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on the weights of various walks that avoid 0 in the state diagram.
This is closely tied to the minimum weight to length ratio of
cycles in the diagram, which is not obviously directly dependent
on m. This observation should also be true about 7, in
Hemmati and Costello [3], though =, is of the order of four to
six times m for the examples they consider. The fact that low
weight cycles in the state diagram cause the requirement that the
guard space be large is consistent with the fact that codes which
are catastrophic have state diagrams which contain a nontrivial
zero weight cycle.

Finally, we would like to observe that there are good reasons to
view an error pattern as beginning as usual when the first
incorrectly transmitted digit is received, but not ending until the
decoder has returned to an e-ready state.
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Comments on “Convergence and Performance
Analysis of the Normalized LMS Algorithm
with Uncorrelated Gaussian Data”

DENNIS R. MORGAN, MEMBER, 1EEE

Abstract — Comments are expressed on the presentation of results in the
paper by Tarrab and Feuer. '

In the above paper! a fine analysis is presented for the conver-
gence and misadjustment of the NLMS algorithm. Unfortu-
nately, the results and comparisons with the LMS algorithm are
not in a form that readily enables the reader to draw practical
conclusions. Plotting mean square error on a linear, instead of

Manuscript reccived November 28, 1988; revised February 24, 1989,

The author is with AT&T Bell Laboratories, Whippany, NJ 07981.

IEEE Log Number 8931669.

'M. Tarrab and A. Feuer, IEEE Trans. Inform. Theory, vol. 1T-34, pp.
680-691, July 1988,

1299

logarithmic (dB), scale hides the important detail of the error as
it converges to its minimum value, which is exactly the region
where the practical engineer requires detailed knowledge to assess
performance. Moreover, in the comparison of the NLMS and
LMS algorithm convergence rate and misadjustment, the practi-
tioner wants to know how fast the algorithm will converge when
the misadjustment is constrained to a specified value. It has been
pointed out [1] that comparison of convergence rates is meaningless
without specifying the level of misadjustment! Thus Figs. 5-8 are
like comparing apples and oranges; one would have liked to
know how the convergence compares with the same misadjust-
ment. This simple but crucial point is far too often ignored.
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Optimal Codes for Minimax Criterion
on Error Detection

M. G. KARPOVSKY, SENIOR MEMBER, IEEE, AND
P. NAGVAJARA, MEMBER, IEEE

Abstract —Nonlinear quadratic codes are presented that are optimal for
the minimax error detection. Characteristic functions for these codes are
asymptotically bent. For a given block size n and the number of codewords
|C|, these codes minimize max, . Q(e) where Q(e) is the conditional
error-masking probability given the error pattern e¢. The codewords are
blocks of n symbols from GF(g). We have the following parameters
associated with the quadratic codes: n=2m, [C|=¢*" ' — 471,

max, .o Q(e) = (¢>" 7+ ¢" " H|C|™" and min, . Q(e) = (47" -
q””l)|C 17 ! Encoding and decoding procedures for these codes are de-
scribed.

I. INTRODUCTION

We present a construction for optimal error-detecting codes for
the case where distributions of errors in the channel are not
known or are difficult to model. A minimax criterion such that
an error-detection capability for a code is optimized under the
worst case scenario is the strategy taken for designing the codes.
We will use the following probability as the measure for the
error-detection capability of a code.

Let x denote a codeword and X denote a received message. We
define the conditional error-masking probability given error e
(e # 0) for the code C as follows:

{(x,%): x=x+e,x,3€C}|

0(e) = < o

For a given number of codewords |C| and a block size »n our goal
is to construct a code such that maxima of Q(e) over all e#0
are minimal. The problem can be formulated as follows. For
a given code rate R=n""'log, |C| (codewords are blocks of
g-ary symbols of length n), construct a code based on
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min_ .« max, . ,Q(e), where V* denotes the set of all codes
with the rate R.

We note that a similar minimax criterion has been used in the
design of match filters to combat jamming and other modeling
uncertainties for communication channels [1). This criterion can
also be used for error detection in computation channels (VLSI
chips), where the distribution of errors (errors are manifestations
of physical failures at the outputs of the chip) is difficult to
characterize [2], [3]. Hence the presented error-detecting codes
are applicable for a design of fault-tolerant devices [4]. In the
area of computer hardware testing, optimal compression of test
responses based on the minimax approach were developed in [3].

The advantage of the proposed codes is related to the fact that
for these codes, lim,, _, , Q(e) = constant for all e # 0. Thus these
codes are useful for channels with unknown error distributions,
since the total error-masking probability Q, =2, . ;0(e) P(e), is
asymptotically independent of a distribution of errors P(e) as
the block size n — 0.

