
on the weights of various walks that avoid 0 in the state diagram. 
This is closely tied to the minimum weight to length ratio of 
cycles in the diagram, which is not obviously directly dependent 
on m. This observation should also be true about T,,,~” in 
Hemmati  and Costello [3], though 7min is of the order of four to 
six times m  for the examples they consider. The fact that low 
weight cycles in the state diagram cause the requirement that the 
guard space be large is consistent with the fact that codes which 
are catastrophic have state diagrams which contain a nontrivial 
zero weight cycle. 

Finally, we would like to observe that there are good reasons to 
view an error pattern as beginning as usual when the first 
incorrectly transmitted digit is received, but not ending until the 
decoder has returned to an e-ready state. 

[l] D. R. Morgan. “Adrrptirae Slgrzul Processing. by B. Widrow and S. D. 
Stearns,” IEEl: Trms. Acoust. Speech Sgnul Processing, vol. ASSP-34, 
pp. 1017-1018, Aug. 19X6. 
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Ahstrcrcf -Nonlinear quadratic codes are presented that are optimal for 
the minimax error detection. Characteristic functions for these codes are 
asymptotically bent. For a given block size n and the number of codewords 
ICI, these codes minimize max, so Q(e) where Q(e) is the conditional 
error-masking probability given the error pattern e. The codewords are 
blocks of II symbols from GF(9). We have the following parameters 
associated with the quadratic codes: n = 2~1, ICI = q2”-’ - q”‘-‘, 
max,,,Q(e) = (9”“-‘+ 9’“-1)ICI--1 and min,,oQ(e) = (92”1-2 - 
9 n’ ’ ) IC 1~ ’ Encoding and decoding procedures for these codes are de- 
scribed. 

We present a construction for optimal error-detecting codes for 
the case where distributions of errors in the channel are not 
known or are difficult to model. A minimax criterion such that 
an error-detection capability for a code is optimized under the 
worst case scenario is the strategy taken for designing the codes. 
We will use the following probability as the measure for the 
error-detection capability of a code. Comments on “Convergence and Performance 

Analysis of the Normalized LMS Algorithm 
with Uncorrelated Gaussian Data” 

DENNIS R. MORGAN, MEMBER,  IEEE 

Ahsfrucf -Comments are expressed on the presentation of results in the 
paper by Tarrab and Feuer. 

In the above paper’ a fine analysis is presented for the conver- 
gence and misadjustment of the NLMS algorithm. Unfortu- 
nately, the results and comparisons with the LMS algorithm are 
not in a form that readily enables the reader to draw practical 
conclusions. Plotting mean square error on a linear, instead of 

For a given number of codewords JCI and a block size n our goal 
is to construct a code such that maxima of Q(e) over all e f 0 
are minimal. The problem can be formulated as follows. For 
a given code rate R = n-’ log, ICI (codewords are blocks of 
q-ary symbols of length n), construct a code based on 

Manuscript rcccived November 28, 198X; revised February 24. 1989. 
The author is with AT&T Bell Laboratories, Whippany. NJ 07981. 
IEEE Log Number X931669. 
‘M. Tarrab and A. Feuer, Il<llb Truns. Ir~fom. Theo<v, vol. IT-34, pp. 

6X0-691, July IYXX 

logarithmic (dB), scale hides the important detail of the error as 
it converges to its minimum value, which is exactly the region 
where the practical engineer requires detailed knowledge to assess 
performance. Moreover, in the comparison of the NLMS and 
LMS algorithm convergence rate and misadjustment, the practi- 
tioner wants to know how fast the algorithm will converge when 
the misadjustment is constrained to a specified value. It has been 
pointed out [l] that comparison of convergence rates is meaningless 
without specifying the level of misadjustment! Thus Figs. 5-8 are 
like comparing apples and oranges; one would have liked to 
know how the convergence compares with the same misaa’just- 
ment. This simple but crucial point is far too often ignored. 

REFERENCES 

Let x denote a codeword and 2 denote a received message. We 
define the conditional error-masking probability given error e 
(e # 0) for the code C as follows: 

Q(e) = I{(x,K): I=x+e,x,lEC}( 

ICI 
(1) 
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mlnc E V~ ma, + o Q(e), where I/’ denotes the set of all codes 
with the rate R. 

We note that a similar minimax criterion has been used in the 
design of match filters to combat jamming and other modeling 
uncertainties for communication channels [l]. This criterion can 
also be used for error detection in computation channels (VLSI 
chips), where the distribution of errors (errors are manifestations 
of physical failures at the outputs of the chip) is difficult to 
characterize [2], [3]. Hence the presented error-detecting codes 
are applicable for a design of fault-tolerant devices [4]. In the 
area of computer hardware testing, optimal compression of test 
responses based on the minimax approach were developed in [3]. 

The advantage of the proposed codes is related to the fact that 
for these codes, lim,, _ oc Q(e) = constant for all e # 0. Thus these 
codes are useful for channels with unknown error distributions, 
since the total error-masking probability Q, = C, + ,Q( e)P( e), is 
asymptotically independent of a distribution of errors P(e) as 
the block size n -+ cc. 

