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Abstract: Boolean function realisations by Reed-
Muller networks have many desirable properties
in terms of testability [11]. In the paper it is
shown that there exists a single set of test patterns
which would detect ail single stuck-at and all
single bridging (short-circuit) faults in Reed—
Muller networks, and the number of test patterns
is shown to be at most 3n + 5, where n is the
number of input variables in the function. In the
case of networks with &k outputs, where k < 2", the
number of test patterns required to detect all
single stuck-at and all single detectable bridging
faults (both AND and OR) is also shown to be
3n + 3.

1 Introduction

The problem of testing combinational networks is shown
to be NP-complete [1] even for the simple but most
widely used fault model stuck-at-fault (SAF) model.
There are some standard algorithms, such as d-algorithm
{2], PODEM [4] and FAN [3] for the generation of test
patterns for combinational networks. Though these algo-
rithms guarantee generation for a given fault if one exists,
the time T required to genecrate a test pattern and for
fault simulation is shown [4] to be T = KG?®, where G is
the number of gates in a circuit and K 15 some constant.
Even for circuits with modest sizes the time complexity is
prohibitively large. If a fault model mncludes bridging
faults (BEs), then test generation 1s even more complex.
However, for some classes of networks it is possible to
find reasonably efficient test generation procedures for
fault models with single SAFs and bndging faults. In this
paper fault detection (both single stuck-at and bridging
faults) in Reed—Muller canonical (RMC) networks will be
investigated.

There has been renewed interest in Reed—Muller net-
works [5-9, 14, 15] in the last few years. Reddy [11] has
shown that RM canonical networks have simple tests for
detection of SAFs and an upper bound on a number of
test patterns for detection of all single SAFs is 3n + 3,
where n 1s the number of input variables, if we distinguish
between the primary inputs and the fan-out lines of
priumary input lines which are connected to AND gates in
Reed-Muller networks (see Fig. 1). In this paper, primary
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Fig. 1  Reed-Muller canonical network

mputs and fan-out lines are not distinguished for the sake
of bridging faults. When the primary inputs and their
fan-outs are not distinguished, an upper bound on the
number of patterns for detection of all single SAFs is
shown [11] to be 2n + 3, Others [12, 13] have con-
sidered fault detection in Reed—Muller networks but their
fault models did not include bridging faults (BF). In this
paper a test set which detects all SAFs and all detectable
BEFs (both AND and OR type) will be constructed. The
size of the test set is shown to be at most 3» + 5. Results
obtained for single-output RM networks are generalised
for multiple output RM networks.

Any Boclean function f(x,, x,, ..., X,—;) has an
unique Reed—Mnuller canonical representation given by

f{xﬂ!xh nraa xn—l} = EII]@clxﬂ
@®--- @ﬂzu—l-’:ﬂxn vesy Xp—1 (l)

where ¢;e{0, 1}. The RM transform, mapping of
=00, ....,0), fl0,.... 1), ..., f(11, ..., P to{cy, c5, ---,
¢an—1) and implementation of Boolean functions is shown
in Reference 9. The general structure of the network
based on the Reed—Muller canonical form is shown in
Fig. 1.

Any line k; in a network may be stuck-at-0 (h;/0) or
stuck-at-1 (h;/1} or any two lines may be shorted resulting
in either feedback [10] or a nonfeedback bridging fault
(BF). The BF may be either AND ((h;h;),) or OR ((h; h)).)
[10].

Let N(x;N(x;x;)} denote the number of AND gates to
which x{x;x; is an input in an RM canonical network,
and N(x; v x;) denote the number of AND gates to which
X; OT X; are inputs

N{x; v x;) = N(x;) + N(x;) — N{x;x,) (2)

2 Teast set genaration

Consider some of the test patterns for detection of SAFs
given in Reference 11, namely |

fEE PROCEEDINGS, Vol. 136, Pt. E, No. 5, SEPTEMBER 198%

o —— T T . r g TETEEI T = |




Co Xo X1 Ko —1
([0 ¢ 0 thy
t
T, = -] 0 1 1 1 1
ts] 1 0 O 0
1.1 1 1 |
(3)
CD xﬂ xl A —
~d 0 1 17
d 1 0 1
I = d - - - .
| d 1 1 -+ 0-

where d € {0, 1}. In addition to T, and T, test sets T np
and T, which detect all (x;x), and (x;x;) .+ will be con-
structed. It will be shown that the testset T =T, v T; ©
Tp @ Tox is sufficient to detect all single SAFs and all

BFs.