II. Lowegr BoUND oN MaxiMA OF CONDITIONAL
ERROR-MASKING PROBABILITIES

Theorem 1: Consider a code C defined in an n-dimensional
space V, over GF(q) where ¢ = p* and p is a prime. The maxima
of conditional error-masking probabilities (1) are lower-bounded

by
( 2 [ICI(ICl—l)l _,
2=y 0T )
max Q(e) > L[lCI(ICI—l)] g 2
iy g1 | '
Proof: Let

B(e) =|{x: x,x+teeC}=Y f(x)f(x+e),
F(x) =1iff xeC, f(x) € {0,1}. (3)

(Note that B(e) is known as the autocorrelation function for the
characteristic function f(x) of the code C. These functions have
been widely used in digital design [S}, testing [3], and digital
filtering [6].) Further,

Y. B(e) =|C|(ICI-1).

e+ 0

(4)

Since, for p =2, B(e) is an even integer for any e # 0, we have

[ICI(ICI“l)] (s)

max B(e) =2

e+0

2(q"-1)
where [i] is the smallest integer greater than or equal to i. Since
Q(e) = B(e)|C|™ !, (2) follows immediately from (5) for p=2.
For p odd we have
cl(ic1—-1
max B(e) = lK—I,l——l ,forp>2, QED. (6)
e®0 (¢"-1)
Note that, from (5) with max, ., B(e) =2, p =2, we have
ICI(ICI-1) <2(2" - 1). (7

We will construct below optimal codes satisfying (7) with
max,,,Q(e)=2|C|"! and |C|=2"/?~1.

A separate issue of maximizing |C| for a given max, ., Q(e) is
not considered in this correspondence. However, we point out
that, if all values of B(e), e # 0, are maxima (the characteristic
function of the code is bent [7]), then, by (4), |C| is maximized. In
other words, an equal protection against all errors e (Q(e) is
constant, satisfying the equality in (2)) implies an efficient pack-
ing of information (|C| is maximized).
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III. QuUADRATIC CODES

For a code C constructed by binary bent functions {5], [7]-[12],
and defined as (u,v) € C if and only if (u,v) =0, u,v €V,, over
the autocorrelation B,(t,7) for the characteristic function
fi(u,v) =1 iff {u,v)=o0, where B, (t,7)=[{(u,v): (u,v),
(u+t,v+1)EC}, e=(1,71), t,7 €V, over GF(2), is given by

22m—l+(__1)"2m-1’ (t,’T) =0
2224 (=1)°277Y, (1,7) #0,

B,(1,7) = { (8)

Unfortunately, these optimal codes based on bent functions
and satisfying (2) for p =2 have the property that their condi-
tional error-masking probabilities Q(¢, 7) = B,(¢,7) |C| ™}, |C|=
B, (0,0), are asymptotically equal to 0.5 for all errors e = (7,7) # 0
as n=2ms > o00.

We develop codes based on asymptotically bent binary func-
tions. For these codes we can obtain Q(t,7)~p~°, as n—> o0
(p is prime) for any p and s.

Definition: Let u,v €V, over GFE(q), ¢ = p*; that is,

.’umfl)’ U=(DO’."’UM71)!

where u,, v, € GF(g). For a given o € GF(g) the quadratic code
C over GF(q) with block size n = 2m (g-ary symbols) is defined
by

u:(u()’..

(u,v) eCiff {u,v)=o0 (9)

where {u,v)=uyw,+ --- +u,_ 10,1, is the inner product in
GF(q).

Codewords are all pairs (u,v) of vectors in V,, over GF(q)
such that their inner product equal to a given (scalar) constant o
in GF(g).

Example 1: The quadratic code with the block size n =4 and
symbols from GF(2%), with the syndrome o =1, is presented in
Table I, where the following parameters apply:

® number of message symbols k =3,

® block size n =4 symbols from GF(2%), |C| = 60,
® (ug, uy, 05, 0)) € C = ((ug, ), (09, 01)) =1,

® (ug, 4),(vy,0,) €V, over GF(2%),

® u,v,1€ GF(2?), (see Table II).

TABLE 1
EXAMPLE OF A QUADRATIC CODE
Messages Codewords

M, M, M, Uy ul Yo U
0 1 0 0 1 0 1
0 1 1 0 1 1 1
0 1 « 0 1 o 1
0 1 o? 0 1 o? 1
0 a 0 0 a 0 o?
1 0 0 1 0 1 0
1 0 1 1 0 1 1
1 0 « 1 0 1 «
1 0 o’ 1 0 1 o’
1 1 0 1 0 1 1
(12 (’12 (43 llz (43 a
o’ o’ o o o ol 1

TABLE I

ELEMENTS OF GF(2?)

0 0
1 0
a 1
« 1

_o O

(S
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For a codeword (uy, t;, Uy, 0;), U, v, € GF(2?), v is the redun-
dant symbol if for the message (M,, M;, M,), M, #0, and v, is
the redundant symbol if M, =0, M, # 0. (In Table I, the redun-
dant symbols arc in boldfacc). (Note that (M, M,) = (uy, u) # 0,
since (u,v) € C iff (u,v) =06=1)

As one can see from Example 1, quadratic codes are nonlinear
and nonsystematic. For these codes, positions of redundant sym-
bols depend on messages, but the number of redundant symbols
is the same for any codeword. Procedures for encoding and
decoding for quadratic codes will be presented in Section V.

The following theorems will show that quadratic codes are
asymptotically optimal with respect to the lower bound (2) on
maxima of Q(e), as the block size n— oo, for a wide range
of |C|.

