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Abstract

An alternative compression of test responses technique (signature analysis)
for a built-in-self-test (BIST} VLSI design 1is presented. With the
assumption that a fault-free response is uniformly distributed, the proposed
gquadratic conpression scheme is shown to be optimal with respect to  the
lower bound on the maxima conditional error-masking probability Q(e) given
errcr e (e#0). An implementation of the quadratic compression scheme
raquires slightly more hardware than a parallel signature analyzer by
linzar-feedback shift Registers, LFSRs. However, the advantage of a
quadratic compression technigque over linear compression techniques {by
LFSRs) is that, the conditional error-masking probability, Q{e), given an
error sequence e {(e+0) for a quadratic scheme is constant, which implies an
equal protection against all error patterns. In other words, guadratic
comprassors are robust with respect to a statistics of errors, since the

total error-masking probability OQ¢gtal = 2 Qle)Pr{eje#0 7 is independent on

| e=0
the distribution Prie |e+0 L

1 Introduction

Compression of test responses (signature analysis) is the essential conpact
in the built-in-selif-test (BIST) design for VLSI devices [1-8 . Since the
difficulty in testing VLSI circuits is related to an excessive among of
referznce data to be stored. To reduce the storage size of the reference
data, test responses are compressed into a k-bit word called “signature". A
biock diagram of a BIST design for VLSI device is given in Fig. L. The (est
response in Fig. 1 is considered to be a stream of {0,1} which corresponds
to the "“scan-out"™ data for a scan design.

1This work was supported by the National Science Foundation under
Grant DCR-8317763.
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Fig. 1. BIST Design for VLSI Device

An alternative compression technique based on a guadratic function 1s
presented. The proposed quadratic Compressors provide for an equal error-
detection capability for all patterns of erroneous symbols in the obsearvad
test response. Hence, guadratic compressors offer a reliable estimation of
fault coverages when the distribution of errors is unknown.

2 Quadratic Compresscrs

The concept of quadratic compressor is based on the quadratic nonrepetitive
Function of 2T variables over a finite field of ¢ elements, GF{q), q=2k i 9

v(2) = 2951689739, ..CFp0Zop-1, ZEVpr over GF(q), ZyeGF{(q). (1)

et Z be a sequence of tast responsas consists of N=2kT bits. Rather, we
consider z as a sequence of k-bit symbols {z¢,t=0,1,...,2T-1} (see {1}). The
quadratic signature y(Z} is computed by multiplying two k-bit blocks Etftfl
and accumulating the sum. Note that, multiplication of symbols from GF({2%)
is a multiplication of polynomials degree less that k meodulo an irreducible
polynomial degree k, over {0,1}, and the addition, @&, is a polynomial
{vector) addition module 2. The following theorem states that a quadratilc
compressor is optimal with respect to the lower bound on the maxima
conditional error-masking probability Q{e) given error e {e=0) which implies
equal protection against all error patterns.

Theorer 1

Let g{Z) be a system of r Boolean functions,
g(Z) = {gg(@), ¢1(D), ... ,gr-1{2)}, (2}
arbitrarily chosen from the systen
F(Z) = {£g(2), £442), ... . £x-1(2)}, ker, (3}
where F(Z) is constructed by
y(Z) = Zpi1efylse. . . 0Lpr-0Z9p-1 = fk_lif}xk'lﬁfk_g{E}Ek_z@'..@fg(iﬁ, (4)
and Z € Vg over GF{q), Z;y € GF(q). Then the compressor g(Z} is optimal with

ole) = [{(z,e) | y(Z)=y(z), Z=zee}| 27N (5)

27T, for all e+0 a,




From (5) one c¢an see that error eventis (Z.2} {(ordered pairs of fault-free
response and error) is masked if and only if the signature y{Z) {Z=Zee} is
equal to the reference y{Z) in which the number of error events for any
given e=0, in the case of quadratic compressors, is equal to 2N°T where r is

the size of signatura.

- In the case of linear compressor by LFSRs which can be characterized by a
linear transformation H, the linear signature is given by

s{Z) = £ HY = z HT @ e HT, (6)

and error e 1is masked if and only 1if e HI=0, hence, for the linear
compressor Qf{e) is either zero or one. Therefore, linear compressor is the
worst compressor with respect to the lower bound on the maxima of Qfe).

Example 1. As the first example, consider linear and quadratic compressions
of test responses for exhaustive pseuderandom testing of the circuit shown .
in Fig. 2. For the test sequence (0000, 1111, 1110, ..., 0111} (generated by
an LFSR with p(x)=x%ex@l as a feadback polynomial) test response sequences
(binary sequence of length 16) are compressed inte  four-bit signatures
(N=16, k=4). Two signatures are obtained—one by LFSR with feedback
polynorial pi{x} = x4 ® x ® 1 and another by the quadratic comprassor.
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Fig. 2. Circuit Diagram— an Example Illustrating

Advantages of Quadratic Compressors
Over LFSR Compressors.