21  Generation of test set T,up for detection of

{I i X j} &
Let A; be the subset of input variables which are inputs
to an AND gate whose output is g; (see Fig. 1) and the
cardinality of A; {number of variables in 4;) is | 4,]. Con-
sider an AND gate with minimal | 4;] and 1ts imput vari-
ables x; & A;. Generate a test pattern t; as follows:

t; = (xg, Xy, eis Xpoq)

such that aft;) =1 and x; =0 Vx;¢ 4

. detects any BF (x;x), where x; € 4, and x; ¢ A;, since
the output changes from ‘1’ to 0" when the fault occurs.
Test pattern t; divides the set of input variables X = Ix0,
... %,_,} into two subsets A; and A4, = X — A; as shown
in Fig. 2. Now only the BFs to be detected are {(x, x.),

X
Ai E| =X -A
.lﬂtr Ef = -Iﬁlﬂ _Ar "ﬁ"l.l 1l..I - -'E*I _"ﬁ"lJ

Fig.2 Bingry tree

and (x, X}, » X, Xs € A;, for all r # s and x,, X, € A;, for
all u # v. The process of test generation is carried out by
considering minimal subset of variables A, = 4; such that
(x, x,), is detected for all x, € 4, and for ali x, € A, = A,
— A_. This is accomplished by considering an AND gate
with A, as its subset of inputs (and if required some other
variables from A,) such that the output of this AND gate
aft) =1 for a test vector ¢; and aft) =0 if there is a
bridging fault (x, x.), for all x, € A, and for all x,e A,.
Every time a new test pattern is generated, the parent
subset is further divided into two nonempty subsets of
smaller size (one of the subsets possibly a single element
subset), such that the bridgings between inputs {from dif-
ferent subsets are detected. Every time a new test patiern
is generated, the binary tree is expanded as in Fig. 2. The
process of test generation is carried out until all the
nendant vertices in Fig. 2 are input variables. Since every
test pattern generates a new branch or branches, 1n the
worst case every internal node of the tree corresponds to
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a test patiern. 10 nuaibeld O L A4t SRS 220 8 0=
a binary tree with n pendant vertices and we have for the

number of test patterns required to detect all wput BEs
(‘Ii Ij}*
| Tynp! S0 —1 {4)

The foliowing example illustrates the construction of

Tanp -

Exampie I: Let
f=x0%, @ XpXz X3 @ X1 X3Xs X5 B XX X3X,
D Xy X3 D X4 X5 =a, ®Da,Pa;Da,DasDag

Let us select A, as the minimal A; among the possible
minimal A4;s, i =(1, 5, 6). Then the test pattern 7, =
10000 divides X into two subsets {xpx,} and
{x, %3 x4 x5} To detect (x, x,), consider an AND gate a,
with x, € A, (note A, is not minimal for xo) and the cor-
responding test pattern 7, = 101100 detects (xgX )y
similarly other test patterns are constructed. Test pat-
terns Tywp = {T1» T2, T3, Ta} fOT detection of all input
AND bridging faults are given below and the correspond-
ing binary tree is given in Fig. 3. The test pattern which

Fig.3  Binary tree generated by test patierns in example

detects (x;x;), is given as a matrix element my in the
matrix M.

Xg Xy X2 X3 Xg X5
=1 1 0 0 0 0
=1 0 1 1 0 0.
=0 0 1 1 0 0
=1 1 0 1 1 0

Xof T2 Tt T1 W1 T
x| 0 7, Ty T T
M=x,11, 0 1, 73 T3
X3l Ty T4 O T3 T3

-

22 Generation of test set T, for detection of (x; X},
To facilitate the generation of a test set for detection of
OR input bridgings (x;x;),, an [n x n] parity matrix
P = {p;) will be constructed where the ith row and the jth
column correspond to the variables x; and x;, respec-
tively, and p;, is given by