Theorem 2: Let (u,v) € C iff {u,v) =0, u,v €V, over GF(g),
m>1, 6 € GF(g), g=p'. Then, C has the block size 2m g-ary
(2ms p-ary) symbols.

1) For 0 # 0, |C|=g>" "1 — ¢™"!, and we have for the proba-
bility of masking

Oy =\
LA

i

p2m=2  am—1Y) -1
Y -4 VAN

(

\

(¢" ' +1)(g"-1)
forany (z,7) #0, (10)

over GF(g). Moreover, for p =2 we have

s

i

where t, 7€V

"

o(r,7) =(q" "+u(a,T))(g" -1,
forany (¢,7) #0 (11)
where t,7€V, over GFQ2"), T={t,1) and u(o,T)=1 iff
tr(67"')=0, T+ 0, and p(e, T) = —1 otherwise. (tr(B) denotes
the trace of € GF(2") [7)).
2) For 0 =0, !C| —_ q’lnz—l _ qul + qm’

Q([,T) — (qlmfl + qnl'*l + 87‘(‘1_2)‘]’”71) IC|71v
forany (7,7) #0 (12)
where 6, =1 if 7=20 and 8, = 0 otherwise.

Our proof of Theorem 2 requires the following lemmas.
Lemma 1: Let § be the number of solutions for the following
system of two linear equations over GF(gq)

{a,xy=i
(b,x)=j—c¢ (13)
where a, b, and x belong to V, over GF(g), (m>1), and
i, j,c€ GF(g).
Then, for y € GF(q) (v is a scalar constant),
qul, b#ya,
0=Cg¢" "', b=vya,c=j—vyi, a#0; (14)
0

, b=vya,c# j—vyiora=0.

Proof: The system (13) of two linear equations over GF(gq)
has m variables x = (x,, - -, x,,_,), x; € GF(q), and the number
of solutions 8 is given by (14) for the cases of the system being
two linearly independent equations, or one linear equation, or an
inconsistent system, according to the coefficients «, b, and
constant c. Q.ED.

Lemma 2 (Autocorrelation Functions for the Characteristic Func-
tions of Quadratic Codes for m>1): Let B (t,7)=I|{(u,v):
(u,v),(u+1t,v+7)eC}| where (u,v)€C iff {(u,v)=og0,
u,v,t,T€V, over GF(q), m>1, and 0 € GF(q), ¢= p’. Then

B (1, 7) is the number of solutions (u, v) of the following system
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of two quadratic equations over GF(q),

{u,vy=o0

{u+t),(v+1))=0. (15)
1) For ¢ # 0,
2m—1 m—1
q —q" ", t=1=0
B"(t,’T) :{ 2m—2 m—1 H (16)
| q + 4”7, otherwise.
Moreover, for p=2
2m--1 m~1
q -q , t=7=90
Bn(l’T) = 2m—2 m—1 H (17)
q +u(0,T)q"" ", otherwise,

where

1, tI'(OTAl)=O,T¢O (18)

r-an wen-{ !

otherwise,

and tr () =1+ a+a’+ --- +a> ', tr (a) € GF(2).
2) For 6 =0,

B(t T)= /qim‘l_qm>l+qm’ t=7=0
o\ g 24+ qg" ' +8,-(g—2)g™ !, otherwise.
(19)

where &, € {0,1}, 8, =1iff T=0.

Proof: 1) For t=r1=0 the system of two quadratic equa-
tions (15) can be reduced to (u,v) = g. In this case for ¢ # 0 and
any given u # 0, there exist ¢” ! values of v satisfying (u,v) = o
and B(0,0) = (q" —1)q" .

For (¢,7) # (0,0) rewrite (15) in the form (13) given in Lem-
ma 1,

(u,v) =0

{u+1),vd=0—(u+1),7). (20)

From Lemma 1 for x=v,a=u, b=u+1t, and c¢={(u+1),7),
i= j=0, we have the following cases.

a) The system (20) consists of two linearly independent
equations for any given u#0 such that u+¢+# yu for any
v € GF(g).

b) The system (20) is reduced to one linear equation for any
u # 0 and there exists y € GF(q) such that

{(u+1),7y=0(l—y). (21)

From (21) we have o(y —1)*+{(t,7)(y — D)+ (t,7) =0, y+#1,
and for p =2, vy exists iff tr (a(1,7)" 1) =0, {(z,7) #0[7].

o If utt=yu, {(u+1),7r)#o0(l—v) or u=0, then (20)
becomes an inconsistent system.

The above implies that there are ¢” — ¢ fixations of u such
that (20) consists of two linearly independent equations. If u# 0
satisties (21) (for p =2, tr ({t,7) 1) =0, {#,7) # 0), then there
are two fixations of u such that (20) is reduced to one linear
equation.

2) Following the proof for the case of ¢ # 0, for 6 =0 and
t=1=0, u=0 implies another ¢ values of v satisfying (20).
For (¢,7)# 0, {u,v)=0, (u+1t,v+ 1) =0, can be reduced to
one linear equation if a) u=0 or b) u=—+torc) u=vys (y#
0,—1) and {(t,7)=T=0 since (20) becomes (u,v)=0 and
(t,v)=—(y—1T. Hence B,(t,7)=(g"—q)q" > +2¢4" '+
8-(g—2q" . Q.ED.

