5p2 , r=0.75 p-even

The placement is optimal but not perfect.

P=6

[image: image159.wmf]
In any of these 3 directions (, ,) row

followed by row

Optimal Placement of Monitors for p-ary trees with l-levels (line faults)

N= pi = (pl – 1) / (p - 1) , Trees are not regular graphs di {1, p}

E.g. p = 3, l=4 , N=40 , R=10 , r=0.25

Monitors are placed on even or odd level starting from parents of leaves

R = p(pl-1-1) / (p2-1) for l odd

R = (pl-1) / (p2-1) for l even

r = R / N = (1 / (p+1)) (pl-p) / (pl-1) for l odd

r = 1 / (p+1) for l even

The placement is optimal but not perfect.

Testing and Diagnosis of Processor Faults in Networks with Irregular Topologies (NOWS)

Node covering problem

E.g.

R = 3

[image: image160.wmf]
The problem is NP-COMPLETE

Solution based on spanning trees – monitors are at alternating levels of a spanning tree

R  N /2

All single faults and almost all multiple faults are detectable

-Solutions based on greedy algorithms

-If d1 d2  …  dN
N / (d1+1)  R  N / 2

If d1 , then R

[image: image161.wmf]
Randomly generated graphs (1000 graphs)

Testing and Dignosis of Link Faults for NOWs

1. Link coverage by balls around monitors

-Detects and locates all single and multiple faults in links

-Disable the ports connecting monitors and faulty links

-Perfect coverage

R = M / d = N / 2

E.g.

N = 9, R = 5

[image: image162.wmf]
Experiments on link coverage for randomly generated 1,000 graphs with d = 4 and d = 8 (average degrees)

[image: image163.wmf]
For N = 128 r  0.65

If di R

Testing of Link Faults by Path Sensitization

-Monitor send messages such that corresponding paths cover all links (link covering by paths)

-If the acknowledgement is received the path (and all lines along the path) is fault-free

-Number of monitors is going down but fault location is more difficult

-Link coverage by balls (checkerboard placement) – special case

-To avoid the contention paths are partitioned into W groups such that paths within a group do not have common nodes (parallel sensitization of paths within a group)

Test time

T=

Where Li,j is the length of path j in group i

[image: image164.wmf]

Trade-off between numbers of Monitors and Testing Time

E.g. 2-d p-ary mesh. (p-even)

1. Checkerboard

R = ½ p2, w = 4, Li,j = 1, T = 4

2. Row and Column paths

3.Hamiltonian Tests

R = 1, W = 2, L1,1=L2,1(p-1)2
T = 2(p – 1) 2

For all cases RT~O(p2)

-For any graph

W 

-If R = 1 then

W  N – 1

-For any graph

W [N / 2] , R  [N / 2]

Testing for Total Routing Faults (TRFs) by Path Sensitization

-Covering of nodes by paths

-Trade-off between number of monitors R and testing Time T

E.g. 2-d p-ary mesh

R=1, T = (p-1)2

p = 4

R = p , T = (p – 1)

If G Hamiltonian one can take R = 1, T= D + 1

For any G

N / (D+1)  Rmin  [½ (N-D+1)]

D-diameter, max path length

Detection of Partial Router Faults by Path Sensitization

Covering by paths all possible turns of every router node

For p-ary 2-d meshes:

R = 4p-2, W = () = 6

All turns are covered by 6 paths

T=2(p-1)2+4(p-1)

Wormhole Routing

-Useful for routing at short distances (multiprocessors, NOWS) very fast

-All Flits are following the same path. A message with F flits can occupy up to F lines at the same time (e.g. 1 flit – 8 bits, F=200)

-Messages can block each other - deadlocks, when they are competing for the same lines

Example of Deadlock with 4 nodes

[image: image165]
-Probability of a deadlock is growing with an increasing message generating rate.

-Routing policy RTi(Cin, B) = Cout for router i for any input link Cin, and destination B produce output link (port) Cout
-RTi (Cin, B) can be stored in a local memory of router i as a routing table of the size di x N

-When a topology is changing RTi for all i should be recomputed (pre-routing) and loaded in routers

-This is needed when new users join the system or a fault is detected and link to faulty nodes are disconnected (fault isolation)

-Pre-routing can be implemented off-line or on-line

[image: image166]
Channel dependency graphs(CDG)

-Every symmetrical link is replaced by 2 directed channels.

-Nodes of CDG are directed channels. There are 2M channels in G or nodes in CDG

-There is an edge from channel Cs to channel Ct if Cs is incoming link for a router i; Ct is outgoing link for the same router and there exists B such that

RTi(Cs, B)=Ct
-CDG depends on routing functions Rti (i=1,…,N)

E.g. 2-d mesh p=3

[image: image167.wmf]
Channel Dependency Graph for p-ary meshes with NORTH-LAST Routing

[image: image168.wmf]
Necessary and Sufficient Condition for Deadlock Prevention

A deterministic (non adaptive) coherent routing policy never produce deadlocks if and only if there are no simple cycles in the corresponding channel dependency graph

North-Last (or South-Last) results in a deadlock-free routing for 2-dim meshes

Deterministic routing policy A is coherent iff for any source S and destination D if

S=n1,n2,…,nk-1, nk,nk+1,…,nT=D is the path generated by A from S to D, then S=n1,n2,…,nk-1,nk should be the path from S destination nk and

nk,nk+1,…,nT=D should be the path from source nk to destination D (k=1,2,…,T-1).

The condition that there are no cycles in the channel dependency graph is necessary and sufficient for deadlock free routing if it is coherent and only sufficient if it is not coherent or if the routing is adaptive.

Almost all deterministic routing policies used in NOWs and multiprocessors are coherent.

Example of non coherent deterministic deadlock free routing with cycles in the channel dependency graph

[image: image169.png]

The routing algorithm associated with the interconnection network shown in Fig. 1 works as follows: If node N* is the source, send the message directly to the destination. With four exceptions, messages from the other nodes are routed by sending the message from the source of the message to node N*, which then forwards the message directly to the destination. Note that these messages never use the highlighted channels in the cycle .

The four exceptions occur when node Src sends a message to destination D1, D2, D3, or D4. For these source-destination pairs, the message is routed from Src to N* and then along the corresponding path through the node labeled Pn. For example, the path from Src to D1 routes the message from N* to node P1 and then along the highlighted channels in the counterclockwise direction until the message reaches D1.

Note that there are cyclic dependencies since the message destined for D1, message M1, routes through D4; the message destined for D2, message M2, routes through D1; the message destined for D3, message M3, routes through D2; and the message destined for D4, message M4, routes through D3. For convenience, this routing algorithm is called the Cyclic Dependency routing algorithm. When M1 releases the shared channel between Src and N* (cs), M1 needs to use only two more channels to bypass M2's entry point into the cycle, but M2 needs to use three more channels to block M1. Thus, M2 must be injected before M1 in order to block M1. For the same reason, M4 must be injected before M3. If both M2 and M4 are injected prior to either M1 or M3, however, then the first message injected (M2 or M4) is not blocked. Hence, it is impossible to inject both M2 and M4 before M1 and M3 and also inject M1 and M3 in time to block M2 and M4.

Note: This routing policy is not coherent. For example: if Src is the source, D1 is the destination. The path from Src to D1 will be Src,N*,P2,b,a,D1. But the path from Src to a will be Src,N*,a. (P2 and b are not included in this path).

There is a cyclic channel dependency involving the nodes a, D1,D2,D3 and D4 (external cycle). Links of this cycle are presented by bold lines in the figure above. But this cycle doesn’t result in a deadlock.

Virtual Networks

-Every channel is time-multiplexed into two virtual channels

-For every line there are 2 buffers in every router

 Router 1

Router 2

-Buffers B1, B2 are used only in the first virtual network Vi

-B3, B4 are used only in V2

[image: image170.png]. Physical Channel

Physicai Chaane!
To Neighbor Node

’1

South Last

Nuygth Last
e

BN Single FLIT Buffers

I

i Virtual Channel Control
Link Arbitration und Routing Logic.

To Meighbor Node)

North L'ist
\ . - //—’
| A
t

J ———p
South Last

Eunh Last:
\~
])
1-—/——-—-
South List

Host CPU,

Physical Channel
To Neighbor Node- - | Network Interface

Memory, VO

2C...

Fig. 4. The Simulation Model.

Physical Channes

To Neighbor Node

-Every message (all flits) can be moved within only one virtual network

-Number of buffers is doubled

-Two virtual networks can use different routing policies for deadlock prevention (e.g. for 2-dim meshes NORTH-LAST in V1 and SOUTH-LAST in V2 (NAFTA algorithm for routing in 2-dim meshes with faulty nodes or links, fault-tolerant routing))

-private virtual networks

-For deadlock prevention it should be no cycle in each one of the CDGs corresponding to routing in V1 and V2

(Each one of CDGs has 2M nodes corresponding to virtual channels)

-To improve the performance messages can be moved from V1 to V2 (but not from V2 to V1!)

In this case a message starts in V1 and then at some intermediate node is moved to V2
-Introducing 2 virtual networks may improve the performance (average delivery time or latency) but require more complex hardware for routers. (multiplexers and additional buffers for every port)

-Most systems do not use more than two virtual networks

E.g. Virtual Networks for 2-dim Meshes

-Before message is sent a virtual network is selected and the message remain in the same virtual network

-For 3-dim 8 virtual networks:

X-Y-Z-, X-Y-Z+, X-Y+Z-, X-Y+Z+, X+Y-Z-, X+Y-Z+, X+Y+Z-, X+Y+Z+

-Unidirectional channels in Vi
-Reducing number of virtual networks for 2-dim meshes (bi-directional X-channels)

[image: image171.wmf]
Routing with Several Virtual Networks V1, …, Vt
-For every Vi its own set of turn prohibitions, breaking all simple cycles in the channel dependency graph for Vi or breaking all simple, 8-type and type cycles in the system graph G..
-If the message in Vi cannot advance to the destination it can continue in Vi+1 (but not otherwise)

-For every Vi its own routing procedure

-Size of local memories O(tdN)

E.g. 1 Vi correspond to different spanning trees for up/down routing (see below)

E.g. 2 (Fault-tolerant routing in 2-d meshes)
V1 (x-y) routing

V2 (y-x) routing

V1, V2 – are deadlock-free for 2d meshes

S = (1,2)

D = (4,3)

In (2,3) : V1 V2

Remark
V1 does not have to be deadlock free, but if a deadlock is detected for a message in V1 then the message is moved to V2 which is deadlock free.
-In this case V1 may be based on the shortest path (without turn prohibition) and V2 may be up/down or TP-based.(see below)

-Then for a low intensity traffic most messages are in V1 and with an increase in traffic intensity more messages are moved to V2
Experimental Results comparing one and 2 virtual networks for random graphs