II. LOWERBOUNDONMAXIMAOFCONDITIONAL 
ERROR-MASKINGPROBABILITIES 

Theorem 1: Consider a code C defined in an n-dimensional 
space y? over GF( 4) where q = p” and p is a prime. The maxima 
of conditional error-masking probabilities (1) are lower-bounded 
by 

y+y Q(e) 2 

I 
Proof: Let 

B(e) =1(x: x,x+eEC}j=Cf(x)f(x+e), 

f(x) =liff xEC,f(x) E {O,l}. (3) 

(Note that B(e) is known as the autocorrelation function for the 
characteristic function f(x) of the code C. These functions have 
been widely used in digital design 151, testing [3], and digital 
filtering [6].) Further, 

C B(e) = ICKICI-1). (4) 
e#O 

Since, for p = 2, B(e) is an even integer for any e # 0, we have 

(5) 

where [i] is the smallest integer greater than or equal to i. Since 
Q(e) = B(e)]C]-‘, (2) follows immediately from (5) for p = 2. 
For p odd we have 

~~~~e)~[‘:/(U!~!I:‘],forp>l, QED. (6) 

Note that, from (5) with max,, 0 B(e) = 2, p = 2, we have 

]C](]C]-1) 12(2”-1). (7) 
We will construct below optimal codes satisfying (7) with 
max,,,,Q(e)=2]C]-’ and (C(=2”/‘-1. 

A separate issue of maximizing ]C] for a given max, + ,, Q(e) is 
not considered in this correspondence. However, we point out 
that, if all values of B(e), e # 0, are maxima (the characteristic 
function of the code is bent [7]), then, by (4), JC] is maximized. In 
other words, an equal protection against all errors e (Q(e) is 
constant, satisfying the equality in (2)) implies an efficient pack- 
ing of information (]C] is maximized). 

III. QUADRATIC CODES 

For a code C constructed by binary bent functions [5], [7]-[12], 
and defined as (u, v) E C if and only if (u, v) = 0, u, v E V,, over 
GF(2), u E GF(2), and (u, v) is the inner product over GF(2), 
the autocorrelation B,, (t, r) for the characteristic function 
f,(u, v) = 1 iff (u, 0) = u, where B,(t, T) = ]{(u, u): (u, u), 
(u + t, v + r) E C } I, e = (t, T), t, T E V,, over GF(2), is given by 

B”( 197) = 
i 

p”‘-1+(4p”‘-1, (f,T) co 

2 *,,1-*+(-1)02m~1, (f,T) #O. 
(8) 

Unfortunately, these optimal codes based on bent functions 
and satisfying (2) for p = 2 have the property that their condi- 
tional error-masking probabilities Q(f, T) = B,(t, T) ]C]-‘, ]C] = 
B,, (0, 0), are asymptotically equal to 0.5 for all errors e = (t, T) # 0 
as n=2ms-+m. 

We develop codes based on asymptotically bent binary func- 
tions. For these codes we can obtain Q(t, T) - p-“, as n + cc 
(p is prime) for any p and s. 

Definition: Let u, v E y?;,, over GF(q), q = p”; that is, 

u=(u(j,...,u,,,-1), ~=(~o,~~~,u,-~>, 

where u,, v, E GF( q). For a given u E GF( q) the quadratic code 
C over GF( q) with block size n = 2m (q-ary symbols) is defined 
by 

(u,u) ECiff (u,v)=u (9) 
where (u, v) = uouo + . . . + u,,,_,v,,- i, is the inner product in 
Wq). 

Codewords are all pairs (u, v) of vectors in V,, over GF(q) 
such that their inner product equal to a given (scalar) constant u 
in GF(q). 

Exumple 1: The quadratic code with the block size n = 4 and 
symbols from GF(2’), with the syndrome u =l, is presented in 
Table I, where the following parameters apply: 

l number of message symbols k = 3, 
l block size n = 4 symbols from GF(2’), ]C] = 60, 
l (U”, u,> uo3 0,) E c @ ((uo, 4),(% Ul)) =L 

l tug, ~l),t~o,~l) E Vz over GW2), 

l u,, u,, 1 E GF(2’), (see Table II). 

TABLE I 
EXAMPLEOFAQUADRATICCODE 

4) 
Messages 

4 M, 
Codewords 
4 “0 01 

0 1 0 0 1 0 1 
0 1 1 0 1 1 1 
0 1 a 0 1 a 1 
0 I a2 0 1 a2 1 
0 a 0 0 a 0 c&2 

1 b 0 1 0 i 0 
1 0 1 1 0 1 1 
1 0 a 1 0 1 a 
1 0 a* 1 0 1 a2 
1 1 0 1 0 1 1 

TABLE II 
ELEMENTSOF GF(22) 

I  

-0 0 0 
1 0 1 
a 1 0 
a2 1 1 
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For a  codeword ( ug, u,, vg, v,), u, v, E GF(2*), v, is the redun- 
dant  symbol if for the message (Ma, M,, M2), M, #  0, and  v, is 
the redundant  symbol if M, =  0, M,, #  0. (In Table I, the redun- 
dant  symbols are in boldface). (Note that (M,, M,) =  (ua, ul) #  0, 
since (u, v) EC iff (u, v) =  u  =l.) 

As one  can see from Example 1, quadrat ic codes are nonl inear 
and  nonsystematic. For these codes,  posit ions of redundant  sym- 
bols depend  on  messages,  but the number  of redundant  symbols 
is the same for any  codeword.  Procedures for encoding and  
decoding for quadrat ic codes will be  presented in Section V. 