Proof of Theorem 2: Since Q(t,7) = B,(t,7)|C|"" and |C|=
B,(0,0), (10) — (12) now follow from Lemma 2. Q.ED.

u-+t=vyu
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Theorem 3: For m=1 and o # 0, we have (u,v) € C iff ww =g,
(u,v,0 € GF(g), g = p*), and maxima of the conditional error-
masking probabilities, Q(¢, r) are given by

2
max Q(t, 1) =—r7r. (22)
(1.,7)=0 g—1

For p =2, we have in this case optimal codes satisfying the lower
bound (2) on maxima of Q(¢, 7). For these codes,

2'—-1, t=7=0
B.(1,7) =12, tr(o(t'r)fl) =0,17#0  (23)
0, otherwise

and for (¢, 7) # 0,

Q@ﬂg={3ahd)‘,tdaoﬂﬂ=0J¢¢0 (24)

, otherwise.

Proof: From uv=0 and (u+ t)(v+7)=0 we have 7u’ +
ttu+ta =0, u+0. Thus there exist at most two fixations of u
such that an error (¢,7) is masked. Further, for p=2, (24)
follows from the solvability condition for Tu®+ tru+to=0,
u+0([7] QE.D.

For codes constructed by Theorem 3, with m =1, the maxima
of autocorrelation are equal to two, that is max,,, B,(e) =
max, . oL fo(X)f,(x +e)=2, where e =(1,7), x=(u,v), f,(x)
=1iff x€C, (uv=0).

The problem of constructing maximal codes for a given
max, ., B (e) is very difficult. We will show this for the case
max, ., B,(e)=2. For a binary code C of length n containing

-|C| codewords, we construct a linear code V(C) such that nonzero
codewords of C are columns of the check matrix for V(C). Then
V(C) has codewords of length |C|—1 (we assume 0 € C) and the
number of check bits for V(C) is equal to n. It is easy to show
that max__, B,(e)=2 for C iff 4, =A,=A,=0, where 4, is
the number of codewords of weight i in ¥(C). Thus the problem
of constructing a code C with maximal |C|and max, ., B,(e) =2
is equivalent to constructing a linear code V(C) of the maximal
length with a given number of check bits and 4, =4,=4,=0.
This problem is very difficult. The problem of constructing
double-error-correcting codes (A4, = A, = Ay = A, =0) of maxi-
mal length for a given number of check bits is still open [7].

We have presented quadratic codes with codewords being
blocks of length n = 2m g-ary symbols and one redundant g-ary
symbol. Quadratic codes are non-linear and nonsystematic codes
(positions of redundant g-ary symbols depend on messages, see
Example 1) with the transmission rate n™! log, |C|—1 as n— oo,
for m >1. From Theorem 2 one can readily see that as n — oo,
we have for the conditional error-masking probabilities given
error (1,7)# 0, Q(t,7)~ g ! for m>1. Hence quadratic codes
are asymptotically optimal providing an equal protection against
all error patterns. In other words, characteristic functions of
quadratic codes are asymptotically bent.

IV. MobirieDp CODES

The quadratic codes developed in the previous section have
limited numbers |C| of codewords for a given block size n = 2ms
symbols from GF(p) and the number of redundant symbols
from GF(p), r=s. In this section we will develop modified
quadratic codes with r redundant symbols such that Q(z, 1) ~
p~’, as n— oo, for any r <s. For the same block size as the
original codes, modified codes will have more codewords (ad-
ditional s — r information symbols). However, this results in the
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increase in the conditional error-masking probability to Q(z, )
_— p4"‘

Definition: Let C* denote a modified quadratic code defined
as a union of equivalent classes of V,, over GF(p®), m>1,
partitioned by (u,v) =g, 0 € GF(p*). For a given ¢* €V, over
GF(p),

(u,v) eC*iff {u,v)€Z, (25)
where == {o: o= (r,0%), v€V,_, over GF(p)}, |Z|=p"",
and u,v €V, over GF(p*).

n

In other words,

if G, = {(u,v): (u,v) =0}, then C*= |J C,.

L E=D>

(26)

Theorem 4: Consider modified quadratic codes C* with code-
words length n=2m of symbols from GF(gq), ¢=p’, m>1,
defined by (25), (26). We have for o* # 0, |C*|= p?"s~" — pms—7,
and for o* = 0, |C*| = p>™ =7 — p"S~" 4 p"S Moreover, the con-
ditional error-masking probability Q*(z, r) £ B*(¢, 7)|C*| ™"
(where B*(¢,7) denotes the autocorrelation function for the
characteristic function of C¥), is asymptotically equal to p~" for
any (¢,7)# 0 as n — oo.

The following lemma will be used in the proof of Theorem 4.