-messages 200 flits

-uniform traffic 10,000 source-destination pairs

-N=256

-d=4

-100 random but connected graphs

[image: image172.wmf]
Deadlocks and Livelocks in Local Area Networks

The Backpressure Problem

Example of a deadlock

X’s buffer full of packets destined for B

Y’s buffer full of packets destined for C

Z’s buffer full of packets destined for A

Deadlocks: a condition under which the throughput for a part of the network goes to zero

Livelock: a condition under which the network is not stopped but one or more individual packets are never transmitted

Deadlocks and livelocks in LANs may appear as a result of congestion. Congestion may be the result of backpressure.
Example on the previous page:

X, Y, Z – routers (1 Gbs)

A, B, C – PCs (56 kbs modem)

Solutions for LANs:

1. Dropping packages (if a probability of a deadlock or livelock is small)

2. Using spanning tree (prohibiting some links)

3. Turn prohibition

[image: image173.wmf]2

Gigabit Ethernet

•

Switching

•

Full

-

duplex

•

Flow Control

•

Plug

-

and

-

play

[image: image174.wmf]3

Looping Problems

•

Packets circulate

forever

•

Deadlocks

•

Current solution:

Spanning Tree

•

Unscalable

[image: image175.wmf]4

Turn Model

Ø

Turn

: An input

-

output

pair in a switch

Ø

Idea

:

Disable

turns

instead of links

Ref: Glass & Ni (’92)

Ø

Paradigm

generalizable

to

arbitrary

topologies

[image: image176.wmf]5

Turn

-

Prohibition:

Algorithm Properties

•

Break all loops

•

Keep connectivity

•

Never prohibits more

than 1/3 of the turns

•

Irreducible

•

Polynomial complexity

Ref:

Karpovsky

,

Levitin

&

Zakrevski

(’98)

[image: image177.wmf]6

Scalability Results

•

Arbitrary graph with large number of nodes

•

Same degree for each node

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3

4

5

6

7

8

9

10

Degree of Nodes

Fraction of Turns Allowed

Spanning Tree (upper bound)

Turn Prohibition (lower bound)

Turn Prohibition model for Routing

-Turn (a,b,c) in CDG is pair of edges (a,b) and (b,c)

-To break all cycles in CDG (for deadlock prevention) some turns should be prohibited

-The set of prohibited turns in CDG defines the routing policy

E.g. NORTH-LAST for 2-dim meshes

 , , , , ,

-Fraction Z of prohibited turns for NORTH-LAST

 Z = 1/6

-Z can be used to compare routing strategies:

smaller Z – more efficient is the routing strategy.

-Efficiency of a routing strategy can be measured in terms of its saturation point or maximum sustainable throughput.

Average Saturation Point vs Fraction Z of prohibited turns

-Random but connected graphs N = 256

-d=4; F=200; 1,000 graphs

Z

Reduction of Z from 30% to 20% results in almost 100% increase in a throughoutput.

Problem: Select a min set of prohibited turns to break all cycles in a channel dependency graph

-S is a min set of prohibited turns for CDG if and only if S is a min set of turns breaking all cycles (simple, 8-type and type) in the original network graph G.

-S is symmetric if (a, b, c)  S (c, b, a)  S (a  c)

-For North-Last S is not symmetric

Turns between any channel and the consumption channel for the same node are permitted.

-We will consider only symmetrical sets of prohibited turns

-It is not known even one example of a graph G where nonsymmetrical turns result in a smaller Z

-Thus, pre-routing stage (construction of routing tables Cout = RTi (Cin, B) is partitioned in 2 steps:

1. For a given network graph G construct a min set S(G) of prohibited turns breaking all cycles in G but keeping connectivity of G (for any two nodes a, b there exists a path between a and b not containing turns from S(G))
Ex. A Network of Workstations with switch-based Interconnect (Indirect Network)

[image: image178.png]2

bideresd énaz iwws

7 S Wo'Mtj
33 workstetiong

wark:!a How

- unused for{-

The corresponding graph G and turns breaking all cycles

d=3

For indirect networks di < number of ports in router i
[image: image179.png]

Z=6/21=2/7

E.g. (cont’d)

 G

2) Set {(1,3,2), (3,5,4), (7,6,8)} breaks all simple and 8-type cycles but not cycle (3,5,6,7,8,6,5,4,3)

3) Set {(1,3,2), (3,4,5), (6,7,8)} breaks all cycles thus |S(G)|=3 and Z = |S(G)| / T(G) = 3/17

Since construction of S(G) is difficult we will estimate lower and upper bounds on

 Z = |S(G)| / T(G), where

T(G) = ½

2) After set S(G) of prohibited turns is constructed local routing tables RTi should be constructed by a decentralized procedure (At the start every node i knows only prohibited turns (a,i,b) around this node (a,i,b)  S(G))

Up and Down Wormhole Routing

1. Construct for a given network G a spanning tree T(G) with N nodes and N-1 edges

E.g. 2-dim mesh with N=p2=25

2. Label nodes of the tree by preserving the partial order defined by T(G)

Root-1

All nodes at level i have labels lower than nodes at level j if i < j

3. (a,b,c) is prohibited iff b > a and b > c

for 2-d meshes

 prohibited

Permitted

-There is a path between any two nodes not containing prohibited turns (a,b,c) where b>a, b>c

for example a path containing links from T(G) only

-In every cycle there is a node with a max label, say b

Since (a,b,c) prohibited if b is max all cycles are broken no deadlocks

[image: image180.wmf]
Limitations of up-down Routing Strategies

-Uneven load distribution; contentions on links near the root

-There are many spanning trees T(G) for the same G

Performance of up/down routing depends on a selection of T(G)

E.g.

[image: image181.png]rovt

S(G) = { (1,3,2), (1,4,3), (1,5,4), (1,6,5)}

Z = |S(G)| / T(G) = 4 /21

2)

[image: image182.png]

S(G) = {(1,6,2), (1,6,3), (1,6,4), (1,6,5), (2,6,3), (2,6,4), (2,6,5), (3,6,4), (3,6,5), (4,6,5)}

Z =10/21

For up/down approach fraction Z of prohibited turns may be anywhere between 0 and 1 (0<Z<1)

[image: image183.png]vt

S(G) = {(1,i,i-1) | i=3,4,…,N}

|S(G)| = N-2, T(G) = +1+3(N-3)+1

Z= (N-2) /(+ 3N - 7) 2/ (N-1), as N  Z 0

[image: image184.png]

S(G) = {(i,N,j) | i,j  {1,…,N-1}, i  j}

|S(G)| =

Z=

-The problem of constructing an optimal spanning tree T(G) minimizing Z for a given G is NP- complete (exponential complexity)

-Performance of up/down approach can be improved by using 2 virtual networks V1 and V2 with 2 different spanning trees T1(G) and T2(G) for the same graph G.

Simplified Cycle Breaking (SCB)

Algorithm
1. Select a non-cut node of a minimal degree. Label it by 1

2. Prohibit all turns (a,1,b), permit all turns (1,c,d)

3. Delete 1 from G and apply SCB to G-1.

Properties of SCB:
1. Break all cycles

2. keep connectivity

3. Fraction of prohibited turns z(G) do not exceed 1/3 for any G

4. Set of prohibited turns generated by SCB is irreducible
Complexity of SCB: Number of Operations
[image: image185.wmf]2

()

OdN

 Required Memory
[image: image186.wmf]()

ON

Minimization of a Number of Prohibited Turns for Deadlocks Prevention
Turn Prohibition (TP) procedure:

1. Find a node with a min. number of neighbors. Denote it by 1. Prohibit all turns (i,1,j). Permit all turns (a,b,1) (1,b,a).

2. Delete from G node 1 all links connected to 1
 a) If the remaining graph G-1 is connected repeat the procedure

 b) If G-1 consists of components G1, G2, …, Gs in every Gi select a node ai connected to 1 in G.

Permit all turns (ai, 1, aj)

Repeat the procedure for all Gi
E.g.

Step 1: node 1 selected

Permit turns: (1,b,a),(1,b,c),(b,1,d),(1,d,e),(1,d,f)

Prohibit turns: 
Step 2: node e=2 selected

Permit turns: (2,f,d)

Prohibit turns: (d,2,f)

Step 3: node f=3 selected

Permit: (3,d,1)

Prohibit: 

Step 4: Node d=4 selected

Permit: (d,1,b)

Prohibit: 
Step 5: node 1 already selected; select a =5

Permit: (a,g,h), (a,g,r), (a,g,c), (a,b,1), (a,b,c)

Prohibit: (g,a,b)

Step 6: Select b=6

Permit: (b,c,g), (b,c,r)

Prohibit: 

Step 7: Select c=7

Permit (c,g,h), (c,g,r), (c,r,g),(c,r,h)

Prohibit: (g,c,r)

Step 8: Select r=8

Permit: (r,g,h), (r,h,g)

Prohibit: (g,r,h)

Set of prohibited turns:

S(G) = {(4,2,3), (g,5,6), (g,7,8), (g,8,h)}

Properties of the Turn Prohibition Procedure
1. S(G) generated by the TP procedure break all the cycles (simple, 8 or ) deadlock-free routing

2. For any topology G the TP procedure generates S(G): Z = |S(G)| / T(G) 1/3

Z = 1/3 only for G=KN – strongly connected G

For up/down procedure Z may be > 1/3 and close to 1

3. Graph G with prohibited turns S(G) is still connected

For any two nodes a,b there is a path from a to b not containing turns from S(G)

IRREDUCIBLE VERSION OF TP-ALGORITHM

Goal: To make S(G) generated by the TP-procedure irreducible. Deletion of any turn from S(G) result in cycles.
ALGORITHM
1.Find a node with a min. number of neighbors. Denote it by 1.
1.1 If 1 is a non-cut node, proceed as in the original TP (prohibit all turns (a,1,b), permit (1,a,b) and delete 1)

1.2 If 1 is a cut node, denote by G1, G2, … components of connectivity of G-1 where G1 has a maximal number of links to 1, G2 has more links to 1 than G3, G4, … etc.
For every component starting from G2 select a link to 1 and call it a special link. Ends of special links are special nodes.

 Prohibit all (a,1,b) except for the cases:
i) a
[image: image187.wmf]Î

G1 and (1,b) is a special link

ii) both (a,1) and (1,b) are special links
2. Apply the Algorithm to G1
3. If after step 2. there exists a cycle of nodes which includes a
[image: image188.wmf]Î

G1 and there is a path between a and 1, set a global variable halfloop:=1 (At the beginning halfloop was set into 0)

4.1. If halfloop=0 apply the Algorithm to G2. The node selected at step 1 should be a non-special node.
4.2. If halfloop=1 apply the Algorithm to G2. The node selected at step 1 should be a non-special node and the case i) at the step 1.2 should not be applied.

EXAMPLE.