The following theorems will show that quadrat ic codes are 
asymptotically optimal with respect to the lower bound  (2) on  
maxima of Q(e), as  the block size n  + cc, for a  wide range 
of ]C]. 

Theorem 2: Let (u, v) E C iff (u, v) =  u, u, v E V,, over GF( q), 
m  > 1, u  E GF( q), q  =, p’. Then,  C has the block size 2m q-ary 
(2ms p-ary) symbols. 

1) For u  #  0, ]C] =  q”‘‘-’ - q’l’pl, and  we have for the proba- 
bility of masking 

Q( t, T) = ( q2”‘-* f q”‘-l 

=(q”z-l+q(q “‘1:’ nr 1  1  

forany(l,7;tO, (10) 

where t, T E y!,, over GF( q). Moreover,  for p  =  2  we have 

Q(~>T> =(q”’ ‘+~(uJ))(q”‘-I)-‘, 

forany(t,7) #O (11) 

where t,~ E Kg:,, over GF(2’), T= (t,~) and  ~(u, T) =l iff 
tr(uT-‘) =  0, Tf 0, and  ~(u, T) =  -1 otherwise. (tr(P) denotes 
the trace of /3 E GF(2‘) [7]). 

‘4 For u = 0, ICI = q2”‘- 1 - qtT1-l + q”‘, 

Q(~,T) =(q’“‘~“+q”‘~‘+6,(q-2)q”‘~‘) ICI-‘, 

forany(t,r) +O (12) 

where 8, =  1  if T  =  0  and  6, =  0  otherwise. 

Our  proof of Theorem 2  requires the following lemmas. 
Lemmu 1: Let 0  be  the number  of solutions for the following 

system of two linear equat ions over GF(q) 

(a,x)=i 

(h,x)=j-c (13) 
where a, h, and  x belong to V,, over GF(q), (m > l), and  
i, j, c  E GF( q). 

Then,  for y E GF(q) (y is a  scalar constant), 

i 

,,I- 2  
(I 9  h#yU; 

e  =  4’ ’ 1  h=ya,c=j-yi,u#O; (14) 
0, h=ya,c# j-yiora=O. 

Proof: The  system (13) of two linear equat ions over GF(q) 
has  m variables x =  (x,, , . . . , x,,, ,), x, E GF( q), and  the number  
of solutions 0  is given by (14) for the cases of the system being 
two linearly independent  equat ions, or one  linear equation, or an  
inconsistent system, according to the coefficients a, h, and  
constant c. Q.E.D. 

Lemmu 2  (Autocorrelation Funct ions for the Characteristic Func-  
t ions of Quadrat ic Codes for m  > 1): Let B,(t, T) = ]{(u, v): 
(u, v),(u +  t, u  + T) EC}] where (u, v) E C iff (u, u) =  u, 
u, v, t, T E V;,, over GF( q), m  > 1, and  u  E GF(q), q  =  p”. Then 
B, (t, T) is the number  of solutions (u, v) of the following system 

of two quadrat ic equat ions over GF(q), 

(u,v) =  u  

1) For u  #  0, 

((U+t),(V+T))=U. (15) 

-4 
m  I 

) t=Q-=o 
q’“‘m2 * q”-l, otherwise. (16) 

Moreover,  for p  =  2  

-’ 

nr- I 

’ 
t=r=o 

+p(u,T)q”‘-l, otherwise, (17) 

where 

T= (t,T> 
tr(uT-‘) =O, T#O 

(18) 

andtr(a)=l+a+a’+...+a2’-1,tr(a)EGF(2). 
2) For u  =  0, 

l 

,,,r-, 
B,(~,T) = ‘- -’ 

‘)I - l + q”’ 9 t=T=o 

4 2n’ * + q”‘~ l +S,.(q-2)q”‘-‘, otherwise. 

(19) 
where 6, E {O,l}, 6, =l iff T=O. 

Proof: 1) For t = T = 0  the system of two quadrat ic equa-  
t ions (15) can be  reduced to (u, v) =  u. In this case for u  f 0  and  
any given u  #  0, there exist q”‘-l values of v satisfying (u, v) =  u  
and  B(O,O) = (q”‘-l)q”‘-‘. 

For (f,~) f (0,O) rewrite (15) in the form (13) given in Lem- 
ma 1, 

(u,v)=u 

((U+t),V)=U-((U+t),T). (20) 

From Lemma 1  for x =  v,a =  u, b  =  u  + t, and  c =  ((u +  t), T), 
i =  j =  u, we have the following cases. 

a) The system (20) consists of two linearly independent  
equat ions for any  given u  #  0  such that u  +  t #  yu for any  
Y E GFtq). 

b) The system (20) is reduced to one  linear equat ion for any  
u  f 0  and  there exists y E GF(q) such that 

u+t=yu ((u+t),T)=u(l-y). (21) 

From (21) we have u(y-l)‘+(t,T)(y-l)S(t,T)=O, yfl, 
and  for p  =  2, y exists iff tr (u(t, T)-*) = 0, (t, T) #  0  [7]. 

c) If u  +  t = yu, ((u +  t), T) f u(l- y) or u  =  0, then (20) 
becomes an  inconsistent system. 

The above implies that there are q”’ - q  fixations of u  such 
that (20) consists of two linearly independent  equat ions. If u  #  0  
satisfies (21) (for p  =  2, tr ((t, r) ‘) =  0, (t, T) #  0), then there 
are two fixations of u  such that (20) is reduced to one  linear 
equation. 

2) Following the proof for the case of u  #  0, for u  =  0  and  
t = T = 0, u  =  0  implies another q”’ values of v satisfying (20). 
For (t,~)#0, (u,v)=O, (u+t,v+~)=O, can be  reduced to 
one  linear equat ion if a) u  =  0  or b) u  =  - t or c) u  =  yt (y #  
0, - 1) and  (t, T) = T = 0  since (20) becomes (u, u) =  0  and  
(t,v)=-(y-l)T. Hence B0(t,~)=(qn’-q)qn1~‘+2qn’~‘+ 
S,(q -2)q”’ ‘. Q.E.D. 