30 if N(x;x;) = even
P5= 1 if Nx;x)) = odd

where N{x;x,) = N(x;), (see eqn. 2). Notice that the P
matrix gives the information on whether a variable x; 18

()
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going w0 an even or an odd numbder of AND gates
depending on p; being ‘0’ or ‘1. Similarly, it also gives
information on every pair of variables x; and x;, whether
they jomtly go to an even or an odd numher of AND

cates. To detect a bridging fault, the fault should affect an
dd number of gates so that its effect will result in a
change of an output. The generation of test patterns for
{x;x;)+ 15 described below depending on the various cases
whether p,; = 0 or I and p;=0orL

Case (a): p,; = 1. Then, the test pattern
xn—l}

=(1 1 101 1 1) (6)

detects {x;x;},, for all j s i. Input set X is partitioned
into {x;} and X — {x;}, and t € T, where T, is defined by
eqn. 3. Test patterns for all variables x; € X for which
p; = 1 should be generated first before gﬂing to case (b)
or case (c).

t=(Xg, X1, -0y Xp 1y Xiy Xiggs +eos

Case (b): py=0. If x, is such that p, =1, then test
pattern

I={Iu, xl, sey I'i!' ‘o Ik, "'!In—l}

i K
=1 101 101 -~ 11) (D

detects (x;x;), for all j # i, k since the number of AND
gates enabled after the bndging is equal to N(x)
— N(x.x,) =odd. I p; =0, then the same test pattern
(eqn. 7} detects {x; x;}, for all j.# i, k. If p, = 1, then it
comes under case (a). Again, the test pattern (egn. 7) gen-
erates a new branch of the binary tree in which x; is an
element. Test patterns for other variables are generated
similarly (see Example 2),

If case (a) and case {b) are not satished for a single
variable or a number of variables, the test patterns for
them will be generated as described in case (¢).

Case (c): P = [0]. Find a subfunction f; = f(x,, ..., X;_ 1,
0, ;415 ---, X,- 1) and the corresponding parity matrix P,
for this function. if P, = [0] for f(X|x; =0) for all x;
then consider P, for f(X|x;=x;=0); if P, # [0] for
some x; and x;, then the test patterns are generated as in
case {a} and (b). If P, = [0] for all x; = x; =0, consider
P, for the case when three variables set to 0, and so on
(see Example 2).

As in the case of AND bridgings, test patterns generate
a binary tree and the maximum number of test patterns
required is # — 1. Hence

| Topl €1 — 1 (8)
Example 2: Let
f=In@11$x3 @'Iq_@.xﬂxl@xﬂxlxl $x0x4

D x1X5 B Xz X3 P X5 %4 B X X1 X3 P XXX X324

Then
Yo X; X3 X3 X4 X5
0 0 0 © 0 0
0O 0 o0 O i 1 ¢

p_ O ¢ 0 0 0 0 ‘

¢ 0 0 o 1 0F)
O 1 O 1 0 0
h{] I 0 0 0 1
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Xy Xz X3 Xg4 X
0 0 0 0 17
0 0 1 1 0
Pr=l0 1 0 0 0
0 1 0 0 0
1 0 0 0 0]

By eqn. 6 (case{a)), ps s = 1,7, = (111110).

By eqn. 7 {case (b)), p; =0, p, o =1, T, = (101101);
P33 =0, p3 4 = 1,73 = (111001).

Now (case (c)} set xo = 0 and obtain P;. Then, from P,
P1.1=0, py s =1, 1, =(001110). The binary tree gener-
ated by these test patterns is given by Fig. 4, and the BFs

Fig. 4  Binary tree generated by test patterns in example

detected by these test patterns are represented by the fol-
lowing matrix:

X1 Xz X3 Xz X4
Xol Tz Tg Ty Ty T4

x3 TI T3 0 Iz "1':1

Now we will show that test sets T,, T,, T,yp and T, are
sufficient to detect all single SAFs and BFs in the
network.

It 1s easy to see [11] that T, and T, detect all single
SAF's except those at the primary inputs which are inputs
to even number of AND gates; however there exists a test
pattern with x; = 1, x; = 0 which detects (x;x}), in T yp.
This test pattern detects x;/0 faults, Similarly, there exists
a test pattern in T, which assigns 0’ to a subset of vari-
ables including x; and ‘1’ to the rest of the variables. This
test pattern detects x;/1 fault. Thus T, (T, detects at
least n — 1 faults x,/0(x;/1), and two more test patterns
are necessary and are constructed using the procedures
described in Ty, and T,z .