[image: image189]
1. Select node 1.
1.2. Node 1 is cut node. Turn (3,1,5) is prohibited. Turns (3,1,10) and (5,1,10) are permitted.
Link (1,10) is special.
 G1 consists of nodes 2,3,4,5. G2=G-G1-1
2. Turns (3,2,4), (3,2,5), (4,2,5) and (4,3,5) are

 prohibited in G1

 3. halfloop:=1 (there are cycles of nodes e.g. (1,3,5) or

 (3,4,5))

 4. Apply Algorithm to G2 consisting from nodes

 6,7,8,9,10,11,12,13,14.

 Select node 6. It is a cut node. Select (6,9) and (6,14)

 as special links (9 and 14 are special nodes).

 Since halfloop=1 , turns (7,6,9) and (7,6,14) are

 prohibited.

5 Delete node 6 and apply Algorithm to the graph consisting of nodes 7,8,9,10

6 Apply Algorithm to the graph consisting of nodes

 11,12,13,14.

Complexity of the TP-procedure
Number of steps 0(N2d)

Memory size 0(N)

The procedure is performed only when the topology changed

-TP-procedure is optimal for many cases in terms of a number |S(G)| of prohibited turns (e.g in the cases when at every step there exists only one node with a min number of neighbors)

-There are topologies when the procedure produces not optimal (but irreducible!) solution

[image: image190.png]

Solution 1: H=1, A=2, B=3, C=4, D=5, E=6, F=7, G=8

Prohibited: S1(G)={(G,H,F), (G,H,E), (F,H,E), (1 step), (D,A,C), (D,A,B), (C,A,B), (2 step), (E,B,F), (3 step), (G,C,E), (4 step), (G,D,F) (5 step)}

|S1(G)|=9

Solution 2: A=1, B=2, C=3, D=4, E=5, F=6, G=7, H=8

Prohibited: S2(G)={(D,A,C), (D,A,B), (C,A,B), (step 1), (F,B,E) (step 2), (G,C,E) (step 3), (G,D,F) (step 4), (F,E,H) (step 5), (G,F,H) (step 6) }

|S2(g)|=8

Performance of TP under different traffic patterns
[image: image191.png]by, kokrey) ieorm

TRAMSPOSE

A 2o~

Let us consider the previous example:

[image: image192.png]

In this case the TP-routing will generate the following set of prohibited turns:

(j+1,j,N) (j=1,2,…,N-2)

Then S(G)=N-2 which is MINIMAL and Z(G) 0, as N is growing.

In most cases TP outperforms Up/Down

Example (Peterson Graph)

1

3

2
5

9
4

a. 8

6

10

For Up/Down based on the spanning tree with root 1 (bold lines) 8 turns should be prohibited

For TP only 7 turns are prohibited

For Up/Down based on the spanning tree (Hamiltonian path) 1-2-6-10-4-9-8-7-3-5 only 7 turns should be prohibited.

Comparison of Up/down and TP-procedures

-N=250 (d=4)

-10,000 messages

-200 flits/message (header=1flit)

-uniform traffic

-100 randomly generated connected graphs

[image: image193.png](37
Q23

22y

.29

R1

Z(TP)  0.75 Z (Up/down) for d=4

[image: image194.png]La{enq
150 M’%C up[oown
1S T Ceyeles) -
109
77;
o4
b1y

Saturation point for TP about 15% larger than up/down

Performance of TP under different traffic patterns
[image: image195.png]Av. UNFORM

TRAMSPOSE

A x{o~Y

-For the previous curve

N = 256, d=4

-Local traffic avg. path length 4.40

-Uniform 6.54

-Transpose 9.87

-Saturation points are very sensitive to the avg. path lengths P

increase by a factor of 2 in P results in an increase by a factor of 10 in saturation points

Edge Deletion Algorithm (EDA) for Deadlock Prevention:
Given a connected and undirected graph-

1) Delete all degree 1 nodes

2) Select and edge (x,y) whose deletion will not partition or separate the graph, prohibit all turns at the minimum degree end involving the edge (x,y)

3) Delete the edge (x,y)

4) Repeat from 1) until no edges are left.

Example:

[image: image196.png]Edge Deletion Algorithm

[image: image197.png]Edge Deletion Algorithm

[image: image198.png]Edge Deletion Algorithm

[image: image199.png]Edge Deletion Algorithm

[image: image200.png]Edge Deletion Algorithm

[image: image201.png]Edge Deletion Algorithm

[image: image202.png]Edge Deletion Algorithm

[image: image203.png]Edge Deletion Algorithm

[image: image204.png]Edge Deletion Algorithm

[image: image205.png]Edge Deletion Algorithm

[image: image206.png]Edge Deletion Algorithm

[image: image207.png]Edge Deletion Algorithm

[image: image208.png]Edge Deletion Algorithm

[image: image209.png]Edge Deletion Algorithm

[image: image210.png]mmO6

Edge Deletion Algorithm

[image: image211.png]mmO6

Edge Deletion Algorithm

[image: image212.png]mmO6

Edge Deletion Algorithm

[image: image213.png]Edge Deletion Algorithm

8

Note: On average EDA outperform SCB or TP but for EDA we cannot guarantee that z(G) does not exceed 1/3.
Routing For Topologies with Cycles of Even Lengths

(examples: meshes, d-dim tori (d>1, p>3), bipartite graphs, etc…)

generalization of NORTH-LAST (or SOUTH-LAST)

2. Select any node as level 0

3. All neighbors of 0 form level 1

…

j) All neighbors of nodes at level j-1

 (which are not nodes at level j-2) form level j (j=2,3,…)

Then all links are between nodes on levels j and j+1 (j=0,1,…)

Prohibit all turns (a,b,c) such that a and c are at the level j and b at the level j+1 (or a and c at the level j+1 and b at the level j).

Lower Bounds on Minimal Numbers of Turns in Cycle-Breaking Sets

-For G with N nodes and M edges with a minimum degree of nodes equal to d
Z(G)  (M-N+1+
[image: image214.wmf]1

(1)

2

dd

-

) / T(G)

E.g. For d=3
[image: image215.wmf]()(2)/()

ZGMNTG

³-+

E.g. 2-dim p-ary tori

N=p2, M=2p2, di=4,

Z(G)  p2+4/6p2 = 1/6 + 1/6p2  1/6

[image: image216]
-Let C={C1,…,CQ} be a system of simple cycles in G and q max number of cycles in C containing the same turn. Then Z(G)  Q/qT(G)

E.g. 2-dim p-ary tori

Trade-off between a number of nodes and a number of turns to be prohibited for deadlock prevention

-Insertion of retransmitting nodes

-Any graph G with N nodes and M edges can be transformed into graph G’ by adding not more than M-N+1 retransmitting nodes on edges of G in such a way that

Z(G’)=(M-N+1)/T(G)

(coinside) with the lower bound

|S(G’)|=M-N+1  |S(G)|

-Select a spanning tree(with N nodes and N-1 edges)

-Add retransmitting nodes and every edge not belonging to the tree (there are M-N+1 edges which do not belong to the tree)

-Prohibit turns around the added nodes

E.g.

[image: image217.png]

NOTE:

1) the problem of constructing a minimal set of prohibiting turns breaking all cycles and keeping connectivity is NP-complete

2) the TP-algorithm is greedy (selecting one node at every step and prohibiting turns around it)

3) complexity of the TP- algorithm is O(N2)

4) TP-is NOT optimal

Routing for Multiprocessors (regular topologies)

1.Fractahedrons (Tandem Computers)

E.g. Thin (t=1) Fractahedron with 3 levels

[image: image218.png]

|S(G)| =4(1+4(3 l -2+3 l -3+…+1))=(2*3l-1-1)4

TP procedure is optimal (l-number of levels)

Z ~ 1/5

Thick Fractahedron with Thickness t

E.g. t=2, l=2

[image: image219.wmf]
TP procedure is still optimal

Routing in Meshes and Tori

N-dim p-ary Meshes

Important from a practical point of view n=2 (Intel Paragon), n=3 (Cray), p=2 (N-cube)

-Up/Down Routing (modified)

Label nodes by a distance (number of edges) from node (0,…,0) (root of the spanning tree)

Prohibit (a,b,c) a<b and c<b

E.g. n=2, p=5

[image: image220.png]

[image: image221.png]

-For the general case of n-dim p-ary mesh Mpn (p>3)

|S(Mpn)|= (p-1)2 pn-2
Z(Mpn)= ((n-1)(p-1)2) / (2p(p-2)+4(n-1)(p-1)2)

 Optimal solution

For n=2

|S(Mpn)|= (p-1)2

Z(Mp2)= (p-1)2 / (4(p-1)2+2p(p-2)

For n=3

|S(Mp3)|= 3(p-1)2p

Z(Mp3)= 2(p-1)2 / (2p(p-2)+8(p-1) 2
 n-dim p-ary Tori Zpn , p>3

N=pn M=npn
-Label node a=(a1,…,an) (ai  {0,1,…,p-1}) by

l(a) = a1+a2+…+an (mod p)

-For every node b prohibit (a,b,c) such that

l(a) = l(c)= l(b)-1 (mod p)

 pn – prohibited turns

-For “boundary” nodes b (a,b,c) is prohibited if

l(a)= l(b) – 1, l(c) = l(b)+1 (mod p)
[image: image222.png]

optimal turn prohibitions

Z(Zp2) = (p+2) /6 p

For n-dim Tori (Zpn)

|S(Zpn)| = pn + pn-1n

 boundary nodes

 |S(Zpn)| p(n-1)+2

 pn 2p(2n-1)

For large p or large n

Z(Zpn) ¼

Binary Hypercube Z2n
N=2n, M=n2n-1, d=n

-Label node a=(a1,…,an) (ai  {0,1})

by l(a)= a1+a2+…+an
-For every node b prohibit (a,b,c) such that

l(a)=l(c)=l(b)-1 (mod2)

E.g. n=3

[image: image223.png]

Z(Z2n)= ¼ optimal

Breaking Cycles for Homogeneous Meshes (General Case).

Definition: Let A be a set of p-ary n-dimensional vectors. Then
[image: image224.wmf]n

p

M

is a homogeneous n-dimensional A-mesh if it’s nodes are n-dimensional p-ary vectors and two internal nodes X and Y are neighbors iff X-Y belong to A. (For wrapped around A-meshes subtraction is mod p)

Since the network links are bidirectional, if a belongs to A, then –a also belongs to A.
For internal nodes of A-mesh number of ports for every nodes is
[image: image225.wmf]equal to a size of A and this number is even, d=2s.

A-meshes can contain cycles of odd length!

Examples

1. n=1, d=2, A={+1,-1}

2. n=2, d=4, A={(0,+1), (+1,0), (0,-1), (-1,0)} (
[image: image226.wmf]2

p

M

)

3. n=2, d=6, A={(0,+1), (+1,0), (-1,0), (0,-1), (+1,+1),

 (-1,-1) } (Triangular mesh)

4. n=2, d=8, A={(0,+1, (0,-1), (+1,0), (-1,0), (+1,+1),

(-1,-1), (+1,-1), (-1,+1)} (Kings Mesh)

5. n=3, d=6, A={(+1,0,0), (-1,0,0), (0,+1,0), (0,-1,0)

(0,0,+1), (0,0,-1)} (
[image: image227.wmf]3

p

M

)

Definition. Vector a from A is negative if the leftmost nonzero component of a is negative. If d=2s, then for any A exactly s vectors are negative.
Generalized North-Last Algorithm for A-Meshes:

For any internal node X prohibit all turns (Y,X,Z) iff Y=X+a, Z=X+b, where a,b are negative and belong to A.