Proof of Theorem 2: Since Q(t, T) = B,(t, r)]C(-’ and  ]C] =  
B,(O,O), (10) - (12) now follow from Lemma 2. Q.E.D. 



1302 IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.35,NO.6,NOVEMBER1989 

Theorem 3: For m  = 1 and u + 0, we have (u, u) E C iff uv = u, 
(u, v, u E GF( q), q = p’), and maxima of the conditional error- 
masking probabilities, Q( t, T) are given by 

2 
max Q(t,T) =p 

(r.r)+O q-l (24 

For p = 2, we have in this case optimal codes satisfying the lower 
bound (2) on maxima of Q(t, T). For these codes, 

I 

2’ -1, t=7=0 

B,(t,7) = 2, tr(e(tr))t) =O, tr+O (23) 
0, otherwise 

and for (t, T) f 0, 

2(2’-1)-l, 
Q(ttT> = o 

l, 

tr(lJ(tT)-l) =o, PrfO (24) 

otherwise. 

Proof: From uv=u and (u+t)(v+~)=u we have TU*+ 

tTu + tu = 0, u # 0. Thus there exist at most two fixations of u 
such that an error (t, 7) is masked. Further, for p = 2, (24) 
follows from the solvability condition for TU* + tTu + to = 0, 
u f 0 [7]. Q.E.D. 

For codes constructed by Theorem 3, with m  =l, the maxima 
of autocorrelation are equal to two, that is max,, 0 B,,(e) = 
m=,,,,~,fotx)fmtx + e) = 2, where e = tt, 71, x = tu, u>, f,(x) 

=l iff xEC,(uu=u). 
The problem of constructing maximal codes for a given 

ma, + o B,(e) is very difficult. We will show this for the case 

;?~O 
B,(e) = 2. For a binary code C of length n containing 

co ewords, we construct a linear code V(C) such that nonzero 
codewords of C are columns of the check matrix for V(C). Then 
V(C) has codewords of length ]C]- 1 (we assume 0 E C) and the 
number of check bits for V(C) is equal to n. It is easy to show 
that max, + o B,(e) = 2 for C iff A, = A, = A, = 0, where A, is 
the number of codewords of weight i in V(C). Thus the problem 
of constructing a code C with maximal ]C] and max, + 0 B,,(e) = 2 
is equivalent to constructing a linear code V(C) of the maximal 
length with a given number of check bits and A,.= A, = A, = 0. 
This problem is very difficult. The problem of constructing 
double-error-correcting codes (A, = A, = A, = A, = 0) of maxi- 
mal length for a given number of check bits is still open [7]. 

We have presented quadratic codes with codewords being 
blocks of length n = 2m q-ary symbols and one redundant q-ary 
symbol. Quadratic codes are non-linear and nonsystematic codes 
(positions of redundant q-ary symbols depend on messages, see 
Example 1) with the transmission rate n- ’ log, JCJ- 1 as n + co, 
for m  > 1. From Theorem 2 one can readily see that as n + cc, 
we have for the conditional error-masking probabilities given 
error (t, 7) # 0, Q( t, 7) - q-’ for m  > 1. Hence quadratic codes 
are asymptotically optimal providing an equal protection against 
all error patterns. In other words, characteristic functions of 
quadratic codes are asymptotically bent. 

IV. MODIFIED CODES 

The quadratic codes developed in the previous section have 
limited numbers ]C] of codewords for a given block size n = 2ms 
symbols from GF(p) and the number of redundant symbols 
from GF( p), r = s. In this section we will develop modified 
quadratic codes with r redundant symbols such that Q( t, T) - 
P ‘, as n -+ 00. for any r I S. For the same block size as the 
original codes, modified codes will have more codewords (ad- 
ditional s - r information symbols). However, this results in the 

increase in the conditional error-masking probability to Q( t, r) 
- p-I’, 

Definition: Let C* denote a modified quadratic code defined 
as a union of equivalent classes of I$,, over GF(p”), m  > 1, 
partitioned by (u, v) = u, a E GF( p”). For a given u* E V, over 
GFt P), 

(u,u)EC*iff(u,v)EZ, (25) 

where Z= {u: u=(v,~*), YEI/,,. over GF(p)}, IZI=p”- ‘, 
and u, v E y);,, over GF( p’). 

In other words, 

ifC,={(u,v):(u,u)=u},thenC*= U C,. (26) 
OEZ 

Theorem 4: Consider modified quadratic codes C* with code- 
words length n = 2m of symbols from GF(q), q = p”, m  > 1, 
defined by (25), (26). We have for u* # 0, ]C*] = p*“‘‘-‘- pm’“-“, 
and for u* + 0, ]C*] = p2”“-’ - p”‘“-” + p”‘“. Moreover, the con- 
ditional error-masking probability Q*( t, T) 4 B*(t, T))C*)-’ 

(where B*( t, T) denotes the autocorrelation function for the 
characteristic function of C*), is asymptotically equal to p-’ for 
aIIy(t,T)#oaS n-m. 

The following lemma will be used in the proof of Theorem 4. 