Lemma 3: Let C* be a code defined for a given ¢* €V, over
GF(p) by (u,v)eC* iff (u,v)€Z, where u,v€V, over
GF(p*), provided that m>1, 2= {0¢: 0 =(v,0*), v€V,_,, o*
eV, over GF(p)}. Then for a given o*+# 0, the conditional
error-masking probability Q*(¢, 7), (¢, 7) # 0, for C* is bounded
by
2ms~2r+ps7rp¢'rm‘7r

ms—r

2ms~2r NS — 1
p -—pP P
*
Dy ms - SQ (t77) = 2ms—r _
p - p p

. (27)

Proof: 1) By definition Q*(z,7) = B¥(z, 7)/B*(0,0). B*(z,7)
= |{(u,v): (u,v),(u+t,v+ 1) €C*}|is the number of solutions
of the following system of two quadratic equations over GF(g),
g=p

{u,v)y=1i
{u+t),(v+r))=j,i,j€3; (28)

that is, B*(¢,7) is the number of (u,v) € C* such that there
exists j € Z satisfying ((u+1),(v+ 7)) = j.

2) B¥0,0)= (g™ —1)q" p* "= p*T"— p™ =" since for
any u # 0 there exists ¢”'~'p"~" values of v satisfying (u,v) € T,
== p .

3) Rewrite (28) in the form given in Lemma 1 (v=1x, u=a,
utit=>b, c={u+i1)1)):

{u,v)y=1i -
(urt),0)=j={(ut1),7), (29)
There are ¢ fixations of u satisfying the condition u + ¢ = yu, for
some vy € GF(g). The system becomes inconsistent iff

{(u+t),7)# j—iy, or one linear equation iff ((u+1¢),7)=
j—iy. From u+t=vyu, {(u+1),7)= j—iy we have

i,jel.

iy~ (i+j-=T)y+j=0, vy#1, T={t,7). (30)
The lower bound on Q*(z, 1) is obtained by assuming that, for
some T there is no solution y satisfying (30) for any i, j € 3.
Hence B*(t1,7) = (¢” — q)g" %2> The upper bound on
Q*(1,7) is obtained by assuming that, for some 7 there are two
solutions v, satisfying (30) for any i, j €. Hence B*(t,7) <
(qm _ q)qm ZIEIZ +2qn171[2'2. QED
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We note, that as in the case of nonmodified codes C, for
modified codes C* conditional error-masking probabilities
Q*(¢t, 1) depend only on T'= (¢,7).

Proof of Theorem 4: For the case o* # 0, we have Q*(¢,7) ~
p~ " which is readily seen from Lemma 3. For the case ¢* =0, we
have 0 €2 and IC*' — (p.\'fr _ 1)(q2mfl _ qnz—l)+(q2m~l _
g” "'+ ¢™), since C* is a union of p*~"—1 nonmodified codes
with ¢ # 0 and one nonmodified code with o = 0. To show that
Q*(t,7) ~ p " for ¢* =0, we observe that the main term p*”~2"
still appears in the expression for B*(z,7). Indeed, out of ¢™

possible fixations of u only ¢ fixations make the system {(u, v) =i
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Encoding: Let the message be denoted by M =
(M, My, My, My, M,, Ms, M,), M. € GF(2*%). If M, # 0, the re-
dundant symbol p can be obtained by letting M, =u,, i =0,1,2,3,
M =uv,_,, i=4,56,and v, =p= 1+ wv, + v, + us0;)uy L. If
M,=0, M #0,welet My=v,, M;=v,, My=v;,and V, =p =
A+ w0y + ugv)uy L IE My=M, =0, M, #0, then v, =p=(1+
uyvy)us b Last, if My=M,=M,=0, M, +#0, then V;=p=uz".
Several examples of messages and the corresponding codewords
are given in Table III. The redundant symbols in the codewords
shown in Table III are in boldface. (In this example GF(2*) is
constructed by x* + x + 1 over GF(2)).

TABLE III
ExAMPLES DESCRIBING ENCODING PROCEDURE
Messages Codewords
M, M, M, M, M, M; M, Ug Uy U U3 Yo Uy Uy U3
« 1 of? o« o 0 o o 1 al? o ol? o 0 o
o 0 o® o2 o & o© o 0 0 o2 o & o0 0
3

0 « 'S 0 ot o a® 0 « o? 0 at o o o
0 0 ot ot o? o3 o 0 0 ol ot o o3 0 @
0 0 0 o « o 1 0 0 0 o « o 1 o

and {(u+1),(v+ 1)) =/ linearly dependent. (These u are solu-
tions of u=y(u+t) for any given y). Hence, B*(¢,7) contains
the term (qm _ q)quZ'E'Z — p2ms~2r _ pm(s+1)72r' QED

It can be easily shown that for p=2 and r =1, f(u,v)=1 iff
{u,v) = 0, 6 € X, the characteristic function of the code, f(u,v),
is a bent function.

Theorem 5: For m=1 and ¢* # 0 we have for modified codes
Q*( t, T') < 2p2.\-—2r|c*|71’ |C*| — pls»r _ Pxfr. (31)

Proof: Since C* is a union of C,={uv: w=g9} for all
g€l for m=1 and o*+#0 we have |C*=(¢—-1)p*’, |Z|=
p'~/. From uv=i and (u+ t)(v+71)=j, i, j€E€T,
0¢ =, we have, Tu’ +(tr+i— j)u+1ti=0. The upper bound
(31) is obtained by assuming the existence of two solutions,

u+0, forany i/, j&3. Q.E.D.