For boundary nodes with at least one of the components equal p-1 prohibit all turns around them.

 For the Generalized North-Last we have for large p (not counting boundary nodes):

[image: image228.wmf](1)

()1/4(11/21)

2(21)

n

p

ss

zMs

ss

-

==--

-

where d=2s, s>1.
For example for s=2 we have
[image: image229.wmf]2

()1/6

p

zM

=

 or for s=3 and we have for triangular meshes
[image: image230.wmf]1/5

z

=

.

For homogeneous meshes fractions of prohibited turns depends only on degrees d=2s of nodes (sizes of neighborhood sets A) and does not depend on topologies!
For any A-mesh with d>2 the fraction of prohibited turns is between 1/6 and 1/4 .

Generalized North-Last algorithm provides for large p a minimal set of turn prohibitions around internal nodes for breaking cycles.

To prove this we note that there are ½ 2s(2s-1)=s(2s-1) turns at any node X and there are Q=1/2 s(s-1) cycles (X,Y,W,Z) of length 4 such that these cycles do not have common turns, Y=X+a, W=X+a+b, Z=X+b where a and b are negative.
 Thus Generalized North-Last is optimal for all homogeneous A-Meshes.
p-ary Hexagonal Meshes (stars)
di  {2,3} These meshes are not homogeneous A-meshes
Z(G) = 1/6 for large P (optimal)

[image: image231.png]

p-ary Hexagonal Tori

Any cycle in any one of the 3 directions

[image: image232.png]

p =3

length of cycles 2p

p-ary Hexagonal Tori

-For every one turn prohibited

-In addition to this 2p turns , are prohibited to break one-dimensional cycles and
[image: image233.png]

.

optimal turn prohibitions

-Z ~ 1/6

Triangular Meshes (homogeneous)
d=6

For internal nodes 3 turns , , are prohibited out of 15

[image: image234.png]

Z ~ 1/5

Cube Connected Cycles (ccc)

N=n2n, M=3n2n-1
[image: image235.png]

For every cycle of length n is prohibited (2n turns)

-For every edge prohibit one turn or (n2n-1 turns)

For n-dim ccc:

|S(G)|=2n+n2n-1
T(g)=3n2n – total number of turns

Z(G)= |S(G)| / T(G) <1/6 + 1/3n 1/6

Generalizations of results for CCC

THEOREM. Let H be a d-regular graph (dj=d for all j, d>2) with NH nodes and G obtained from H by replacing every node by the simple cycle of d nodes.

Then

-degrees of nodes in G all equal to 3

-number of links in G is 1.5NHd

-number of turns in G is 3NHd

and

1/6 + 1/3NHd< Z(G)< 1/6 + 1/3d

(For CCC H=Z2n , d=n)

THEOREM. If all nodes of 3 regular graph G with N nodes can be covered by k NON-INTERSECTING (by nodes) SIMPLE cycles, then

1/6 +1/3N < Z(G)< 1/6 + k/3N.

 For example, for the Peterson graph N=10, k=2 and

6/30< Z(G)< 7/30 (In fact Z(G)=7/30)

Strongly connected graphs KN

-Every two nodes are connected by edge
E.g. N=5

[image: image236.png]

-By TP-procedure prohibit all turns (i,1,j) and delete 1, resulting graph is KN-1

-|S(K N)| = + |S(K N-1)|

|S(K3)|=1

-|S(K N)| = (N(N-1)(N-2)) / 6

-T(K N)=N

-Z(K N)=1/3 (max)

-K N are only graphs with Z=1/3 for all other G: Z(G) < 1/3

Routing in Hamiltonian Graphs with Nodes of Small Degrees.

THEOREM. If graph G with N nodes is Hamiltonian and the maximal node degree is d, then

Z<(N(d-2) + 4)/2Nd.

Proof:

A cycle-breaking set of turns can be constructed by labeling all nodes along the Hamiltonian path and prohibiting all turns with a middle node having the MAXIMAL label.

Then the turns can be classified into 3 groups:

1) Turns between the edges, belonging to the path.

There are N-1 such turns. All of them will be permitted.

2) Turns between an edge from the path and an

 edge not from the path. There are M2 =M-N+1

 such edges, and each edge generates one

 prohibited turn.

3) Turns between edges not belonging to the path.

 There are not more than

 T3=1/2(N-2)(d-1)(d-2)+(d-1)(d-2) such turns. Not

 more than half of them are prohibited (otherwise

 we can prohibit all turns with a middle node

 having the MINIMAL label)

Thus, the total number of prohibited turns is

Z(G)=M2+1/2T3.

Since T(G)< 1/2Nd(d-1) and M<1/2dN, we have

Z(G)<(N(d-2)+4)/2Nd.

For d=3

Z(G)<(N+4)/6N=1/6+2/3N.

For d=4

Z(G)<1/4+1/2N.

[image: image237.wmf](

)

(

)

(

)

(

)

. Let be graph with edges and 3 nodes

 of at

 most degree 3 and at lea

st one node of degree 2. Then

1

652

6

and

14

.

4

1243

 ,

TheoremGMN

ZGMN

N

zG

MN

êú

êú

êú

ëû

>

£-+

-

£-

-

[image: image238]
Summary on Turn Prohibitions for Regular Topologies

	No
	Topology
	d
	Z for large N

	1
	Fractahedrons
	3,4
	1 / 5

	2
	2 dim meshes, tori
	2,3,4
	1 / 6

	3
	3 dim meshes, tori
	3,4,5,6
	1 / 5

	4
	Hypercubes
	Log2N
	1 / 4

	5
	Hexagonal meshes, tori
	2,3
	1 / 6

	6
	Triangular meshes, tori
	2,4,6
	1 / 5

	7
	Cube connected cycles
	3
	1 / 6

	8
	Strongly connected graphs
	N-1
	1 / 3

Turn Prohibition algorithm for a given spanning tree. (Modification of EDA).
1. For any node i construct 2 sets Ai and Fi
Set Ai contains all turns (a,i,b) where (a,i) and (i,b) belong to the tree and all turns (i,a,b) if (i,a) is a crosslink (does not belong to the tree).

Set Fi contains all turns where at least one of the links (a,i) or (i,b) is a crosslink

2. Find node j with a maximal difference between sizes of Aj and Fj
3. Delete from G all crosslinks involving j, permit all turns from Aj , prohibit all turns from Fj and apply the algorithm to the remaining graph

Example. K4

1 2

4 3

The spanning tree presented by bold lines.

Select node 4: A4={(4,2,1), (4,2,3), (4,3,1), (4,3,2)}

 F4={(1,4,2), (1,4,3), (2,4,3)}

The difference in sizes of A and F for node 4 is 1 and the same is true for all other nodes.

Turns from A4 are permited, Turns from F4 are prohibited and at the next step we have

1 2

4 3

For this graph A1={(1,3,2), (4,1,2)},

 F1={(4,1,3), (3,1,2)}

Total number of prohibited turns Z=5

(for TP z=4)

Properties of TP with a given spanning tree.

1. Connectivity along the selected spanning tree (backward compatibility)

2. Breaking all cycles

3. Fraction of prohibited turns does not exceed ½

4. Irreducibility

5. Complexity of the algorithm O(dN) (For TP it is O(dN2))

6. This algorithm can be easily implemented in a distributed manner.

Routing Tables Construction for the Case of up/down Routing
E.g.

[image: image239.png]

Turn (a,b,c) is prohibited iff

a<b and b>c (*)

Problem:
-For a given tree and a given source-destination pair(s,d) find a shortest path from s to d satisfying (*)

-For any intermediate node i the routing protocol estimates the length of the shortest path between all neighbors of i and destination d (only paths satisfying up/down restrictions (*) are considered!)

-the message is routed to the neighbor with lowest estimation on the path length to the destination

-Trade-off between accuracies of these estimations (and performances of the corresponding routing procedures) and sizes of local memories in routers

Local Up/down Routing
-Distance between any two nodes is estimated as the tree distance dT (in links) in the spanning tree

-Size of the local memory for storing the tree and labeling is O(N). Not more than O(N2) steps will be required to compute tree distances between all nodes

For the previous example with s=5 and D=9

I. dT(8,9)=3, dT(7,9)=4

dT(1,9)=3, dT(2,9)=4

(dT(a,b) is tree distance)

5 1

II. dT(7,9)=4, dT(2,9)=4

d(3,9)=2

1 3

III. dT(8,9)=3, dT(4,9)=1

3 4

IV.
 4 9

Generated path

5 1 3 4 9

 length of the path is 4

Global Up/Down Routing

-The distances between nodes are distances in G (not in the tree)

-The size of the local memory O(N2) and at most O(N3) steps are needed to compute distances between all nodes.

-For the previous example with s=5 and D=9

d(8,9)=1 since turn (5,8,9) is permitted

5 8 9 (length 2 for the shortest path, for the local approach it was 4)

Construction of Routing Tables for a Given Set of Prohibited Turns
-For a given G, S(G), source S and destination D construct a shortest path from S to D

S=a1,a2,…,aL=D, (ai, ai+1, ai+2)  S(G)

-Initially, every router knows the set of turns prohibited in this router

-Find a neighbor with a shortest distance to the destination under S(G).

-If (v,a,b)  S(G) d(a,b)=1

(Turns to and from consumption channels are permitted)

-If (v,a,b)  S(G) and (a,b,c)  S(G) d(a,c)=2

d(a,b)  D-diameter of the graph

For a routing table at node i

RTi (j, D) = t ,

(j,i,t)
[image: image240.wmf]Ï

 S(G)

j = 0,1,…,d - input channel; (0,i,t)
[image: image241.wmf]Ï

 S(G)

0 - consumption channel;

D – destination; i,D = 0, 1,…,N-1

t – outgoing channel (next node)

dist (t,s) = min dist (r, D), where

r is a neighbor of i and dist may be the tree distance or global distance (for up/down routing) under restrictions S(G) imposed by turn prohibitions

E.g.

[image: image242.png]

Routing Table in Node 5 (for locally generated messages)

	Destination D
	Next node
	d(5,D)
	Path

	1
	1
	1
	5-1

	2
	2
	1
	5-2

	7
	7
	1
	5-7

	8
	8
	1
	5-8

	6
	2
	2
	5-2-6

	3
	1
	2
	5-1-3

	4
	2
	2
	5-2-4

	9
	8
	2
	5-8-9

Routing Table in Node 2 for messages coming from Node 1

	Destination D
	Next node
	d(2,D)
	Path selected

	9
	5
	3
	2-5-8-9

	9
	4
	2
	2-4-9

Message originated in 5.