Now internal BFs will be considered. From Fig. 1 it is
clear that only the following BFs can occur among the
internal lines of an RMC network:

(b)), (x; b)), (x;a;), (b; b)) and (a;a)

Now it will be shown that the test patterns already
developed also detect the above-mentioned BFs. In the
following paragraphs only test sets

i ={t, t2, 15, 1.}, Ty, Tynp and Tiop

are used. Some of the BFs are detected using an asyn-
chronous method [10], for example, to detect an AND
bridging fault between an input x; and output a; of an
AND gate, first a test pattern which results in output
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a, = 0 and then another test pattern which results in g; =
I should be applied. A faulty gate would give ‘0" as an
output in both cases.

() (@ b)), (a:b), and (x;b),, (x;0)), 1 all these bridg-
ing faults are detected by ¢, , t; and ;.

(i) (x;a;), AND bridgings: if x; ¢ A;, then (x;ap, 18

detected by t € T,, where x; = 0 and for all j # 1, x; = 1.
If x;e A; and N(x;) is odd, then (x;a;), is detected asyn-
chronously [10] when (t,, t,) are applied m the given
order. If N(x,) is even and x; € A;, then test pattern {, €
T, which assigns a, =0 and one of the test patterns
t ¢ T, which assigns g, = 1 for some 4,, where x;, x, €
A, would detect (x;a;), asynchronously, since the fault
(x;a;), causes g, = 0 and changes the parity.

(iif) (x; a;)+ OR bridgings: any test pattern f € T, , such
that a; = 0 and x; = 1 detecis (x;a)) 4 -

(v) (B; b))y, {(B:by). and (g b),: AND (OR) Bfs are
detected asynchronously by £,, t5(t3, ty)-

(v) (@;a;),, (a;e),: test set T, is sufficient to detect
both AND and OR BFs of this type.

For detection of some of the BFs (for example, (x;a;),
and (b; b)), ) the order in which the test patterns apphed
is important. To detect these BFs the following sequence
can be employed (¢, t3, ty, ty, t;) and hence ¢, 1s applied
twice.

From the results presented in this Section one can sec
that any Reed-Muller canomical network requires at
most 3n + 5 test patterns to detect all single SAFs and all
single detectable bridging faults (both AND and OR
bridging faults).

3 Reed—Muller networks with multiple cutputs

The general structure of a Reed—Muiler network for a
system of functions with k output functions and » mput
variables is shown in Fig. 5. We assume that k < 2" First,

| D>—# L >—%

Fig.5 General structure for multiple output RMC networks

using the technique described in Section 2 we construct a
wst for a submetwork implementing fo. (See Fig. 5. We
assume that f, depends on all the input variables xg, ...,

. 1) For this test we set ¢co=0¢; =" = Ca—x- All the
"AFs and bridging faults are detected as described in
«clion 2. The only bridging faults that are to be detected
w1 the ones between path ¢; to f; and another path c; to
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fioforalti£je{0, 1,..., k- }. To detect these bridg-
ing faults it is sufficient to replace T; (see eqn. 3) by

€g €1 €2 €3 7 G-y Xoo X Xz "7 Xpop
o 1 ¢ t -~ 1 0O 1 1 --- 1
o 0 1 1 -~ 1 1 0 1 - 1
0 0

T, = 0 0 1 1 1 0 | 1
o 0 0 ¢ --- 0
o ¢ 0 0 -+ 0 R I IR ¢

where the binary column under ¢; is the binary represen-
tation of i.

It is evident that for any two columns ¢; and c; there
exists a test vector which assigns a ‘0" to ¢; and a 1" to ¢;
or vice versa, and hence detects both AND and OR

bridging faults in paths ¢; to f; and ¢; to fi-
‘The above results are summarised in the following

theorem:

Theorem: Any Reed—Muller network with k outputs and
n inputs (k < 2" requires at most 3n + 5 test patterns to
detect all single SAFs and both AND and OR bridging
faults which are detectable.
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