1 are

with
5. We
is a
=p°) .
nimun
, over

over
istic
0 be

flat
codes

all
paces
sense
this
t to
for
d in

s and
Lhese
will
i—ary
ation

over
is
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Abstrarct

Several new constructions for functions with flat autocorrelati
presented. Correlation functions considered in this paper are define
respect to p-adic {p22) shifts (vector additions modulo p) of variabl,
show that the total autocorrelation function for a function f{(x), (f
papping from an n-dimensional vector space V, over GF(gq} onto GF(g),
is flat (invariant for any shift of the space) iff its maxima are 1
over all possible mappings {£}. We construct a class of functions f: 1
GF{q) = GF{g) with a flat total autocorrelation by quadratic form:
GF(g). Moreover, the autocorrelation function for the characte
function f;(x)el0,1, £5(x)gl iff f(x}=1, ie6F(x), is also shown
asymptoticaily flat as n - o, Applications of functions with
autocorrelation to compression of test responses and error-detecting
for chacnels with unknown statistics of errors will pe described.

1 Introduction

A function f(x} is "bent" iff [{x | f{x)=f{x+e) }| is comnstant (flat} fo
e~0. The terminology follows from the fact that shifts of linear sub
result in either their cosets or subspaces themselves, hence, in this

bent functions are the furthest functions from being linear 71 1In
paper we will confine ourselves to the shifts of function with respe
vector additions module p (p-adic shifts p#2). Similar results

constructing bent functions with respect to cyclic shifts may be fou
[9-11 1.

TWwo major results concerning the constructions of gq-ary bent functie:
binary asymptotically bent functiens are presented. Applications of
results in data compression for VLSI testing and error~detecting codes
be described. In Section 1 we will define autocorrelation for
functions, and show the equivalence Dbetween constant autocorre.
functions and mirimum maxima of autocorrelation.

l.1 Definition

Autocorrelation functions for a gq-ary function £ (x) [2] where xeVy

Gr{q) (V, denotes n-dimensional vector space} and £(x)&GF(q), q=p*
defined by

'.m — “ o
1This work was supported by the National science Foundation
under the Grant DCR-8317763.
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Bzle) & ) Bjle) = Y Y tilxf(xee) = [{x [£(x)=f(x+e) ). Q)
i i x
The characteristic funection fi(x)e{0,1) is defined as £i(x)=1 iff f£f{x)=j,

ieGF(q). Note that x+e ie defined ip ¥ over GF(q) and the summations ¥ ars

integer additions. Futhermore, By{e) is the size {(cardinality) of the set
Ix | £(x)=f(x+e}) and ‘ |

Bi(e) = |{x lf{x]=f(x+e]=i}l‘ {2)

Byfe) and Bj(e) are refered to as the total autocorrelation function and the

autocorrelation  function of the ith characteristic function £ (x),
respectively.

Functions with flat autocorrelation are important for compression of test
responses and error detection for channels with unknown error distributions.
For VLSI compression testings By{e) is the number of error-masking events,
(x,e}: f(x)=f(x+e}, for a given error e, where x is a fault-free response.
Similarly, for error-detecting codes, Bjle) is the number of error-mpasking
events, (x,e): f{x)=sfix+el=i, for a given error e, vhere x is a codevword of
the code € = {x | f(x)=i},

Let us comsider the following example illustrating (1}.

Example 1. Let f({x}suv, X={u,v} u,v € GF{3), that is, f(x): V2 over GEF(3) -

GF{3). Truth tables of f{x), and f(x+e) for e = (0,1), (1,2) and (2,2) and
the values of Bjf{e}, i=0,1,2 and By{e) are listed in Table 1{a) and 1(b).