Quality of Service Routing (QoS Routing)

Turn (a,b,c) has cost g(a,b,c)

(for the previous case g(a,b,c)=1 for all a,b,c)

g(a,b,c) may be defined in terms of costs of links g(a,b) and g(b,c) (ex. G(a,b,c)= g(a,b) + g(b,c))

Costs of links or turns may be defined by delays, bandwidths or reliabilities of links or by frequencies of different turns for a given traffic model (e.g. uniform traffic and shortest path routing)

All previous algorithms for deadlock prevention can be generalized for the case of QoS Routing

Weighted Turn Prohibition (WTP) Algorithm

For WTP algorithm and QoS routing node i is selected if it minimizes:

Max {g(i,x,a) + g(i,x,b) + g(i,y,c) + g(i,y,d) + g(i,z,e) + g(i, z,f) - (g(x,i,y)+g(x,i,z)+g(y,i,z)),

g(i,y,c) +g(i,y,d) + g(i,z,e) + g(i,z,f) + g(x,i,y) + g(x,i,z) - (g(y,i,z)+g(i,x,a)+ g(i,x,b))}

For the first case:

All turns (s,i,t) prohibited

All turns (i,t,s) permitted

For the second case: All turns (s,i,t) where s and t are not equal to x and (i,x,t) for all t are prohibited

All turns (i,t,s) are permitted when t is not equal to x

For any topology and any cost distribution g(a,b,c) a cost of prohibited turns for WTP is less than 1/3 of the cost of all turns in the network

EXAMPLE: g(1,4,3) and g(2,4,3) are equal to 1 g(1,4,2)=20; all other turns have weight 10

1

4

3

2

Solution by TP: S(G)={(1,4,3), (1,4,2), (2,4,3), (2,1,3)}

Total cost: 32

Solution by WTP: S(G)={(1,4,3), (2,4,3),(1,3,2), (2,1,4) (node 3 with edge (3,4) SELECTED AT THE FIRST STEP)

Total cost: 22

 FAULT-TOLERANT WORMHOLE ROUTING
Let S(G) is a set of turn prohibitions breaking all cycles in G. We will say that S(G) is

t-fault-tolerant if for any 2 nodes a and b there exists t+1 link-disjoint paths between a and b not containing turns from S(G).

Example
K4
[image: image243.png]

[image: image244.wmf] - Prohibited Turns (not minimal)

-If S(G) is generated by the TP procedure, then S(G) is 0-fault-tolerant (only one path guaranteed between any nodes)

-Suppose that for the given G there exists t+1 link-disjoint spanning trees T1, T2, …, Tt+1
Let S(G) = { (a, b, c) | (a,b) and (b,c) do not belong to the same tree}

Then S(G) is t-fault-tolerant

-For K4
[image: image245.png]ol Xm

 t = 1

Nessary and Sufficient Condition for Existence of t Edge Disjoint Spanning Trees in a given Graph

(Tutte, Nush-Williams Theorem, 1962)

A graph contains t edge disjoint spanning trees

iff for every partition P of it’s vertex set it has at

least t(│P│-1) cross-edges between partition

blocks, where │P│is a number of blocks in P.

Example

2-d Tori
Zp2

p = 5

t= 1

[image: image246.png]] [} [}
fimuagl
'.l"l' -

Impnsul
Al
Nmsustl
Simamne-
'mlalm

Prohibited turns

4 turns (out of 6)

per node
[image: image247.png]3

S(G) may be t-fault-tolerant only if G is t-fault-tolerant (There are t+1 link disjoint paths between any two nodes)

But this condition is not sufficient
Example Ring Zp1 is one-fault-tolerant. But after breaking the cycle there is only one path between two nodes. Thus, any S(Zp1) is 0-fault-tolerant.

Problem For a given G construct S(G) breaking all cycles such that S(G) is t-fault-tolerant for max t
Still open!

-For any G and S(G) t+1< d

or t < d-1.

-If S(G) is t-fault-tolerant for t>1 then it can be used for adaptive routing.

In this case: Ri (Cin, D) = (C1, C2, …, Ct+1)

There exists a path iCjD (j=1, …, t+1)

If C1 free, then message is sent to C1
If C1 is not free, then message is sent to C2
If C1 and C2 are not free, then to C3 …

-Problems(simple)

1)Find 2-fault-tolerant S(K7)

2)Find 1-fault-tolerant S(K4,4)

Necessary And Sufficient Conditions For Fault-Tolerant Turn Prohibitions
Graph G has a t-fault-tolerant set S(G) of turn prohibitions iff for any partition P of the set of nodes there are at least (t+1)(
[image: image248.wmf]P

-1)

crosslinks between blocks of P (where
[image: image249.wmf]P

 is the number of blocks for P)

Necessary conditions :

1. If S(G) is t-fault-tolerant, then G is t-fault-tolerant

2. If S(G) is t-fault-tolerant, then there exists t+1 link-disjoint spanning trees in G

3. If S(G) is t-fault-tolerant, then

M>= (N-1)(t+1)-1.

4. Let Cmin be a minimal number of links in any cutset for G

Then if S(G) is t-fault-tolerant:

Cmin>t

and

dmin>t , where dmin is a minimal degree of

nodes in G.

Sufficient Conditions:

1. If G is t-fault-tolerant, then for G+{j} there exists t-fault-tolerant S(G+{j}) if dj>t

G

 dj>t

 j

2. If G1 and
 G2 are t-fault-tolerant and the size C of the cutset between G1and G2 in G=G1+G2 is at least t+1 then there exists t-fault-tolerant S(G1+G2)

 G1

 C>t

 G2

. . . .

Thus starting with 1-fault tolerant graph G (e.x. K4 or K4,4) and the corresponding 1- fault tolerant S(G) we can construct an infinite sequence of 1-fault tolerant graphs F and corresponding S(F) by adding to G nodes of degree at least 2. (But not every graph can be obtained from a smaller 1-fault tolerant graph by adding nodes!)

Examples:
1. There exists 1-fault tolerant S(Zp2) for any p.

2. There exists (N-1)/2 – fault –tolerant S(KN) if N is prime.

3. There is no 1-fault –tolerant S(Mp2) for any p. Since in

 this case M=2(p-1)p, N=p2 and the necessary

 condition 4 is not satisfied.

4. There exists no 1-fault- tolerant S(K3,3)

5. There exists 1-fault-tolerant S(Kn,n) for any n>3.

6. For any “wheel” Wn with N=n+1 nodes there exists

 1-fault-tolerant S(Wn).

 Wheel W8

6. For any p and n there exists (n-1)- fault tolerant

S(Zpn)

Reduction of a number of prohibited turns for t-fault tolerant turn prohibitions
Suppose that M>>t(N-1)

Then most of the links are crosslinks which do not belong to any one of the spanning trees. Number of these crosslinks is M-t(N-1).

To break all cycles and to keep t+1 paths between any 2 nodes we can permit all turns between links of the same tree and in addition to this for any crosslink we can permit all turns including this crosslink at one of its ends. Rest of the turns are prohibited.

If t(N-1)/M is small (almost all links are crosslinks),

then this approach provides for breaking all cycles and t-fault tolerance with a fraction of prohibited turns about ½..

 If graph G has 2 centers A and B (any node is connected to both A and B and (A,B) is a link in G),

then:

1. G is 1-fault-tolerant

2. There exists 1-fault-tolerant S(G) for G

such that S(G) is 1-fault-tolerant, irreducible with the fraction of prohibited turns z<1/3

To prove this:

1. select 2 nodes (not centers) C and D such that there is link (C,D) in G.

2. apply the TP algorithm to all nodes except for A,B,C,D

3. after N-4 steps use 2 Hamiltonian paths for the complete graph with nodes A,B,C,D

Fault-tolerant Turn Prohibitions for

Regular Topologies

Let G be a d-regular graph (di=d) with 2 Hamiltonian paths (d>=4) H1 and H2
Then it has ½ dN – 2(N-1) crosslinks which do not belong to H1or H2
To construct a 1-fault-tolerant turn prohibition set it is sufficient to prohibit the following 3 types of turns:

1. Turns between 2 links from different Hamiltonian paths ((H1,H2) turns).

 There are Z1=4N turns of this type.

2. For any crosslink turns at one end of the crosslink and links from Hamiltonian paths ((C,Hi) turns)

There are Z2 = 4N(d-4) turns of this type

3. 1/3 of all turns between any 2 crosslinks determined by the TP-algorithm for the graph G-H1-H2 ((C,C) turns)

There are Z3=1/6 (d-4)(d-5)N turns of this type

Thus we have for the fraction of prohibited turns for 1-fault-tolerance for large N:

 z<= 2(Z1+Z2+Z3)/d(d-1)N=1/3 (1+(16d-52)/d2-d)

and 1/3<= z<=2/3

For large d we have z<=1/3 (the same as in the case of no fault tolerance!)

Multicasting
-Multicasting by repeated unicasting (inefficient)

-Multicasting based on Hamiltonian paths
-At any internal node i addresses of destinations are compared with the address of i. If there is a match address of i is deleted from the list of destinations in the header

-no deadlocks

-not efficient Z(G) ~ 1

-not applicable to all graphs

Multicasting Approaches
1. Repeated unicasting
- delivery time is growing with an increasing number of destinations

-no splitting of messages in routers

2. Hamiltonian path routing

-not every graph has a Hamiltonian path

-the original graph may be Hamiltonian but after a fault it is not Hamiltonian anymore

- determining that a graph is Hamiltonian is NP-complete
-crosslinks which do not belong to the Hamiltonian path are used as shortcut to accelerate multicasting
-list of destinations in the header, reduction of payload

-messages may be split in at most 2 copies (one of them going into a consumption channel)

3. Multiple Hamiltonian Paths (for regular topologies)

Example: 2 Hamiltonian paths for 2-dim meshes. The set of destinations is partitioned into 4 subsets to the NorthWest, NorthEast, SouthWest and SouthEast from the source. (For the example below the set to NorthWest is empty).

4. Euler Path Multicasting

4. Unicasting to the roots of minimal subtrees of the spanning tree containing all the destinations

There exists simple polynomial algorithms to construct an Euler path given an Eulerian graph

A non-Eulerian graph can be transformed to a Eulerian path by removing some links. Those removed links can be used as shortcuts to accelerate the multicasting
For multicasting along an Euler Path a backtracking is possible (the message can visit the same node several times) but no deadlocks will be created since every link appear in the Euler path exactly once and no cycles of links will be created.

The Euler path is used for ordering of channels and crosslinks which do not belong to the path as shortcuts to accelerate the multicasting.
For example, for 2-dim torus the Euler path consists of 2 Hamiltonian paths constructed for 1-fault tolerance.

Remark: Euler path can be replaced by a trip (trip is a path containing all the vertices but not necessarily all the edges). Hamiltonian and Euler paths are the special cases of trips.