Modified quadratic codes C* were shown in Theorem 4 (for
the case m >1) to be asymptotically optimal; that is, characteris-
tic functions of modified codes are asymptotically bent. Code-
words of C* are blocks of n = 2ms p-ary symbols (g = p’) where
the number of redundant p-ary symbols r <s. The number of
codewords in C* can be readily obtained from the number of
codewords in the nonmodified codes C, that is, [C*|=|C|p° ",
since C* is a union of disjoint C, = {{u,v) =0}, 6 €3, where
S={0:0=(v.0%, r<s,v€V,_,, a*€¥,, over GF(p)}, |1Z|=
p’~". For the case m=1 and o*#0 as n—oo0, n=2s p-ary
symbols and from (31) we have Q*(¢,7) 32p~", r <s. More-
over, for p=2, m=1 and r =1 the characteristic function of C*
is bent.

V. ENCODING AND DECODING PROCEDURES FOR
QuaDRATIC CODES

In presenting encoding and decoding procedures for quadratic
codes, without loss of generality, we consider only the case of
nonmodified and modified codes over GF(2*) and describe the
encoding and decoding procedures by means of the following
example.

Example 2: Let C= {(u,v): {(u,v)=1}, u,veEV, over
GF@2*%), 1€ GF@2*), (u,v) = (u;, s, Uy, 4y, Uy,
Uyy Uy, Uy, 0y) € C 1 w0y + uy0; + wyv) + ug, =1, where addition
and multiplication are defined in GF(2%).

Next, we consider an example of an encoding procedure for
modified codes. Let »=2; then a message consists of seven
GF(2%) symbols and the new additional two bits (s — r = 2) are
denoted by »,, v, € GF(2). Consider, the modified code defined
by C*= {(u,v): {u,v) = (y,7,,0,1)}, 6*=(0,1). The encoding
procedure is the same as for the nonmodified code described
earlier except the redundant symbol p is computed based on
(u,v) = (%,,7,,0,1). For example, let M = (a,a'4,0,0’,a’,0a?,1)
and »,=1, », =1, (v,,», € GF(2)). Since My=u,=a+0, we
have o, =p=[a?+(@® +0+’)]a =o', oP¥=(1,1,0,1)=
(v, 06%), and the encoded message is (u, v) = (a, '4,0,
o, o0, o, az,l).

Decoding: First the decoder checks whether the received
codeword (@, §) satisfies (i1, ) = o for the nonmodified codes, or
(i, 5y € Z for modified codes. If errors are detected ((&,7) # ¢
or (i, )y ¢&?%), the decoder requests the retransmission of the
message. If no errors are detected, the decoder identifies the
redundant symbol using the following rule: if i is the smallest
integer such that u; # 0, the redundant symbol is v,. For our
example of the modified code given above, let (@i, 7) = (a, a!*,0,
o®, !’ o°,a 1), the decoder checks that (i, §) =o'+ a® +0+
& =a?=(1,1,0,1), ¢*=(0,1), and errors are not detected.
Moreover, the message is (a,a'%,0,0°,0°,a%,1) and (v, v,) =
1,1, 5, v, € GFQ).

VL

Quadratic codes are asymptotically optimal (as n — co) with
respect to the lower bound on the maxima of the conditional
error-masking probability. In other words, these codes provide
for an equal protection against all error patterns (characteristic
functions of these codes are asymptotically bent), and total
error-masking probabilities are independent of the distribution of
errors in the channel. We presented quadratic codes for a wide
range of numbers of codewords and values of error-masking
probabilities. A table of error-masking probabilities attained by
quadratic codes for block size n=4,:--,16 can be found in the
Appendix.

CONCLUSION
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APPENDIX
TABLE OF QUADRATIC CODES

Table IV is the table of quadratic codes, both nonmodified (NM) and
modified (M), with minimal max,,,Q(e), for p=2, and block sizes
n=4,6,8, 12, 14, and 16 bits and the lower bound on max, ., Q(e) for
given n and |C} constructed by Theorem 1. The table also includes 1)
complemented codes C having characteristic functions fz(x) =1-— f-(x)
where f-(x) is the characteristic function of a quadratic code C
(the conditional error-masking probability for C is given by Qz(e) =

1—(|Cl— B(e))q" -

|Ch ™' note that C is optimal iff C is optimal); 2)

the nonmodified codes with the codeword of all zeros added.