X Ififpfifs  x+e|f fof1fy x+e|f |fpfqfy xte |f fof1fy x+elf fofifs
| 1T | 12 iz |
00i0[1 0 ¢ 0ilol1 0 o 12{2(0 0 1 211210 0 1 221110 1 0
01i0]1 0 0 02|01 0 0 101011 0 O 22111010  201{0i1 00
0201 0 © oclolr 0 0 11{1/01 0 20{0(1 0 9 211210 0 1
10101 0 © 111l 1 0 221110 1 © 01101 0 © 62|01 0 ©
11[110 1 0 12(210 0 1 20/0jt 00 02{0(1 0 0 00{0l1 00
1212[0 0 1 10101 0 © 2112i0 0 1 00102 0 O 01(0]1 0 0
20{011 0 0 211210 0 1 0210j1 00  11(1{0 1 © 121210 0 1
2112{0 0 1 2211101 0 00j011 00 1212|001 10l0]i 00
22y110 1 0 20[011 0 0 01{0j1 0 0 10{0(1 0 © 111j0 1 0
e=(0,0) e={0,1) e={1,2) e={2,1) e=(2,2)

Table 1(a). Truth tables for f{x+el={u+t){v+r) over GF(3)

e (0.0) (0,1) (0,2) (1,0) (1.1) (1,2) (2,0) (2,1) (2.2)

Bp (e} 5 3 .3 3 2 2 3 2 2
By (e} 2 0 0 0 i 0 0 0 1
B2 (e) 2 0 0 0 0 1 0 i 0
Bgfe! ¢ 3 3 3 3 3 3 3 3
Table 1(b). Values of Autocorrelation functions




Theorem 1
Byle), e=0, is constant (not equal to qft) iff Brle}) = gh~1, 0

Proof

-

By summing both sides of (1) over all e*0, together with the fact that

Y Bile) = Y Y £i(x)£ (xte) = B; (0) (B (0)-1), 3)
e=0 e=0 x

((3) is readily verified by interchanging the summations, for example, see
Table 1(b)}. Thus we have

0 & Max Bs(e} » (qn-l.‘-"lz Bi (0} (Bj(0}-1}|. (4)

=0 i

Minimization of (4) over a set of all possible mappings (£} with the
constraint .

E Bij (G} = gn, - )
; .
results in:
0" & Min Max Bg(e) » gn-1, - " (6)
{f} e=D
Therefore, the equality in {6) holds iff Br{e)=q2~1l for all e=0. O

A

1.2 Bipary Bent Functions

For the case of binary bent functions f(x}e€{0,1) wve have the following
relationship between Bgle), By{e} and Bple). Since for £{x)&{0,1) and fo(x)
can be writen as fple) = i-£1(0) (arithmatic mipus), (1} beconmes

Brle} = Bgle) + Byle) = ¢n - 2B1 (0) + 2B;{e), {7)

Generalized binary bent functions can be defined as f(x)el0,1), £: Vo over

GF{q}, q=pS5, - (0.1}, and characterized by the dichutnmX induced by f on the
Space into Cj = (x {f(x)=i}, i=0,1, such that Bg{e)=qn~1,

Let us consider the folloving example to show the lower bound on Q and the
uniqueness of |c;)| = Bi (0) for the case of binary bent functions with p=2.

Example 2. Consider £{x)e€{0,1) where x ¢ Vn ﬁver GF{2). From (4) and (5)

Q" = Min @ = Min(28-2)~1p(y}, y & By(0) and ply)=2y2-20*lye2n(on-1) (g )
{£} {v} |

One can see that Bly)»p(2n-1} hovever, 2B-i does not divide g{an-1)

Moreover, g(2B-l.p) = p(2R=14A). Let Y = 227144, then we bave, (A} = 242 +

2B(2n-1-1). By letting 4=0, we have, - Q* » [2“‘1-2“'1[2n-11‘1] = 2071 (gee

(6}) which implies p=s2n/2-1 Since B(y) is convex, binary bent functions

exist only for B;(0) = an-l4pn/2-1 2B"1-28/2-1 10,10, o




Binar? bent functions {1,2,7-10 71 f(x) {(f: ¥a over GF(2) » {0,1)}) can be
constructed by the following formula

f(x) = £(u,v) = <u,T(v}> + G{u), - (9)

et ey e gy

¥here u,v e V5 over GF(2), ¢ ,.) denotes imner product and ¥(v) denotes
pernutation on components of v.

It is important to note, that o must be even for the existence of £(x)
(x € V; over GF{q)).