5. Unicast Routing to the root of the subtree of a selected spanning tree containing all the destinations

-the messages are split only in the subtree

-All multicastings use subtrees of the same spanning tree

-efficiency of this approach depends on the selection of this spanning tree (NP-complete)

-subtree with root R is flooded with copies of the message

6. Minimization of the size of a multicasting tree
Multicasting by Repeating Unicasting
-Straightforward approach – R steps

R is a number of destinations

(too slow)

-Binomial tree’s approach

log2(R+1) steps

[image: image250.wmf]
Binomial Trees

Properties:

-number of nodes in Bn 2n
-number of levels n+1

-degree at the root n

-number of nodes at distance i from the root

Procedure
-Assign source to the root of Bn

where n = log2 (R+1)

-Assign destinations to different nodes of Bn
-Implement unicasts in n steps:

[image: image251.png]

n = 4

Binomial Tree

[image: image252.png]

Example

R=7,

n=3

[image: image253.png]o

1o

Assignment (Random)

[image: image254.png]

	Step
	Unicast
	No of HOPs (shortest path no turn prohibitions)

	1
	0 2
	2

	2
	0 3

2 6
	3

2

	3
	0 4

3 10

2 9

6 11
	3

2

3

3

	Total
	0 2 6 11
	7

-headers of outgoing worms will have different lengths (different destination sets)

-replicating messages within routers

D-set of destinations for incoming worm

[image: image255.png]

-Minimization of a number of links in the multicasting tree, MT (to prevent contentions, decrease latency)

E.g. Source 1, destinations 5,8,10

[image: image256.png]

For the example by TP-procedure

S(G) = {(6,1,4),(6,1,7),(4,1,7),(6,2,3)}

1. MT1
MT1=(1 7 8 2 6 9 10 3 5)

|MT1|=8

2. MT2= (1 7 8 2 3)

|MT2|=6

3. MT3= (1 6 9 10 3 2 8)

|MT3|=7

MT1, MT2, MT3 satisfy S(G)

-For any topology G, any source and any set of destinations a number of links in an optimal multicasting tree does not exceed N-1 (multicasting tree is a spanning tree and the source is the root)

-In a multicasting tree, MT, all leaves are destinations (but not all destinations are leaves!)

Let di be a minimal distance (in HOPs) between destination and all other destinations and source (i=1,2,…,R). Then:

number of destinations

R  |MT|  N-1

Both bounds are precise
Pre-routing Stage Consists of 2 steps:

1.Construct a min set of prohibited turns (deadlock elimination). The same as for unicasting S(G)

2.Construct multicasting routing functions

RTi (CIN, D1, …, DR), where R-number of destinations for node i and values of RTi are sets of output channels

-multicasting requires different and more complex hardware for routers

-criterion for selection of RTi for given S(G) is the size of multicasting tree |MT|

-Routers are designed in such a way that the payload portion of the multicast message is transmitted concurrently to all output ports used for this message

Greedy Algorithm for Construction of Multicast Trees

1.Construct a shortest path (satisfying S(G)) from source S=S1 to D1
2. Find node S2 on the path from S1 to D1 at the min distance to D2. The corresponding turn in S2 is permitted under S(G)

3.Add path S2 – D2 to the constructed tree (i=3,4,…,R)

4. Find S3 in the constructed tree with a min distance to D3 and add path

5. S3—D3 to the tree

-Greedy algorithm requires global knowledge. All distances (under S(G)) should be stored in routers.

-Size of router local memories O(N2)

-Long start-up time

-Size of the tree depends on ordering of destinations

For the previous example (S=1)

1) If D1=8, D2=10, D3=5, then

S=S1=1 1
7
8

S2=8

8
2
3
10

S3=3

3
5

MT1:

1
7
8
2
3

|MT1|=6

2) If D1=10, D2=8, D3=5

S=S1=1
1
6
9
10

S2=1

1
7
8

S3=10

10
3
5

MT2:

1
6
9
10

|MT2|=7

-To speed up routing at intermediate nodes the MT generated at the source can be sent as a part of the header

-In the header every address of an intermediate node is followed by the list of output ports of its router, where the message has to be retransmitted in this router

-When the message is delivered at the intermediate node i the address of i and the list of output ports for i are deleted from the header

-The size of the header is upperbounded by |MT|d – the size of buffers for every port Nd

For the previous example S=1, D1=8, D2=10, D3=5 and MT=MT1

1
 7 8 2 3

The header at source 1 will be h=(72,82,23,32,3)

-here capital letters are for nodes and small letters for ports

Local Algorithms for CONSTRUCTION of MTS

E.g. d=4, N=14

[image: image257.png]

-All turns around 0 are also prohibited,

-S=13, D1=1, D2=6, D3=12, D4=3, D5=2

0-Algorithm

1.For any destination Di find a min path Pi between S and Di (under S(G)!) If there are several min paths select any one of them

2.Send the worm for Di to the neighbor Ai of S from the selected path Pi

(similar to unicast)

3.Combine paths with common parts starting from source

-The size of the local memory required for 0-algorithm is 0(N) (for di=d)

Note that we never have

[image: image258.png]

P1: S – D1 , P1=P11 P12 P13 P14
P2: S – D2 , P2=P21 P22 P23 P24
P11=P21 , P11=P23
Since the message is the same for D1 and D2, and we always select the shortest path (unique!) between A and B

For the example: S=13

D1=1

min path: P1=(13,4,1)

D2=6

P2=(13,7,6)

D3=12

P3=(13,12)

D4=3

P4=(13,12,3)

D5=2

P5=(13,12,11,2) or (13,7,6,2)

Select: P5=(13,12,11,2)

Then

MTo
[image: image259.png]L4

3

42

The worm is replicated in 13 and 12

1-Algorithm

1.For every destination Di construct a subset of neighbors of source S which are at minimal distance from Di
2.Construct covering matrix C with d rows and R columns:

Ci,j=1 iff neighbor i of S is at the min distance from Dj
Ci,j=0 otherwise

-Every 1 in C correspond to a path to one of the destinations

-Row i in C corresponds to the subtree in MT with root at neighbor i

3.Solve the covering problem:
Find the min subset of rows such that in selected rows there is at least one 1 in every column (since d is small the covering problem is simple)

4.Combine subtrees, corresponding to the selected rows in the MT

For the previous example:

(S=13, D1=12, D2=1, D3=6, D4=3, D5=2)

	Nodes Di
	12
	1
	6
	3
	2

	4
	0
	1
	0
	0
	0

	7
	0
	0
	1
	0
	1

	9
	0
	0
	0
	0
	0

	12
	1
	0
	0
	1
	1

13
12
3

Row 12 corresponds to

[image: image260.png]L
B w3

&
"%

Selected rows: 4, 7, 12

MT1:

[image: image261.png]

-For any topology G: |MT1|  |MTo|

-If |MT1|  |MTo|, then there exists a destination Di such that there are at least 2 different min paths from S to Di via 2 different ports

-The size of the local memory is upperbounded by 0(dN) (to store distances between any one of d neighbors of S and any one of destinations)

Global Algorithm for Construction of Multicast Trees

1.Select a destination, D1, at the min distance from the source. Add the path S=S1 D1 to MT. (NOTE: for the GREEDY algorithm D1 was preselected by the ORDERING OF DESTINATIONS)

2.Select a destination D2 at the min distance from path S-D1. Let S2 be the node at this path with the min distance to D2. Add the path S2 D2 to the construct

MTi.

3.Select a destination Di at the min distance from the tree constructed at the step i-1. Let Si be the node from the tree constructed at the step i-1 with the min distance to Di
4.Add path Si Di to the constructed tree

For the previous example

S=S1=13,
D1=12

13
12

S2=12,
D2=3

13
12
3

S3=3,

D3=1

13
12
3
1

S4=13,

D4=6

13
12
3
1

S5=6,

D5=2

7
6

MTG

13
12
3
1

7
6
2

|MTG|=6

-The global algorithm requires memory size O(N2) and O(N3) steps to generate the MTG
Long startup time, poor scalability

-Global algorithm, greedy algorithm, 1-algorithm and 0-algorithm provide for the trade-off between complexity of the routing procedure (start-up time, size of the local memory) and the size of MT

In most cases:

|MTG|  |MTGREEDY|  |MT1|  |MTo|

-For randomly generated G with N=256 transition from the global algorithm to 0-algorithm results in the increase of |MT| ~12%

Space-Time Requirements for Different Algorithms for Construction of Multicasting Trees

	COMPLEXITY
	Space (local memory)
	Time

	ALGORITHM
	
	

	0
	O(N)
	O(R)

	1
	O(dN)
	O(dR)

	Greedy
	O(N2)
	O(NR)

	Global
	O(N2)
	O(NR2)

Remark: It is possible that for small graphs

|MTG|  |MTG| (But in most cases for N> 10

|MTG|  |MTG|)
Example

Remark All the algorithms for minimization of sizes of MTs (greedy,0,1,infinity) can be applied for weighted graphs (the Steiner tree problem), where weights of the links are positive.

Fault Tolerant Routing
-Every node knows status (faulty or fault-free) of all its neighbors. Faulty nodes are isolated.

-The number of faulty nodes, t, is small: t/N 0.

-Prerouting (construction of routing tables) is performed (off-line or on-line) only when new faults are located

-Complexity (number of HOPs) is O(tN).

-Routings for irregular topologies can be used for fault-tolerant routing.
Wormhole Fault-Tolerant Routing for 2-dim Meshes
-2 virtual networks

NORTH-FIRST all turns to NORTH (from EAST or WEST) are prohibited

 ,

SOUTH-FIRST all turns to SOUTH are prohibited

 ,

There are no cycles in each virtual network

-All messages start in NORTH-FIRST and later can be transferred to SOUTH-FIRST (but not otherwise!)

-no deadlocks

Fault-free Rectangles (FFRs)

Rectangular area not containing faulty nodes and not covered by another FFR.