Lemma 3: Let C* be a code defined for a given u* E V, over 

GF(p) by (u,v)~C* iff (u,v)~Z, where u,uE~~, over 
GF(p’), provided that m  > 1, B = {u: u = (v, u*), v E V,-,., u* 
E v., over GF( p)}. Then for a given u* # 0, the conditional 
error-masking probability Q*(t, T), (t, T) # 0, for C* is bounded 
by 

Proofi 1) By definition Q*( t, T) = B*( t, T)/B*(O,O). B*( t, T) 

=]{(u,v): (u,u),(u+t,v+~)EC*}]isthenumberofsolutions 
of the following system of two quadratic equations over GF(q), 
q=p‘ 

(u, u) = i 

((U+t),(V+T))=j,i, jEx; (28) 

that is, B*( t, T) is the number of (u, u) E C* such that there 
exists j E Z satisfying ((u + t),( u + T)) = j. 

2) B*(O,O) = (qJJz - l)q”‘-‘pi-” = p2n’Jm’ - p”‘“-‘, since for 
any u f 0 there exists q”‘- ‘p.’ -’ values of v satisfying (u, v) E 8, 
IZI =p‘ r. 

3) Rewrite (28) in the form given in Lemma 1 (v = x, u = a, 
u + t = h, c = ((u + t), T)): 

(u,v)=i 

((u+t),U)=j-((u+t),T), i, jEZ. (29) 

There are q fixations of IA satisfying the condition u + t = yu, for 
some y E GF(q). The system becomes inconsistent iff 
((U + t), T) f j - iy, Or One hKar eqUatiOn iff ((U + t), T) = 
j - iy. From u + t = yu, ((u + t), T) = j - iy we have 

iy’-(i+,j-T)y+ j=O, y+l, T= (t,T). (30) 

The lower bound on Q*( t, T) is obtained by assuming that, for 
some T there is no solution y satisfying (30) for any i, j E z. 
Hence B*(t, 7) > (q”’ - q)q’71m2\212. The upper bound on 
Q*(t, 7) is obtained by assuming that, for some T there are two 
solutions y, satisfying (30) for any i, j E  z. Hence B*(~,T) I 
(q”’ _ q)qsl ‘(q’ +2q”‘-lIq”. Q.E.D. 
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We note, that as in the case of nonmodified codes C, for Encoding: Let the message be denoted by M = 
modified codes C* conditional error-masking probabilities (MO, MI, M2, M3, M4, M5, A&), M, E GW4). If M, f 0, the re- 
Q*(t, T) depend only on T= (t, T). dundant symbol p can be obtained by letting M, = u,, i = 0, 1,2,3, 

Proof of Theorem 4: For the case u* # 0, we have Q*(t, T) - 
M,=v,~~, i= 4,5,6, and v. = p = (l+ uiv, + u2vZ + z+v~)u;~. If 

ppr which is readily seen from Lemma 3. For the case u* = 0, we 
M,,=O, M,#O,welet M4=v,,, Ms=vr, M,=v,,and F=p= 

have OEB and IC*l=(p’~‘-l)(q2n’~1-qn’-1)+(q2m-1- 
(l+~~v~+~~v~)~, ‘. If M,,=M,=O, M,#O, thenu,=p=(l+ 

4 “I- ’ + q”‘), since C* is a union of p” -’ - 1 nonmodified codes 
u,v,)u;‘.Last,ifM,,=M,=M,=O, M,fO,thenV,=p=u,‘. 

with u # 0 and one nonmodified code with u = 0. To show that 
Several examples of messages and the corresponding codewords 

Q*( t, 7) - p ’ for u* = 0, we observe that the main term p2ms-2’ 
are given in Table III. The redundant symbols in the codewords 

still appears in the expression for B*( t, T). Indeed, out of q”’ 
shown in Table III are in boldface. (In this example GF(24) is 

possible fixations of u only q fixations make the system (u, v) = i 
constructed by x4 + x + 1 over GF(2)). 

TABLE III 
EXAMPLESDESCRIBINGENCODINGPROCEDURF 

Messages Codewords 
41 MI "4 M3 M4 MS M6 uo ~1 ~2 ~3 00 VI 02 ‘13 

a 1 .I2 a5 c-2 0 a' a 1 d2 a5 CU'O a3 0 a' 
a3 0 p aI2 

;: 
do 

;: ,6 o"? 
0 al0 al2 all do 

0 a a2 0 a2 0 
$ ;: ah 

0 0 a’ ’ cd4 a2 aI3 a 0 i al1 0114 ;4 al3 0 a 
0 0 0 2 a a' 1 0 0 0 2 U II' 1 (Y' 

and ((u + t),( v + T)) = j linearly dependent. (These u are solu- 
tions of u = y( u + I) for any given y). Hence, B*(t, T) contains 
the term (q”’ _ q)q,?l-?~X~’ =p2nl,,-2r_pnl(.~+1)~2~, Q.E.D. 

It can be easily shown that for p = 2 and r =l, f(u, v) =1 iff 
(u, v) = u, a E Z, the characteristic function of the code, f (u, v), 
is a bent function. 

Theorem 5: For m =l and u* # 0 we have for modified codes 
Q*(t,T) <2p“-""IC*J-1, IC*)=~~"-'-~"-'. (31) 

Proof: Since C* is a union of C, = { uv: uv = u } for all 
u E Z, for m =l and u* # 0 we have (C*] = (q -1)~“~“, ]Z] = 
P ‘-“. From uv = i and (u + t)(v + T) = j, i, j E 2, 
O@Z, we have, Tu’+(tT+i- j)u+ti=O. The upper bound 
(31) is obtained by assuming the existence of two solutions, 
u # 0, for any i, j E Z. Q.E.D. 

Modified quadratic codes C* were shown in Theorem 4 (for 
the case m > 1) to be asymptotically optimal; that is, characteris- 
tic functions of modified codes are asymptotically bent. Code- 
words of C* are blocks of n = 2ms pay symbols (q = p”) where 