Often 11,2,7-10 ) F(x)a(-1}£{x) ¥, Vp over GF(2) - {1,-1}, was considered
instead of f: ¥n over GF(2} - {0,1}. In _this . case the autocorrelation
function (1) of F{(x) becomes the difference in sizes of the sets {x |
Iix)=f(x+e)) and (x| f(x)=f{x+e}) }. Moreover, one have for the Walsh-
Hadamard coefficients of F(x), f(w)=227/2 for all o. The relation between
the autocorrelation function of Fix) to Bgle) is given by

) F(x)F(xte) = 20 - 2Bg(e). (10)
X

2 Q-Ary Bent Functions

R construction of g-ary bent function defined by Byle) = q“'l is given 1in
the following theoren.

Theorem 2

For fix) = £{u,v) = <u,v, {1l1)

=L

TR

where f(X)eGF(g), x € V, over GF{q), q=p®, W,V € Vp/3 over GF{q), we have |
Byle) = | {x |f{x)=f(x+e) ) i= gr~] for all e~0. a |

The function £{x) = uv, x € V; over GF{3) and u,v & Vi over GF(3)
considered in Example 1 is in fact an example of bent function constructed

by (11). Let us consider another example of g-ary bent function of the form Z
given in (11).

Examgle 3. Let £(x} = f{u,v) = <u,v> be defined in £{x)e6F(23), x € Vg over

GF(27), u,v € Vp over GF(23). Let u = (up, B3, «o. , Up—g), v = (v, vy,

e s Vpe1), Uj,v4y € GF{23) and the pelynorial representations of uj,v{ are

Uj =u3 ja¢ + uy jao+ Ug,ir ¥4 = ?2,i=3 T V,iet vp 4, uj i.vy,i € GF(2).

Then for the irreducible polynomial used in the construction of GF(23) being
+ a+ ], we have

£(x}) = uwpvptuivyi+...4up.qvg-q = g2(u,v)al + g1{u,vla + golu,v}, {12)
vhere gsaf{u,v}) = q;,u{uq.vn} + g;.;(u;.v;) +oae. 4 g2, p-1{Un-1.va-1),
g1 lu,v} = 9:,0(80,Vo} + gy, 5uy, vy} + ... 4 ¢1,m-1{8n-1,¥n-1),
Ggfu,?} = Go,olug, vy} + gﬂr;{ul;vll ... 4 Un,m-lfﬁm-l*vm-llr

gj{u,v),g5, i(uj,vy) € GF(2) and

50
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giri[ui'?i} = u:rivzri + unrivjri + ulrivlri + uirivnri'
¢1,i{ui.vi) = u; §v: 4 + u, 4v, 5+ W2,i¥1,i ¥ Up §¥s,i + Uy j¥o, 4,
92,003, 95) = u, §Vo 4 + Uz 4V 4 + w2 ive,g.

The autocorrelation function of f(x), Bgle} = qt~1 = 26m-3 for ali e=0,
implies that | '

Byle) = | {x |f(x)=f(x+e)} |

| {x | g2{x)=gs(x+e}, g1 {x)=g1 {x+e}, gg(x)=ggix+e)) . (13} D

From the above example We see that g-ary bent functions econstructed by

{11) with q=pS may be veiwed as a system of s p-ary bent functions. This

brings us the following theoren.

Theorem 3
Consider

t{x} = <u,v> = {gg(x}, g3(Xi, vu. . ggupix}), (14)
defined in (11} where g; {x}, i=0,1,...,5-1 are functions corresponding to

the coefficients of the polynomial representation of f(x). Then any system
G{x) consisting of r arbitrarily chosen functions from {g1{x),i=0,1,...,8-1}
has the property that ‘

,

| {x 1G(x}=G(x+e)} | = p2@S-T 1eres-1. (15) O

The construction of gq-ary bent functions considered in this section,
implies a partition of the space Vp over GF{q) into q equivalent classes Cj,
i=0f1;--1;q-1 thErE '

Ci = {x | £(u,v}=cu,m=i}, ie6F{q). (16)

Moreover, Bj(0) =) {x [f{x)=i} |= | ¢i| » i=0,1,...,q9-1, such that By(e)=gqR-1
is unique. _ - .