-Within a FFR (x,y) – any deadlock free routing can be used

E.g. p=6, t=5

[image: image262.png]

9 FFRs covering all fault-free nodes

FFRs connectivity graph
For the previous example : p=6, t=5
[image: image263.png]

-For any p-ary mesh with t faulty node the number of FFRs, C, is upperbounded

C  min (3t+1, t+p, [p2/2]) (1)
-If t/N 0, then C/N 0

C/N  (3t+1)/N

-All 3 upper bounds in (1) are precise; it is possible to construct fault patterns such that there is an equality in (1) for these fault patterns

-For routing between FFRs: shortest paths for the FFRs connectivity graph satisfying North-First and South-First restrictions are used

-For each message, first a path between FFRs is determined and then the message is sent to the corresponding adjacent FFR

-Every node belongs to at most t+1 FFRs

PRE-ROUTING STAGE
1. Formation of all FFRs

2. Boundaries of all FFRs are broadcasted to all reachable fault-free nodes. In each of these nodes, the list of FFRs and their boundaries is constructed

3. For each FFR all adjacent FFRs are identified

4. FFR connectivity graph is constructed

5. Construction of routing tables

5.1. For node A  FFRi shortest paths between FFRi and all other FFRs are constructed

5.2. For FFRj (j i) 2 entry nodes EjS and EjN (closest to A) are selected (entry nodes can be reached from A by NORTH-FIRST (EjN) and SOUTH-FIRST, (EjS), EjNFFRj, EjSFFRj
5.3. Coordinates of entry nodes Ej (j=1,...,C) are stored in local memory of router A

-Size of local memory is O(T)

-To route from AFFRi to BFFRj we first route from A to EjFFRj
Routing Stage

1. Determine whether the destination B is reachable and j: BFFRj (destination FFR)

2. Routing table is used to find the entry node for the next FFR on the selected shortest path to the destination FFR

-If the destination node belongs to several FFRs

select FFRj at the minimal distance from FFRi , AFFRi
-Denote for node AFFRi :

Ej – coordinates of entry node for FFRj (j i)

VNj - virtual network used to reach Ej
Dirj – direction from which Ej is reached

Dj – distance (shortest) from A to Ej (satisfying NORTH-FIRST and SOUTH-FIRST restrictions)

NEj – coordinates of the entry node for the next FFR on the path from A to Ej
For the previous example (p=6, t=5)

C=9

Let A=(5,2)FFR3 is a source

Routing table for (5,2)[image: image264.png]Message 1S 1w
MORTH- FIRS ™

i A A I i A i T
BEEE
e -

Message 8 W
Soutv- Fiesr

If A=(5,2) is a source , and B=(3,5) destination , then we will have the path

[image: image265.png][{IRA

Ve Ha
A'(s-"-f) Lsgf) uﬁ),m)@‘l) (“? "3) (20,650,349

Fpgs\-—?L_’__;fi_______},‘ PRy
) m, \‘f‘—"_‘

1 [£

Construction of FFRs

1.Horizontal Expansion

-Nodes to the EAST of faulty nodes and WESTMOST NODES send a message in x-direction until it will encounter a faulty node or a boundary

-Then the message is retransmitted back
E.g. (1,2)
(2,2)
 (3,2)
 (2,2) (1,2)

-At the end of this stage every node A has x-coordinates x1(A), x2(A) of nearest faulty or boundary nodes to the WEST and EAST from A. (x1(A)  x2(A))

E.g. A=(2,2) x1(A)=1, x2(A)=3

Vertical Expansion

-Nodes (1,1) and all nodes to the NORTH, WEST and EAST from faulty nodes are basic nodes

-There are at most 3t+1 basic nodes

-Messages are sent to the NORTH and SOUTH from the basic nodes.
-Let B be basic and A is to the NORTH (SOUTH) of B.

If x1(A) x1(B) and x2(A)x2(B), then row A is included in the FFR-under--construction .
[image: image266.png]

-At the end of vertical expansion every basic node B has the information about boundaries x1(B), x2(B), y1(B), y2(B) of the FFR generated by B

-It may happen that 2 basic nodes generate the same FFR
-The procedure is decentralized
-At most 4p2 HOPs (2 HOPs for horizontal and 2 HOPs for vertical expansion per node)

-At most p+4t+1 messages are sent (p+t for horizontal and 3t+1 for vertical expansions)

-Every fault-free node belongs to a FFR

-FFRs may intersect

-Number of nodes in the FFR generated by B is (x2(B)-x1(B)+1)(y2(B)-y1(B)+1)

-The number of FFRs, C, is equal to the number of basic nodes and does not exceed 3t+1

-Every node belongs to at most t+1 FFRs
[image: image267.png]

Clustered Faults, Faulty Rectangles

Let t’ be a min number of faulty rectangles covering all faulty nodes (t’ is less or equal to t.)

E.g. p=6, t=8, t’=2

x-basic nodes

[image: image268.png]

Basic nodes for clustered faults

For every faulty rectangle 3 basic nodes: southmost of the nodes which are to the EAST (E.g.2) and West (E.g. 4) of the rectangle; westmost of the node to the NORTH (E.g. 3) of the rectangle and node (1,1)

-Clustering of faults results in a reduction of the size of the routing tables from 0(t) to 0(t’)

Broadcasting of FFRs Boundaries
-After FFRs formation every basic node has info about boundaries of the corresponding FFR.

This info is broadcasted to all fault-free nodes

-The broadcasting is implemented only when a new fault is located.

-The broadcasted messages are short (2[log2p] bits for address of the source (basic nodes) and 4[log2p] for boundaries of the corresponding FFR)

-Number of sources is small (at most 3t+1)

Every source Bi is sending a single message Mi
-Store-and-forward broadcasting: Every node when it receives Mi, checks whether this info already stored in the local memory

(Size of the local memory  (3t+1)6[logp]))

If the message is new, it is transmitted to the 3 other directions (excluding directions to faulty nodes).

-Every node (including basic nodes) can generate not more than 3 messages coming from one basic node

-Total number of messages in the network

 3(3t+1)N

-FFRi can be covered by an union of other FFRs – FFR can be deleted from the list of FFRs. This reduction is difficult to implement (the corresponding covering problem is NP-hard)

-For construction of a routing table in node A for every reachable from A FFRi coordinates of two entry points EiN and EiS are computed and stored in local memory of A.

(EiN (EiS) is the entry point if the message is coming in NORTH-FIRST (SOUTH-FIRST) network)

-Node EiN (EiS) is the entry point for source A and FFRi if there is a path satisfying NORTH-FIRST (SOUTH-FIRST) and this path is the shortest one
Fault-tolerant Routing for the Case of Faulty Nodes and Faulty Links

-All nodes and links within a FFR are fault-free

-For a FFRs connectivity graph two FFRs are neighbors if they have common nodes or if they have adjacent nodes connected by a fault-free link

Fault-Tolerant routing for 2-dim Tori

-FFRs are rectangles or tori
-For each faulty node (or faulty rectangle or torus) – 2 basic nodes to the WEST and NORTH from the faulty node

E.g. p=5, t=2, c=3

x-basic nodes
[image: image269.png]

-For 2-d Torus

C  min(2t,t+p/2, p2/2)

-Compression rate for the global info stored in local memories of routers

C/p2 

-good scalability : If p then
C/p2 0 as t/p2 0

-every fault-free node belongs to at most t+1 FFRs

-Upperbounds on C and C/p2 are precise
Fault-tolerant routing for 3-dim meshes and Tori

-FFRs are parallelepipeds or Tori

-To construct FFRs – 3 stages:

x-expansion, y-expansion, z-expansion

-For 3-dim meshes

C  5t+1 and every node belongs to at most 2t+2 FFRs

-For 3-dim torus

C  3t

-For n-dim meshes

C  (2n-1)t+1

-For n-dim torus

C  nt’

-Number of FFRs, C, does not depend on the size, p, of the mesh or torus.

-If a new fault is located boundaries of FFRs should be updated. Only one FFR containing a new faulty node will be affected
Experimental Results for 2-dim Meshes

-messages are randomly generated with the same probability for each source-destination pair (uniform traffic)

-locations of faults are selected randomly, 1,000 fault patterns for every t.

-each message = 256 flits

-1 HOP=20nsec

-10,000 source-destination pairs for every fault pattern

Percentage of Undelivered messages (10-2)
[image: image270.png]

If t < p, then less than 1% of messages is not delivered

[image: image271.png]

 - message generation rate (10-4 per node per cycle)

-For N=256 transition from the fault-free case to the case of 9 faulty nodes result in reduction of a saturation point by 25% and for 12 faults 50%.

Routing for Irregular Topologies by Fault-Tolerant Routing in Meshes

-Embedding of the original graph, G, into 2-d mesh

-M is embedding of G with N nodes if: nodes of M labeled by 1,..., N, 0 in such a way that:

any two nodes i and j in G connected by the link iff there exists a path in M between nodes labeled i and j containing ony nodes labeled 0.

-Nodes with label 0 are called virtual nodes

E.g.

 N=16

[image: image272.png]

[image: image273.png]

C=7

-Routing table for G – 16 rows

for M – 7 rows

-Compression rate C/N = 7/16

Lower bounds on Numbers V of Virtual Nodes

-Vnodd – max number of non-intersecting (by links) cycles of odd length in G.

For the previous example nodd = 4

(cycles: (1,4,3),(4,5,6,7,9,8),(9,11,14),(11,15,16))

-Since V=4 the embedding is optimal
V  di/2

-Virtual nodes should not be taken into account when we are calculating distances between nodes in the mesh

-Every graph is embeddable in a 3-d mesh

-The same graph may have many embeddings

-Criterion for selection of a given graph into a mesh:

number of FFRs covering all nodes 1,...,N and virtual nodes 0

-The problem of constructing optimal embedding is NP-hard

E.g.

[image: image274.png]

[image: image275.png]

[image: image276.png]

MR

M1

PN

P1

…

…

� EMBED Designer.Drawing.7 ���

� EMBED Designer.Drawing.7 ���

� EMBED Designer.Drawing.7 ���

� EMBED Designer.Drawing.7 ���

P = 4

[log2(N+1)] = [log29]

	 1

 2

 4 3

 2

 1 4 M=5

 		 N=6

� EMBED Designer.Drawing.7 ���

� EMBED Designer.Drawing.7 ���

� EMBED Designer.Drawing.7 ���

� EMBED Designer.Drawing.7 ���

� EMBED Designer.Drawing.7 ���

� EMBED Designer.Drawing.7 ���

� EMBED Designer.Drawing.7 ���

3

 n-4			 n-4

…

Test responses

II level

 III level

1

 1

 1

 1

	 1

1 0 0 0 1 1 1

0 1 0 0 0 1 1

0 0 1 0 1 1 0

0 0 0 1 1 0 1

. . .