The quadratic comprassor in this example can be described as follows. Let

Zz = (Zg9,%Z1,....2Z15; denote an observed test-respomse saquence. Then
quadratic signature is computed by

y{z) = {Egﬁﬁlx@...@i3x3)c{i4cﬁ5x@*__@@733] &

{Eg@égx@;*.cﬁllx3}-{ilg@El3@...El5x3} moduleo x¥axel. (7)




In other words,
y(%) = ugvg @ u1vy. uj.vi € 6F(24). (8)

The fault coverages of both compression techaiques are obtained from the
number of single-stuck-at faults such that the observed signatures are equal
to the correct signature divided by a total number of single-stuck-at faults
in the circuit of Fig. 2. The fault coverage of the LSFR scheme 1s b56%,
whersas the fault coverage of the gquadratic-scheme is 100%. The reason that
the LSFR compressor attains only 56% fault coverage (falls to detect 15 out
of 34 faults) is that several faults im the circuit of Fig. 2 manisfest
themselves as error patterns which are divisible by the feedback polynomial

of the LFSR.

Example 2 The second example compares fault coverages of the quadratic
compressor based on the functien

y(3) = (Zp0f1x@%yx2) (£3624x9Z5x2) modulo x3axel, (9)

that is, o ) )
y{z) = uv, u=(&g.Z1.29).v=(Z3,24.25) € GF(23) (see Fig. 3}, {10)

with a linear Hamming (6,3) decoder given by
Sg = Z3@249z5,
S| = 7,673055, (11)
S, = Zpeizei4.

{These linear compressors have been used in [6-8 J. A hardware realization of
the quadratic compressor {9) is given in Section 3.2, Fig. 6}.
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Fig. 3. Circuit Example where Faults are Masked
when using a Linear Compression Scheme

The test procedurs for the circuit given in Fig. 3 consists of the
exhaustive test where every output pattern (Zg,21.22,Z3.24.25) is compressad
via a combinational circuit into a three-bit signature (N=6, k=3}. The
fault-free signatures corresponding to the compressed correact output




patterns for all 16 possible input combinations are kept as referances.

The fault coverage for single-stuck-at faults of the linear single-error-
correcting Hamming (6,3) decoder is 46% (fails to detect 40 out of 74
faults) which 1is unexceptable, whereas the qguadratic  compressor attains
100% fault coverage. This second example alse¢ brings up the point that the
performance of linear compressors can be catastrophic when no imformation on
possible error patterns 1s avallable.

3 Hardware Implementations and Complexities of Quadratic Compressors

Consider the following implementation of a quadratic compressor (Fig. 4).

Test sequence QUADRATIC COMPRESSOR
: L I 1
DEVICE ) |Finite-feild 3 "
3 /| Multiplier e T Flip-Flops
Z Zpirer
Test response Signature register

Fig. 4. Hardware Implementation of Quadratic Compressor

3.1 Sequential Quadratic Compressor

If the observed response, Z=z®e, is processed in a serial fashion, based on
the gquadratic function over GF{2K), y(Z)= ZgZi@igZ30...0227-2Z)7-1, Where 2
is a binary sequence of length N = 2kT and Zy, Zt+j are blocks of length Kk,
t=0,2,4,...,2T-2. The product ZiZt+1. is computed when the two k-bit blocks
of the test response, Z¢ and Zyyq1, are available. (A 2k-bit register may be
required to store the two operands Z¢ and Z¢43 for the multiplier, however,
the already existing output-register of a circuit-under-test may be
sufficient for storing Z¢ and Zp+p).

Next, we will consider a sequential realization of a multiplier.

The sequential finite field multiplication can be computed using an LFSR
with the feedback taps corresponding to the module pelynomial pi(x}. The
muitiplication of two Enlynnmials Zt = ak_lxk'l ® ak_zxk'z ® ... ©@ag, and
Zi 4+l = by-1xk"1 ® by_ox "2 ® ... ® by, modulo primitive polynomial p(x) {see
Fig. 5} 1is cobtained by loading the coefficients of Zy, f{ai, i=0,...k-1),
into the feedforward-taps register where the feedback taps have been
connected according to the coefficients of p{x). The cosfficients of the
second polynomial Zgs+] are shifted in, starting from bg. After k shifts,
the contents of the LFSR (starting from the left most D £iip-flop} are the
coefiicients of the product ZtZts; = €p © €1% ® ... ® cg-1xF"1  modulo
a primitive polynomial p(x) of degree k. (Note, that the order of the
coefficients of the two operands, taken from the two k-bit blocks of data,
is immaterial with respect to the data compression process).