In the next section we will investigate autocorrelstion functions Bi(e) of
characteristic functions fj(u,v) and show that Bjle) is asymptotically bent
as n - o,

3 Asymptotically Bent Binmary Functions

A binary function £;(x), ‘fj: ¥V, over GF(q) - {0,1), q=p%, we are now
considering, is the ith characteristic function of f{u,v) = u,v), u,v € Vp/2
over GF(g). Let n=2m, then

fi{x)e{0,1}, £j(x)=1 iff f(x)=cu,v=i, ie6F(q), u,v e Vy over GFlg). (17)

1
]




Theoren 4 5]

The autocorrelation function of the ith characteristic function

Bi{t,r) = 1k [f{u,v}=f[u+t,v+r}=i} [+ t.1 € Vy over GF{q), (18)
is given as follows.

{1) For i=D,

qzm-l - ql"l ' t=1-=0:
Bj{t,7) =

(19)

q2m-2 z qm-l . Otherwise.

Horeover, for p=2 - q2z-1 - qu-l | te1=0; |

Bi{t,T) = 1 {20)
L 22272 + (i, 7)q2"1 |, othervise:

where

1, Tr{iT-1)=0, T=0;
= (t, 1) and #(i,T) = (21)
-1, otherwise,

and Tr(e! = l+atale...+a2%"1 | Tr(a)ecr(2).

3
'

(ii) For 1=0, qzm-l + qm—l , t=71=0;
Bi{t, ) { (22)

q2m-2 + qm'i + GT-{q-Z)qm‘l . ntherw@s&,
where 8p=70,1), bp=1 iff T=0. | < 2
From the above formulae (20) and (22) we have the following theoren.
Theoren 5
The binary function given by (17} is asymbtntically.bent. that is, as o -

Bi(t.7) ~ 82 for all {t,7)+0, ieGF(q). (23) o

A Lower bound on Max Bj(t,t) can also be derived sinmilarly to (5) and it
. (t,r)=0
.is given by the following theoren.

Theorenm 6
2 [ Bi(0) (Bj(0) - 1) . p=2;
2 (g0 ~1)
Max Bj(t,7} » ¢ (24)
(t,r)'ﬁ I 31{0}(31(0}*F 1} , p}z'
(g8 - 1)
Note that, for p=2, B;(t,7) is an even integer. D




By substituting the values of Bj(0) given in (20) and {22) into (24) one
can see that the asymptotical value of Bj(t,r) = q4R~2 jndeed satifies (24}
as n - o, | T A

In Section 4.2 error-detecting codes constructed from an Equivalent class
- induced by a q-ary bent function will be discussed.

4 Applications of Bent Functions to VLSI Testing and Error-Detection |

- - "7
.

Bent functions can be applied to error detection in messages transmitted
over noisy channels. In particular, we will consider the problem of error
(fault) detection/testing for computation channels (VLSI chips) and a design
of error-detecting codes for communication Chanpels. For channels in which
the statistics of errors are difficult to model (unknown) or uniformly
distributed, a viable strategy for error detection is to- provide equal
protection against all errors. Hence, bent functions are of insterest
because of their constant-autocorrelation property. |

.4.1 Optimal Compression for VLS Test Responses

Testing of Very Large Scale Integration (VLSI) chips typically require
millions of test patterns {13 1. Thus, the problen of excessive size of
Remory storing the correct (fault-free) responses is encountered. To render
this excessive storage problem test responses are compressed into an r-
synbcl word called "signature” (or “syndrome” as in error-control-codings"
terminology). Thus, only the signature of the correct responses is kept as
the reference data. By comparing the reference signature and the test
responses’ signature we decide whether there occured  physical failures
(faults) causing a malfunction of the device-under-test. .