TABLE IV

QUADRATIC CODES

Maximum Probability

of Masking
Lower  Upper
IC| m s Bound Bound Remarks
n=4 6 2 1 03333 03333 bent ¢ # 0, optimal
5 2 1 04000  0.4000 C, optimal
7 2 1 02857 05714 ¢
9 1 2 06666 0.6666 C, optimal
10 2 1 0.6000  0.6000 bent o =0, optimal
11 2 1 071272 07272 ¢, optimal
13 1 2 09231 09231 C, optimal
n=6 8 1 3 02500  0.2500 ¢, optimal
27 3 1 04444 04444 C, optimal
28 3 1 04286  0.4286 bent o # 0, optimal
20 3 1 05000  0.5000 ¢, optimal
36 3 1 05555 0.5555 bent ¢ = 0, optimal
35 3 1 05714 05714 C, optimal
37 3 1 05946 05946 ¢, optimal
42 1 3 06666 07143 C
49 1 3 07755  0.8571 c
50 1 3 08000  0.8400 Cc
56 1 3 08928  0.8928 C, optimal
57 1 3 09123 09123 C, optimal
n=8 15 1 4 01333 01333 NM ¢ # 0, optimal
30 1 4 01333 0.2666 Mo#0
46 1 4 02174 03913 Mao=0
60 2 2 02333 03333 NMa#0
76 1 4 03158 03634 Mo=0
120 4 1 0.4667  0.4667 bent ¢ # 0, optimal
136 4 1 05294 0529 bent o =0, optimal
180 1 4 07111  0.7333 C
196 2 2 07653  0.7939 C
200 1 4 08286  0.8666 C
226 1 4 08850  0.9026 C
241 1 4 09460  0.9460 C, optimal
n=10 32 1 5 00625 00625 ¢, optimal
62 1 5 00645  0.1290 Ma#0
124 1 5 00645  0.2258 Mo#0
156 1 5 01538  0.2820 Ma=0
248 1 5 02419  0.2903 Mo#0
280 1 5 0278  0.3143 Mo=0
496 1 5 04839  0.4839 bent o # 0, optimal
528 1 5 05151 05151 bent ¢ =0, optimal
744 1 5 07285  0.7419 C
775 1 5 07587  0.7716 C
776 1 5 07577 0.7732 C
868 1 5 08479 08710 C
900 1 5 08800 0.8933 C
962 1 5 09397  0.9439 c
992 1 5 09698  0.9698 C, optimal
993 1 5 09707  0.9707 C, optimal
n=12 63 1 6 00317 00317 NM ¢ # 0, optimal
126 1 6 00317  0.0635 Mo+#0
252 1 6 00635  0.0952 Mao#0
505 2 3 01228  0.1426 ;
568 2 3 01408  0.2113 NMao=0
1008 2 3 02460  0.2698 Mo#0
1072 2 3 02631  0.2836 Mo=0
2006 3 1 04921  0.4921 bent ¢ # 0, optimal
2080 3 1 0.5077 0.5077 bent o = 0, optimal

TABLE 1V
CONTINUED
Maximum Probability
of Masking
Lower Upper
{C{ m s Bound Bound Remarks
3024 2 3 07388  0.7460 c
3088 2 3 07539 0.7617 C
3528 2 3 08617  0.8730 C
3591 2 3 08772  0.879%4 C
3844 1 6 0.9386  0.9407 C
3970 1 6 0.9693  0.9703 C
4033 1 6 09849  0.9849 C, optimal
n=14128 1 7 0015  0.0156 ¢, optimal
254 1 7 00157  0.0315 Mo#0
58 1 7 00315  0.0551 Mao#0
1016 1 7 00623  0.0756 Mo+0
2032 1 7 01240 01496 Mo#0
2060 1 7 01324 0.1704 Mao=0
4064 1 7 02480  0.2598 Mo#0
4192 1 7 02562 02672 Mo=0
8128 1 7 0.4961 0.4961 bent ¢ # 0, optimal
8256 1 7 0.5039 0.5039 bent ¢ =0, optimal
121921 7 0.7443  0.7480 C
123201 7 0.7520 0.7558 c
142241 7 0.8683  0.8740 C
143521 7 0.8760  0.8800 C
153681 7 0.9381  0.9391 C
15876 1 7 0.9690  0.9698 C
161301 7 0.9845  0.9847 C
162561 7 09922 0.9922 C, optimal
163571 7 09923  0.9923 C, optimal
n=16 2551 & 0.0078  0.0078 NM ¢ # 0, optimal
5101 8 0.0078  0.0157 Mo=#0
10201 8 00157 0.0274 Mo+#0
20401 8 0.0314  0.0431 Mo#0
40802 4 00622  0.0667 NMo+0
43362 4 00664 01144 NMo=0
81602 4 01245 01333 Mo#0
84162 4 01286  0.1483 Mao=0
163204 2 02490  0.2549 NMo#0
16576 4 2 02530  0.2587 NMo=0
326408 1 0.4980  0.4980 bent ¢ # 0, optimal
32896 8 1 05019  0.5019 bent ¢ =90, optimal
489604 2 0.7471  0.7490 C
492164 2 07510  0.7529 C
571202 4 08716  0.8751 C
573762 4 0.8755  0.8767 C
612002 4 09338  0.9372 C
614562 4 09377  0.9380 C
634961 8 09686  0.9693 C
645161 8 09844  0.9846 c
650261 & 0.9922  0.9923 c
652811 8 0991  0.9961 C, optimal