 R = 5

 r = 20%

0 0 1 1 1 1 1 2 2 2 2 2

1 2 0 1 2 3 4 0 1 2 3 4

5 6 5 6

 1 2 3 4 1

8	1	 2	 3	 4 5 6 7 8

14

11 12

11 12

9 10 9 10

 1 	 2 3 4 5 6 7 8 1

N-2

 l-2

fl = 1 -

N

l

N

l

N-2

l-2

fl

 1

0.98

0.96

0.94

l

 5 10 15 20 25 30 35 40

l-1

i=0

W

Max Li,j

 j

i=1

P = 4

R = 2p – 1 , W = 2

Li,j = p – 1

T = 2(p - 1)

Max [di / 2]

i

d

2

� EMBED Paper.Document ���

B2

B1

 Link

bidirectional

B4

B3

Virtual channels

X+Y+

X-Y-

X+Y-

X-Y+

	V1		 V2			V3		V4

4

3

2

1

 2 3 4

b

a c

are prohibited in every node

and

are permitted

Average delivery time

At the saturation point messages in the system start to accumulate – number of undelivered messages is growing

message generation rate

max

max

10-6

max

8.500

7.500

6.500

5.500

4.500

0.20	 0.22	 0.24 0.26 0.28	0.30

 c b

 a

 c b

  S

 a

 S but

2

 3 7

 4 5 6 8

1) Set {(1,3,2), (4,3,5), (7,6,8)} breaks all simple cycles but not 8-type cycle (1,3,5,4,3,2,1)

Total number of turns in G

N

i=1

di (di-1)

		

 7 12 17 21 24

 4 8 13 18 22

 2 5 9 14 19

11 16 20 23 25

T(G) – bold lines

1 3 6 10 15

				1

			2		

		 			3

		 4

 5		

7

 11

 12		 13 10

 16 				 14

	 17		 15			 	 18	

19

 21

 22

 23	

 24

 25

6

8

 9

a c

				

 b 					

 b

symmetrical turn prohibitions Z = 1/6 – optimal as North-Last

S(G) = {(5,8,6), (5,7,6), (1,3,2), (4,5,2), (4,7,6)}

N-1

 2

N-1

 2

N-1

 2

N-1

 2



1, as N

N-1

 2

+ 3N - 7

g a =5 b=6 1 d=4 l=2

h r=8 c=7 f=3

 a b 1 d

c 3=f

 a b 1 d=4

 c

g a b

h r c

g b

h r c

g

h r c

g

h r

Two solutions based on TP-procedure produce different |S(G)|

per node per cycle x 10-4

i,j+1		i+1,j+1

 i,j		i+1,j

G

 G’

M=6

N=4

|S(G)|=4

Z(G)=4/12=1/3

M’=9, N’=7

|S(G’)|=3

|S(G’)| < |S(G)|

Z(G’)=3/15=1/5

 b

a c

Prohibited turns

|S(G)|=16

Min |S(G)|

The approach is optimal

n

2

1/6

for large P

1/5

for large P

n

2

E.g. n=2, p=3

|S(G)|=15

Z=15/54=5/18

n

2

Z(Mpn) =

2n

2

=

 1

n 2

n=3

edge

N-1

 2

N-1

 2

N-1

 2

1-is the root of the spanning tree

Nodes are labeled preserving the tree order

 c

 b

v

 a

D’,D’’,D’’’ – sets of destinations for the corresponding outgoing worms D=D’D’’D’’’

10

5

5

10

5

3

5

7

8

10

5

 Ai Pi Di

S

 At

Pt 	 Dt

				 D1

P12

S	P11	

	P21

			P22

				 D2

P1: S – D1

P1=P11P12 , P11 = P21

P2=P21 P22

|MTo|=8

C=

|MT1|=7

(|MTo|=6)

p=5

t=3

(1,1) belongs to 4 FFRs

2t/p2 , 		 t p/2

t/p2+1/p , 	 p/2 < t  p2/2

0.5 , 		 t  p2/2

V=4 number of virtual nodes

In every cycle of odd length in G there is at least 1 virtual node

i

N=8

C=3

	Embeddings of G

C=7

r

hosts

B

LAN 1

LAN 2

LAN 3

B

4

5

6

1

2

3

Interface “a”

Interface “b”

II

Host		Interface

 3		 b

IT =

IT =

 3	 	 b

 1		 b

B1

PC

B4

B3

B2

PC

Fast

1 Gb/sec

Message 2

Message 1

Slow

Slow

B3

B4

B5

B2

B1

B7

B6

A

F

E

D

C

I

J

K

R

S

B

B2

A

B1

B3

B4

B

D

C

S=N1

N2

N3

D=N4

S=N1

N2

N3

D=N4

S=N1

N2

N3

D=N4

Source

Flit Buffer

Destination

flit i

B

A

data channel

low

R/A

flit i

B

A

data channel

high

R/A

flit i

B

A

data channel

high

R/A

flit i+1

B

A

data channel

low

R/A

(a) B is ready to accept a flit by setting R/A to low

(b) A is ready to send flit i by raising R/A to high

(c) Flit i is latched in B’s flit buffer

(d) B sets R/A to low when flit i is removed. Also, A has received flit I+1.

Handshaking between two routers through a R/A line

100 Mb/sec

Message 3

A

X

B

Y

Z

C

 b

a c

 i

 x y z

 a b c d e f

a

b

|MTG|=5

|MT1|=4

|MT0|=6

MTG

MT1

MT0

S

S

S

D1 D2 D3

 D1 D2 D3

D1 D2 D3

D1 D2 D3

S

S- source

100000011104

4

 Bn

Bn

�

�

�

�

�

n

i

Source – 0

Destinations

2, 3, 4, 6, 9, 10, 11

S(G) = {(3,0,2),(2,0,1),

(3,0,1),(3,1,2),

(1,2,0),(1,2,3),

(0,3,1),(0,3,2)}

S(G) is 1-fault tolerant

Fraction of prohibited turns 2/3

34

2

54

74

14

894

984

134

12

144

114

64

Header�Awaiting�Resource

DEADLOCK (Message Gridlock)

Wormhole Routing

Flit Buffer

Message 1

Message 2

Message 3

Message 4

P

P

P

P

P

Local �Processor

Wormhole Message & Flit Format

� EMBED Equation.DSMT4 ���

W8

Petersen

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

PAGE
223

_1030793213.unknown

_1031551209

_1031552002

_1031563736

_1048513355.ppt

Turn Model

Turn: An input-output pair in a switch

Idea: Disable turns instead of links

David Starobinski:

David Starobinski:

David Starobinski:

Ref: Glass & Ni (’92)

		Paradigm generalizable to arbitrary topologies

_1158395101.unknown

_1254566804.unknown

_1255155622.unknown

_1255157083.unknown

_1255157752.unknown

_1255157941.unknown

_1255156249.unknown

_1255154658.unknown

_1255155272.unknown

_1254566837.unknown

_1182068836.unknown

_1200481776.unknown

_1200482710.unknown

_1200482711.unknown

_1200482122.unknown

_1200482406.unknown

_1200481769.unknown

_1158395338.unknown

_1162219623.unknown

_1182068666.unknown

_1162219601.unknown

_1158395112.unknown

_1157205966.unknown

_1158394918.unknown

_1158395023.unknown

_1158394811.unknown

_1131303790.unknown

_1131304009.unknown

_1143028680.unknown

_1048513382.ppt

Scalability Results

		Arbitrary graph with large number of nodes

		Same degree for each node

Chart5

			3			3

			4			4

			5			5

			6			6

			7			7

			8			8

			9			9

			10			10

Spanning Tree (upper bound)

Turn Prohibition (lower bound)

Spanning Tree (upper bound)

Turn Prohibition (lower bound)

Degree of Nodes

Fraction of Turns Allowed

0.5

0.6666666667

0.3333333333

0.6666666667

0.25

0.6666666667

0.2

0.6666666667

0.1666666667

0.6666666667

0.1428571429

0.6666666667

0.125

0.6666666667

0.1111111111

0.6666666667

Sheet1

			

			3			0.5			0.6666666667

			4			0.3333333333			0.6666666667

			5			0.25			0.6666666667

			6			0.2			0.6666666667

			7			0.1666666667			0.6666666667

			8			0.1428571429			0.6666666667

			9			0.125			0.6666666667

			10			0.1111111111			0.6666666667

Sheet1

			

Spanning Tree (upper bound)

Turn Prohibition (lower bound)

Spanning Tree (upper bound)

Turn Prohibition (lower bound)

Degree of Nodes

Fraction of Turns Allowed

Sheet2

			

Sheet3

			

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10

Degree of Nodes

Fraction of Turns Allowed

Spanning Tree (upper bound)

Turn Prohibition (lower bound)

_1067183183.bin

_1131209769.unknown

_1067109744.bin

_1048513366.ppt

Turn-Prohibition:

Algorithm Properties

		Break all loops

		Keep connectivity

		Never prohibits more than 1/3 of the turns

		Irreducible

		Polynomial complexity

Ref: Karpovsky, Levitin & Zakrevski (’98)

_1033820528

_1043847181

_1048513316.ppt

Gigabit Ethernet

		Switching

		Full-duplex

		Flow Control

		Plug-and-play

Goals of Web caching Many companies– Multiple Goals And advantages–

Can be achieved by placing caches at multiple levels

Caching has been an area of research for many years. Classical caching algorithms and analytical models

The Web has added many new ingredients into this classical area.

 Will introduce a new family of algorithms study their property and analysis. Extension. Discussion with relate work

And conclusion.

_1048513328.ppt

Looping Problems

		Packets circulate forever

		Deadlocks

		Current solution: Spanning Tree

		Unscalable

Reduce response latency for clients

Save bandwidth (avoiding sending again and again the same info.)

Reduce server load

The majority of the requests are for a small subset of the documents (80-20 rule). The popular documents have to be placed into the caches.

_1043847267

_1035809455

_1037015993

_1031564399.unknown

_1031565470.unknown

_1031578820.unknown

_1031565304.unknown

_1031563783

_1031553162

_1031561942

_1031563700

_1031553695

_1031560789

_1031553376

_1031552552

_1031553107

_1031552476

_1031551334

_1031551759

_1031551951

_1031551973

_1031551791

_1031551932

_1031551908

_1031551779

_1031551733

_1031551747

_1031551718

_1031551277

_1031551313

_1031551331

_1031551294

_1031551242

_1031551263

_1031551223

_1031405470

_1031489172

_1031550793

_1031550828

_1031550956

_1031551080

_1031551105

_1031551020

_1031550894

_1031550812

_1031550438

_1031550740

_1031489531

_1031469275

_1031479233.unknown

_1031488840.unknown

_1031470305.unknown

_1031465301

_1031465563.unknown

_1031465183.unknown

_1031398618

_1031400525

_1031404081

_1031405199.unknown

_1031400769

_1031400251

_1031400421

_1031399797.unknown

_1031400236

_1030796128

_1030986245.bin

_1031382321

_1031384682.unknown

_1031384886

_1031396935.unknown

_1031383196.unknown

_1031223023.bin

_1031381293.unknown

_1031382289.unknown

_1031380813

_1031132148.bin

_1030911390.bin

_1030985046.bin

_1030910984.bin

_1030910084.bin

_1030794588

_1030795992.unknown

_1030794381.unknown

_1030744408.unknown

_1030780850.unknown

_1030783820

_1030792237

_1030792404

_1030783986

_1030783188

_1030783616

_1030782282

_1030783026.unknown

_1030781978.unknown

_1030778626

_1030780032.unknown

_1030780366

_1030779303.unknown

_1030779896.unknown

_1030744872

_1030778578

_1030744581

_1030739886

_1030740920

_1030743510

_1030743681

_1030742722

_1030740296

_1030740348

_1030740236

_1030139400.unknown

_1030704001.bin

_1030706617.bin

_1030707465.bin

_1030739707

_1030708359.bin

_1030707210.bin

_1030705645.bin

_1030141254.unknown

_1030174448.unknown

_1030627760.bin

_1030174996.unknown

_1030171240.unknown

_1030141241.unknown

_1030067685.unknown

_1030068182.unknown

_1030067094.unknown