the number of redundant pay symbols r I s. The number of 
codewords in C* can be readily obtained from the number of 
codewords in the nonmodified codes C, that is, ]C*] = IC(p”-“, 
since C* is a union of disjoint C, = {(u, v) = u}, u E Z, where 
Z = {u: u = (v, u*), r I s, v E y-,., u* E y., over GF(p)}, IZI = 
P ‘-I’. For the case m=l and a*#0 as n-+cO, n=2s p-ary 
symbols and from (31) we have Q*(t, T) 5 2p-‘, r I s. More- 
over, for p = 2, m = 1 and r = 1 the characteristic function of C” 
is bent. 

V. ENCODINGANDDECODINGPROCEDURESFOR 
QUADRATICCODES 

In presenting encoding and decoding procedures for quadratic 
codes, without loss of generality, we consider only the case of 
nonmodified and modified codes over GF(2”) and describe the 
encoding and decoding procedures by means of the following 
example. 

Exumple ,7: Let C = {(u, u): (u, v) = l}, u, v 6 V, over 
GFP4), 1 E GFP4), (u, u) = (u,, ~2, ~2, ~1, uo, 

ul, v2, v,, vo) EC iff uJv3 + uZu2 + ulvl + u,v,, =l, where addition 
and multiplication are defined in GF(24). 

Next, we consider an example of an encoding procedure for 
modified codes. Let r = 2; then a message consists of seven 
GF(24) symbols and the new additional two bits (s - r = 2) are 
denoted by vo, v, E GF(2). Consider, the modified code defined 
by C* = {(u, v): (u, v) = (v”, vi,O,l)}, u* = (0,l). The encoding 
procedure is the same as for the nonmodified code described 
earlier except the redundant symbol p is computed based on 
(u, u) = ( vo, v, ,O, 1). For example, let M = (a, a14,0, a5, a9, a*, 1) 
and ~r~=l, v,=l, (v0,v,~GF(2)). Since M,=u,=afO, we 
have v. = p = [(Y’~ +(a”’ +0+ t’)]Ki = (~i”, a13 = (l,l,O,l) = 
tv, u*)* and the encoded message is (u, v) = (a, (y14, 0, 
c2, LP, ay, a*, 1). 

Decoding: First the decoder checks whether the received 
codeword (ii, 5) satisfies (i& 5) = u for the nonmodified codes, or 
(0, i;) E Z for modified codes. If errors are detected ((ii, 5) f u 
or (ii, fi) P Z), the decoder requests the retransmission of the 
message. If no errors are detected, the decoder identifies the 
redundant symbol using the following rule: if i is the smallest 
integer such that u, # 0, the redundant symbol is v,. For our 
example of the modified code given above, let (ii, 5) = (n, (y14, 0, 
&, a”‘, (Y’, (Y’, l), the decoder checks that (ii, u”) = (Y” + (y23 + 0 + 
~8 =a13 = (l,l,O,l), u*=(O,l), and errors are not detected. 
Moreover, the message is (a, c?~,O, &‘, (Ye, a2,1) and (vO, vi) = 
(1, l), vg, VI E GW). 

VI. CONCLUSION 

Quadratic codes are asymptotically optimal (as n + co) with 
respect to the lower bound on the maxima of the conditional 
error-masking probability. In other words, these codes provide 
for an equal protection against all error patterns (characteristic 
functions of these codes are asymptotically bent), and total 
error-masking probabilities are independent of the distribution of 
errors in the channel. We presented quadratic codes for a wide 
range of numbers of codewords and values of error-masking 
probabilities. A table of error-masking probabilities attained by 
quadratic codes for block size n = 4,. . . ,16 can be found in the 
Appendix. 
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APPENDIX 
TABLE OF QUADRATIC CODES 

Table IV is the table of quadratic codes, both nonmodified (NM) and 
modified (M), with minima1 max,,a Q(e), for p = 2, and block sizes 
II = 4. 6, 8. 12, 14, and 16 bits and the lower bound on max,,aQ(e) for 
given II and ICI cons@cted by Theorem 1. The table also includes 1) 
complemented codes C having characteristic functions f&x) = 1- /c(x) 
where ,fc(s) is the characteristic function of a quadratic code C 
(the conditional error-masking probability for C is given by Qc(e) = 
l-(ICI- B(e))(@ - ICI)- ‘; note that C is optimal iff C is optimal); 2) 
the nonmodified codes with the codeword of all zeros added. 

TABLE IV 
QUADRATIC CODES 

Maximum Probability 
of Masking 

Lower Upper 
ICI m s Bound Bound Remarks 

TABLE IV 
CONTINUED 

Maximum Probability 
of Masking 

Lower Upper 
1C.I 1~ .5 Bound Bound Remarks 

3024 2 3 0.7388 0.7460 
3088 2 3 0.7539 0.7617 
3528 2 3 0.8617 0.8730 
3591 2 3 0.8772 0.8794 
3844 1 6 0.9386 0.9407 
3970 1 6 0.9693 0.9703 
4033 1 6 0.9849 0.9849 