To analyze the performance of the test responses compression scheme, we
assune that faults manifest themselves as errors in test responses. (This is
guaranteed for the case of exhaustive testing, of course, excluding physical
failures in redundant components.) The performance measure for a conpressor
of test responses is defined in terms of the conditional error-masking

probabilities given errors. These probabilities are defined in the following

Let x be the fault-free response which is viewed as an n~dimensional
vector over g-ary symbols, that is, x € Vp over 6r{(q), q=p® (For most . VLSI
applications p=2)}. With the probabilty space of the fault-free responses
attained from testing of an ensexble of VLSI devices we can assume equally-
likely probabilies for all x. Now, the conditional error-maskin

probadbilties given error vector e, ecV, over GF(q), e+0, is defined as.. .....

oxt®) & | (x| tixetare)) (40 3 0gt6), )

- =
o kL . .

where f{x)} is the signature of the fault-trée“iespnnse X and the compression
is defined by the mapping f: Vp over GF{q) - GF{(q). Moreover, an error (x,e)
is masked iff f(x)=f(x+e). T

) . —_ - amm-
r . T —a o ma ~—m.

In the following theorem we sumnmarize the application of q-ary (q=pS) bent
function to the compression testing of VLSI devices.




corollary 1 [ 3]

Quadratic compressors G{x) = {go{z), g1({x}, ... , gyr-1(x}} where G(x) is a
subset of £(x) = {fpi(x), £1i{x}), .c. , fg-3(X)} = £{u,v} = <u,v}, u,v € Vy
over GF(q), f(x)eGF(q), q=p%, f;(x)eGF{p}, are optimal with respect to the
lower bound -

Min Max Qgle} 2 p°I, res. ' (26)
{f£; e+0 a

From the atove corollary we conclude that for the case when the probabilty
‘distribution of errors in VLSI test responses is difficult to characterize
quadratic compressors provide an optimal protection with Qg{e} = p7T for all
e*0 (where r is the size of signature}. In other words, the average
performance of quadratic compressors '

Qrotal = y Qzfe) Prie |e=0] = pT, (27)
e=0

is independent of a probabilty distribution of errors Prie {e*ﬁ}.

4.2 Quadratic Codes

Iin this section we will consider the problem of constructing optimal error-
detecting codes for communication channels with  unknown  errrors
characteristics which may arise due to jammings or other meodeling
uncertainties 15 1, '

Let x be a codeword and X be a received message, possibly cnr;upted by an
error e, X = x+e. We define the conditional error-masking probability, given
error e {e»0), for the code C as follovs

Ole) & | {{x.%) |X=x+e, x,% €} |-]c| ~1. (28)
Our goal is for a given number of codewords {C | and a block size n, to

construct a code such that maxima of Q{e) over all e=0 are minimal. In other
vords, for a given code rate [1]R=n"llogg {C | (codewords are blocks of q-

ary symbols of length n}, construct a code satisfying the minimax criterien

on Qle), that is, Min Max Q(e), where Sp is a set of 2ll codes with rate R.
CeSgp e-0 -

 The following corcllaries summarize the definition and parameters of -

quadratic codes ¢ and show that these codes are asymptotically optimal with
respect to the minimax criterion on error detection. (This ainimax criterion
has been widly used in estimation theory {15,16 ).

Corollary 2 6]
Let for a given ocGFr{q},
{v,v}eC e (u,vi=c, (29)

vhere a codeword (u,v) is a block g-ary symbols of length p=2m, that is, u,v
€ Vp over GF(q), q=pS. Then the number of q-ary information symbols for C

s ter mpWSC TN TA TN ETEE 'I'I'-l-'l"-'FrI'-n—L"l'\-F-!'f--'—'T'-'f-' ,
. . B - Y L T R T B T T T | I I Cag w N
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is k = n-1 and the number g-ary check symbols is r = 1. Further, we have feor
the conditional error-masking probability, given error e={t,r) (e«)},

l{t, 7} = |{{u,v) |{u.?>=<(u+tl,{v+r}>=n}l-|C| -1 5 Bolt,1}Bg(0,0)"%, (30)

and the formulae fbr jc |= B,{0,0) anéd Q{t.r) are given as follows.