For 0 ¢ C denote ¢ = C U0. Let Ba(e) and B (e) be the autocorrela-
tion functions for the characteristic functions f» and f~ of C and C,
respectively. Since fo(x) = f-(x)+ 8, where §, =1 if x=0 and 8, =0,
otherwise, we have

B(-(é’)=Z_f<‘~(~*‘)f6(x+e)=Bc(€)+2fc(é’)- (32)

Moreover, e=(1,7) € C iff (t,7)=0. If 5 is odd, then for (1,7) €C,
tr (o{t,7) 1) =tr (1) =1 and by (17), max, , , Bz(e) = max, .., B-(e).
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The Construction of Some Bit and Byte Error Control
Codes Using Partial Steiner Systems

W. EDWIN CLARK, LARRY A. DUNNING, MEMBER, IEEE,
aND D. G. ROGERS

Abstract —A design theoretic approach to binary linear codes that are
single-error-correcting (SEC) and double-error-detecting (DED) with the
capability of detecting any error within a single byte (BED) of even width
w is developed. A construction of SEC-BED-DED codes from ordinary
binary linear codes utilizing partial Steiner systems is given. The construc-
tion produces some codes with higher rates than known previously. The
codes constructed may inherit special properties from the Steiner systems
they are derived from. In particular, some rotational odd-weight-column

codes are obtained.

1. INTRODUCTION

We consider binary linear codes of length n and redundancy r
in which the codewords are partitioned into m consecutive bytes
of width w. Such a code is single-error-correcting (SEC) if any
single bit error can be corrected, double-error-detecting (DED) if
any error pattern of up to two bit errors can be detected, and
byte-error-detecting (BED) if any pattern of bit errors confined to
a single byte can be detected. Several authors [1], [2], [4], [5], [9],
[10], [13] have constructed SEC-BED-DED codes, i.e., codes
that are simultaneously SEC, BED, and DED.

Codes providing a combination of byte and random error
protection can be used for error correction, error detection or a
combination of the two. As with codes for ordinary random
errors, this trade-off exists even when the code to be used is
fixed. For example, a SEC-BED-DED code could also be used
to detect error patterns consisting of three random etrors and
error patterns consisting of a single byte error together with a
single random error. The minimum distance profile as defined in
[12], {14] measures the error protection capability of a code
providing a combination of byte and random error protection
independently of whether the code is used for correction or
detection. The minimum distance profile can be regarded as the
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analog of minimum distance for codes providing byte and ran-
dom error protection. We shall not need to employ the minimum
distance profile in this work. The definition of minimum distance
profile of a code and the details of its relation to combinations of
levels of error correction and error detection available when using
that code can be found in van Gils and Boly [14]. For those who
may wish to consult this reference, we note that the minimum
distance profile of a SEC-BED code is (3,2) and that the
minimum distance profile of a SEC-BED-DED code is (4,2).

In this correspondence we adopt a design-theoretic approach
to SEC-BED-DED codes with even byte width w by focusing
on the syndromes of error patterns of weight w —1 confined to a
single byte and showing that, through a matrix of these syn-
dromes, we can obtain a partial Steiner system (Theorem 1). In
the opposite direction, we show that, starting from a matrix of
potential syndromes and a partial Steiner system with appropri-
ate properties, we may consiruct a SEC-BED-DED code (Theo-
rem 2). From these results we obtain the codes with the improved
rates shown in Table I.

TABLE I

CoMPARISON OF SEC-BED-DED CoDES
W - v m m*
4 7 8 14 12
4 12 24 4988 496
6 11 12 1327 75
8 15 16 >1164 567
10 14 14 91 84
10 15 15 >222 180
10 16 16 > 592 372
10 17 17 >1320 756
10 18 18 > 2760 1524
10 19 20 >10536 3060
12 16 16 140 98
12 17 17 > 424 210
12 18 18 >1260 434
12 19 19 > 3024 882
12 20 20 > 7112 1778
12 21 2 >15143 3570
12 2 22 > 32442 7154
12 23 24 >124052 4322
=18 w+3 w+3 A(v,4,w)(8) m*<m
>12 2w—1l>r=v2>w+4 A(z),4,w)(8) m*<m
>8 2w —1 2w A(v,4, w)® 2m* < m
6 >11 241329 1.65m* < m

>8 > 2w -1 2942w, 4, w)© 2m* < m

w  Byte width (always even).

r Redundancy.

v Number of byte syndromes of weight w —1.
m  Code length in bytes = A(v,4, w) except (¢).
m* Longest previously known length in bytes.
a  r—2w+1, check bits added by Theorem 4.

Properties of the ingredients in our construction are reflected
in the codes constructed. Consequently, we are able to comment
further on the optimality, uniqueness and rotational presentation
of some of these codes. In Table I the entries («) and (y) come
from full Steiner systems and trivial codes, whereas entry (8) is
derived from the extended (24,12, 8) binary Golay code. We show
that the code indicated by («) is unique as well as length optimal.
With the aid of an automorphism of the (3,4, 8)-Steiner system
used in its construction, we show that the code (a) has a parity
check matrix in the rotational form

H=(H, H, RH,  RH, R’H, RH,---R°H, R°H,)

(D
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