ir=14128 1 7 0.0156 0.0156 
254 1 7 0.0157 0.0315 

c 
c 
c 
c 
c 
c 
C, optima1 
C, optima1 
Mo#O 

508 1 7 0.0315 0.0551 
1016 1 7 0.0623 0.0756 

Mu+0 
Mo+O 
Mo#O 
Ma=0 
Mo#O 
Mu=0 
bent e # 0, optima1 
bent IJ = 0, optima1 
c 
c 
c 
c 
c 
c 
c 
C, optimal 
C, optima1 
NM (T # 0, optimal 
MofO 
MofO 
Ma+0 
NMo#O 
NMo=O 
Ma+0 
Ma=0 
NMoiO 
NMo=O 
bent (J # 0, optima1 
bent e = 0, optimal 
c 
c 
c 
c 
c 

2032 1 

43362 4 

7 
2160 1 

81602 4 

7 
4064 1 7 
4192 1 7 
8128 1 7 
X256 1 7 
12192 1 7 
12320 1 7 
14224 1 7 
14352 1 7 
1536X 1 7 
15876 1 7 
161301 7 
16256 1 7 
16257 1 7 

r1=16 2551 8 
5101 8 

1020 1 8 
20401 X 
40x02 4 

0.1240 0.1496 
0.1324 0.1704 
0.2480 0.2598 
0.2562 0.2672 
0.4961 0.4961 
0.5039 0.5039 
0.7443 0.7480 
0.7520 0.7558 
0.8683 0.8740 
0.8760 0.8800 
0.9381 0.9391 
0.9690 0.9698 
0.9845 0.9847 
0.9922 0.9922 
0.9923 0.9923 
0.0078 0.0078 
0.0078 0.0157 

I7 = 4 6 2 1 
5 2 i 
7 2 1 
9 1 2 

10 2 1 
11 2 1 
13 1 2 

,I = 6 8 1 3 
27 3 1 
2x 3 1 
29 3 1 
36 3 1 
35 3 1 
37 3 1 
42 1 3 
49 1 3 
50 1 3 
56 1 3 
57 1 3 

,7=x 15 1 4 

0.3333 0.3333 
0.4000 0.4000 
0.2857 0.5714 
0.6666 0.6666 
0.6000 0.6000 
0.7272 0.7272 
0.9231 0.9231 
0.2500 0.2500 
0.4444 0.4444 
0.4286 0.4286 
0.5000 0.5000 
0.5555 0.5555 
0.5714 0.5714 
0.5946 0.5946 
0.6666 0.7143 
0.7755 0.8571 
0.8000 0.8400 
0.8928 0.8928 
0.9123 0.9123 
0.1333 0.1333 
0.1333 0.2666 
0.2174 0.3913 
0.2333 0.3333 

bent (r # 0, optima1 
C, optima1 
c 
C, optimal 
bent e = 0, optimal 
?, optimal 
C, optimal 
c, optimal 
C, optimal 
bent cr # 0, optima1 
C, optimal 
bent cr = 0, optima1 
C, optima1 
c^, optima1 
c 
c 
c 
C, optima1 
C, optima1 
NM a # 0, optima1 
Mo#O 
Mu=0 
NMofO 
Mu=0 
bent (r # 0, optima1 
bent u = 0, optimal 
c 
c 
c 
c 
C, optimal 
c^, optima1 
Ma+0 
Mo#O 
Mu=0 
Mo#O 
Mu=0 
bent e # 0, optima1 
bent (r = 0, optimal 
c 
c 
c 
c 
c 
c 
C, optimal 
C, optimal 
NM (T # 0, optimal 
Mu+0 
Ma+0 
c 
NMo=O 
MofO 
Ma=0 
bent e # 0, optima1 
bent e = 0, optima1 

0.0157 0.0274 
0.0314 0.0431 
0.0622 
0.0664 

0.0667 
0.1144 

0.1245 0.1333 
30 1 4 
46 1 4 

X4162 4 0.1286 0.1483 
163204 2 0.2490 0.2549 
165764 2 0.2530 0.2587 
326408 1 0.4980 0.4980 
32X968 1 0.5019 0.5019 
489604 2 0.7471 0.7490 
492164 2 0.7510 0.7529 
571202 4 0.8716 0.8751 
573762 4 0.8755 0.8767 
612002 4 0.9338 0.9372 
614562 4 0.9377 0.9380 
63496 1 8 0.9686 0.9693 
64516 1 8 0.9844 0.9846 
65026 1 X 0.9922 0.9923 
65281 1 8 0.9961 0.9961 

60 2 2 
76 1 4 

120 4 1 
136 4 1 
180 1 4 
196 2 2 
210 1 4 
226 1 4 
241 1 4 

f,=lO 32 1 ,5 
62 1 5 

124 I 5 
156 1 5 
24X 1 5 
2x0 1 5 
496 1 5 
52X 1 5 
744 1 5 
775 1 5 
776 1 5 
X6X 1 5 
900 1 5 
962 1 5 
992 1 5 
993 1 5 

,7=12 63 1 6 
126 1 6 
252 1 6 

0.3158 0.3684 
0.4667 0.4667 
0.5294 0.5294 
0.7111 0.7333 
0.7653 0.7959 
0.8286 0.8666 
0.8850 0.9026 
0.9460 0.9460 c 

c 
c 
c 
C, optima1 

0.0625 0.0625 
0.0645 0.1290 
0.0645 0.2258 
0.1538 0.2820 
0.2419 0.2903 
0.2786 0.3143 
0.4839 0.4839 
0.5151 0.5151 
0.7285 0.7419 
0.7587 0.7716 
0.7577 0.7732 
0.8479 0.8710 
0.8800 0.8933 
0.9397 0.9439 
0.969X 0.9698 
0.9707 0.9707 
0.0317 0.0317 

For 0 +Z C denote ? = C ~0. Let B?(e) and B=(e) be the autocorrela- 
tion functions for the characteristic functions fe and & of d and C, 
respectively. Since ,fi(.x) = fc(x) + 6,. where 8, = 1 if x = 0 and 8, = 0, 
otherwise, we have 

R~-(e)=Cfi(s)fi(x+e)=B,-(e)+2fc(e). (32) 

Moreover, e = (t, 7) EC iff (t, T) = 0. If s is odd, then for (t,~) EC. 
tr(o(t,T)~~‘)= tr(l)=l and by(17),max,,,B~(e)=max,,eBc(e). 
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The Construct ion of Some Bit and  Byte Error Control 
Codes Using Partial Steiner Systems 

W . EDWIN CLARK, LARRY A. DUNNING, MEMBER,  IEEE, 
AND D. G. ROGERS 

AMrrrct -A design theoretic approach to binary linear codes that are 
single-error-correcting (SEC) and double-error-detecting (DED) with the 
capability of detecting any error within a single byte (BED) of even width 
w is developed. A construction of SEC-BED-DED codes from ordinary 
binary linear coder utilizing partial Steiner systems is given. The construc- 
tion produces some codes with higher rates than known previously. The 
codes constructed may inherit special properties from the Steiner systems 
they are derived from. In particular, some rotational odd-weight-column 