(i} Fer ¢-0,

IC !: qzm-l—qm-l’

(31)

Q(t,7) = (q28-2:qn-1)(q20-1qm-1)-1 . ¢=1 35 p = =, {t,r)~0. (32)
Moreover, for q=2S _

Q(t, 1) = (22mS=284 (g, T)205-1) (2205-5.90S=5)~1 - -5 ,< n - o, (33)

(t,1)+0, where T=<t, 1> and ple,T)e{1,-1}, p{o,T)=1 iff Tr(eT™1)=0, T=0.

{11} For o=0,

€ j= géa~l-gh~l4q4m, (34)
olt, ) = {q?m-2+qm-1+5T.{q*z}qm-l)[qu*l-qm-1+qm}-1 ~ g1l ag p - o, (35)
(t,7) «0 where s7€{0,1}, 67=1 iff T=0. ‘ 0
Corollary 3 {5] X

The lower bound on the conditional error-masking probability given error e
{e=0)} is given by

2 'CI('Cl —1-) ,p=2:
et 2 {qt-1)
Max OQ(t,1) » i ' (36)

(t,T)=0

1 | jej(]ci -1)

l v P22.
l o {(ql - 1) |

Therefore, quadratic codes are asymtotically optimal with respect to {36). O

In sunmary, gquadratic codes provide equal protection against all errors.
For these codes a total error-masking probability

Ototal = Eﬁm Prie [e-0]- g1 (37)
e+0

is independent on a distribution of errors Prie l e+*0 ], Hence, gquadratic
codes offer a viable alternative for error-detecting for channels with
unknown or difficult to model noise characteristies.




We will conclude this section with an example of & quadratic code which
also illustrates the encoding and decoding procedures.

Examsle 4. The gquadratic code with the block size n=4 and symbols f£from
GF(24) where the number of information symbals is k=3, the number of
redundant symbol is r=1 and syndrome o<1, 1eGF(22 l is preseated in Table
2(2}. For a codeword (ug,ui,vp.vy), Uj,vji €GF(2%), v; is the redundant
symbol 1if M;+0 and vp is the redundant symbol if M;=0 (redundant symbol is
underlined for every codeword shown). Note that (Ho M1)=({ugp,uy)»(0,0) since
for this example (u,v)ec iff <u,v>=e=1. For this code | l= 60 and the
naximum value of Q(e} is 0.3333. B

Message I Codewords
Mo, M1, M2 ] (ug,u1.vg,vy)
- —| ® {eg,u1,%g.v1)eC = ((ug,uy), (v, v1)>=1

0 1 00 1 0 1 o (ug,uy), (vg.v1) € V2 over GF{22)
¢ 1 1 ;0 1 1 1 . s 2
0 1 a 0 1 a l lulr?l EGF{Z}
0 1 2] 0 1 o211
0 a 010 a 0 g2 -

’ e 0 00
1 6 o1 01 o 1 (o1
1 0 111 0 1 1 a |10
10 all 01 « o |11
1 0 «2{1 0 1 a? :
1 % 011 0 :1 i Table 2{b). Elements of GF(2%)
Juza al a® a?’a ']
a? a? al| o al nzl

Table 2(a). Example of a Quadratic Code

& Conclusion

A theory of bent (flat autocorrelation} functions and their applications to
error-detection in computation and communication channels have been
presented. Traditionally, bent functions were defined as mapping £from n-
dimensional vector space over {0.1) onto (0,1} and generally as quadratic

. forms over GF{2). We have shown that bent functions, which are characterized

by their autocorrelation functions being & constant, can also be constructed
as mappings from V, over GF(q) ontoc GF{q), q=p5. However, these generalized
bent functions f£(x)=f(u,v)=<u,v> (quadratic forms) have only the total
autocorrelation functions being constant Bgle) = | {x | £(x)=f(xte)} |= qh—1
for all e~0. We have shown further that the autocorrelation function of the
characteristic function f£;(x}e{0,1), f(x)=1 iff £(x)=i, Bj(e) is asymp-
totically constant as n - o, Therefore, a class of binary asymptotically
bent functions has been developed. Applications of q-ary bent functions to
error-detection are justified when the statatistic of errors are unknown,
For error detection schemes based on minimax criteria, we have shown that
compression of test responses techniques and error-detection codes
copstructed by bent functions are optimal.

..........
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