Example 3. Let k = 32, q = 232, p{x) = x32 @x20 e %2 e x ®1, and Zp., Zt+l
are two operands (two 16-bit blocks). The sequential circuit computing
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ZvZy+1 modulo p(x) is presented in Fig. 5 (a control circuit for loading
data and shifting is not shown).
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Fig. 5. Sequential Finite-Field Multiplier.

A sequential quadratic compressor can be implemented wusing three Kk-bit
registers {linear feedback register with internal XOR gates, feedforward-
taps register, and T flip-flop register), k two- input AND gates and a
control circuit. One can see that, for VLSI testing the hardware overhead
for linear and quadratic compression schemes is of the same order.

3.2 Combinational Quadratic Compressor

Combinational quadratic conmpressor is a combinational circuit performs a
multiplication  of two pnlynnmlals degree less than k, Z¢ = ag- 1xk 1
@ ak-zxk'z ® ... ® ag and  Zg4y = byt x¥-1 @ by- zxk 2 ® ... ® by {recall
that, Z+ and Zy4+j are elements in GF (2K) where (ax-1.2g-2:-.-.,3Q) and
(bg-1.b%-2,....bg) are two k- ~bit blocks which are multiplier's operands).
The product, ZyZy+] = €2k- 212k'2 ® cgk_332k‘3 @ ... ® cg., 1s obtained by a
two-level {AND,XOR) circuit {Fig. 6), which requires k¢ two-input AND gates
and (k-1)2 two-input XOR gates.

The final step is reduction of ZtZt+1 = fk_lxk'l @-fk-gxk‘z ® ... @ fp
modulo p(x), where p(x) is the irreducible polynomial of degree k.The
coeffients  {fy—q, fx- 20 <o fgl is obtained by the second XOR-network With
inputs {cokx-2, ....cp) from the first XOR-network (see Fig. 6). Numbers of
two-input XOR gates required for the reduction circuit are listed in Table 1
for different degrees of irreducible polynomials.

The hardware complexity (number of equivalent two-input gates) of the k-
bit combinational finite feild multiplier is the sum of k2 two-input AND
gates, (k-1)2 two-inputs XOR gates, and the complexity of the raduction
circuit (Takle 1}.




k | pi{x) Lyor

8 | x%exiaxiexlel| 28
12 | x12exbexdexel]| 52
16 |x16axl2¢xiexel| 116
24 | x24axlexel | 111
32 |x3%ex20exlexel| 205

k: Degrees of irreducible polynomials, p(xi: Irreducible polynomials, and
Lxop: Number of two-input XOR gates.

Table 1. Rardware Complexities of Reduction Circuits for
Combinational Quadratic Compressor

Example 4. Let k =3, (= 23, pix) = x> ® x ® 1. Then

FrZesl = (a2x2 @ agx ® ag) {bax2 @ b1x ® bp)

{azhz}x4@{a1hzﬁazh1]33@{aghzﬁalh1CaghniXzﬁiaghIEalhglxﬁagbg
= c¢x4 ® c3x3 @-czxz-@ €1 @ Cg-

Substituting, x3 = x @ 1 and x% = x¢ ® x, we have

Z+Zr4q = (cg @-cg}xz ® (cg ® c3 @ ¢1)% @ (c3 @ ¢cg) modulo p(x).
Thus, fo = azby ® apghy © aiby @ ashg, 1 = asby @ ajbs ©@ azby; ® agby € aibg
and fp = ajby @ azby; ® apgbp. Note also that f3, f1. and f5 are quadratic

repetitive Boolean functions of f{aj, aj. 2g., bz. by. bpi.

From a device—under-test
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Fig 6. Combinational Quadratic Compressor
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Example 5. Combinational quadratic compressors can be used for BIST design
for a ROM. For example, a design of BIST 512x64K ROM based on a quadratic
compressor to compute 32-bit signatures for every cell. These precomputad
signatures are stored in a the 32x64K shadow-nemory. Assuming that errors
oocur either in cells of the 512x64K ROM or in 32x64K shadow-memory, the
probability that errors are masked 1is =32 (Note that, this technique also
provides for jocation of faulty cells, since signatures are stored 1in the
chadow-memory for every cell of the original 64K ROM).

4 Conclusions

An alternative technique for data compression of test responses which 18
bhased on a gquadratic £function in a finite field of 2K elements was
presented. The proposed quadratic compressors aré optimal from the points of
veiw of the lower bound on the maxima conditional error-masking probability
Q{e) given an error e (e=0).

While a quadratic compressor requires slightly more hardware than an LFSR
compressor, it can provide for a minimupm of Max Qie}, in constrast with the

e=0

case of a signature analysis by LSFRs, when Q{e) is either D or 1 for a
given e=0. Hence, quadratic compressors are "robust” with respect to the
distribution of errors Pr{eie=0}, that is, the total error-masking probabi-

1ity  Qtotal ='§ O(e)Prieje=0 7= 27F, (r-bit signature), 1is indepadent on

- r - 'E!'FO
Priele=0 L
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