codes are obtained. 

I. INTRODUCTION 

W e  consider binary l inear codes of length n  and  redundancy r 
in which the cbdewords are partit ioned into m consecut ive bytes 
of width w. Such a  code is single-error-correcting (SEC) if any  
single bit error can be  corrected, double-error-detect ing (DED) if 
any  error pattern of up  to two bit errors can be  detected, and  
byte-error-detecting (BED) if any  pattern of bit errors conf ined to 
a  single byte can be  detected. Several authors [I], [2], [4], [5], [9], 
[lo], [13] have constructed SEC-BED-DED codes,  i.e., codes 
that are simultaneously SEC, BED, and  DED. 

Codes providing a  combinat ion of byte and  random error 
protection can be  used for error correction, error detect ion or a  
combinat ion of the two. As with codes for ordinary random 
errors, this trade-off exists even when the code to be  used is 
fixed. For example, a  SEC-BED-DED code could also be  used 
to detect error patterns consist ing of three random errors and  
error patterns consist ing of a  single byte error together with a  
single random error. The  minimum distance profile as  def ined in 
[12], [14] measures the error protection capabil ity of a  code 
providing a  combinat ion of byte and  random error protection 
independent ly of whether the code is used for correction or 
detection. The minimum distance profile can be  regarded as the 
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analog of minimum distance for codes providing byte and  ran- 
dom error protection. W e  shall not need  to employ the minimum 
distance profile in this work. The definition of minimum distance 
profile of a  code and  the details of its relation to combinat ions of 
levels of error correction and  error detect ion available when using 
that code can be  found in van Gils and  Boly [14]. For those who 
may wish to consult this reference, we note that the minimum 
distance profile of a  SEC-BED code is (3,2) and  that the 
minimum distance profile of a  SEC-BED-DED code is (4,2). 

In this correspondence we adopt  a  design-theoretic approach 
to SEC-BED-DED codes with even byte width w by focusing 
on  the syndromes of error patterns of weight w - 1  conf ined to a  
single byte and  showing that, through a  matrix of these syn- 
dromes, we can obtain a  partial Steiner system (Theorem 1). In 
the opposi te direction, we show that, starting from a  matrix of 
potential syndromes and  a  partial Steiner system with appropri-  
ate properties, we may construct a  SEC-BED-DED code (Theo- 
rem 2). From these results we obtain the codes with the improved 
rates shown in Table I. 

TABLE I 
COMPARISON OF SEC-BED-DED CODES 

4 I 8 14'"' 

4 12 24 6 11 12 ;;;I$: 
8 15 16 21164 

10 14 14 91 
10 15 15 2 222 
10 16 16 ,592 
10 17 17 21320 
10 1X 18 22760 
10 19 20 210536 
12 16 16 140 
12 17 17 2424 
12 18 1X 21260 
12 19 19 23024 
12 20 20 2 7112 
12 21 21 k15143 
12 22 22 232442 
12 23 24 2124052 

218 M ’ + 3 w-t3 A(u,4,w)@ 
212 2,\~-l>r=,'>M'+4 A(u,4,w)@' 
28 2M. - 1 2 w A(u,4,w)@' 

6 >I1 2O.132”’ 
28 > 2M - 1 2',4(2~,4,w)"' 

12 
496 

75 
561 

84 
180 
372 
756 

1524 
3060 

98 
210 
434 
882 

1778 
3570 
7154 
4322 

??l*<Wl 
m*<m 

2m*<m 
1.65m* < m  

2m*<m 

II’ Byte width (always even). 
Y Redundancy. 
Ll Number of byte syndromes of weight w ~ 1. 
I?, Code length in bytes = A( u,4, w) except (0 
t?z* Longest previously known length in bytes. 
a I’ ~ 2 II‘ + 1, cheek bits added by Theorem 4. 

Propert ies of the ingredients in our construct ion are reflected 
in the codes constructed. Consequent ly,  we are able to comment  
further on  the optimality, un iqueness and  rotational presentat ion 
of some of these codes.  In Table I the entries (a) and  (y) come 
from full Steiner systems and  trivial codes,  whereas entry (j3) is 
der ived from the extended (24,12,8) binary Golay code.  W e  show 
that the code indicated by (a) is unique as well as  length optimal. 
W ith the aid of an  automorphism of the (3,4,8)-Steiner system 
used in its construction, we show that the code (a) has  a  parity 
check matrix in the rotational form 

H = ( H, r-I, RH, RH, R2Hl R2Hr.. . R6Hl R6H2) 

(1) 
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