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Abstract.

An alternative technique in test-response compression is presentfd.The
proposed quadratic compression scheme is based on a quadratic function in an
extension of ;he finite field of two elements, {0,1l}. The problem of test-
response compression is analogous to the one for error-detecting codes. A
test response is tampered by an error sequence that is a manifestation of a
fauit. An error-detection capability of a compression scheme is given by
means of a probabilistic approach. An error is masked (undetected) if and
only if a test response is compressed into the reference signature
(precomputed for a given circuit and a test sequence). With the assumption
that a fault-free response (sequence) and an error sequence are
statistically independent with ﬁnifnrmly distributed prnbabiliﬁies, a
quadratic compression scheme is shown to be optimal with respect to the
total error-masking probability, the maximum value of the conditional error-
masking probability given an error sequence, and the maximum value of the
conditional error-masking probability given a fault-free sequence. An
implementation of the quadratic compression scheme requires slightly more
hardware than a parallel signature analyzer. (Two designs of a quadratic
compressor are considered.) However, the conditional error-masking

probability given an error sequence, Q(r), of a quadratic scheme is shown




to be constant ( for the case of signature analysis, Q(r). is either O oxr
L, for different r, independent of the statistics of fault free-sequencey,
which implies an equal protection against all error sequences, In other
words, the total error-masking probability, Qiotal = ; Q(f)Pr[rl r#O], of

quadratic schemesis independent of the statistics of error sequences,

l. Introduction.

Signature analysis techniques, based on linear-feedback-shift registers
(LFSR), are widely used for compression u.f - Lest responseg [2-7]. Since
signature analysis is, in fact, equivalent to a decoding proceduré for a
linear erraf-d&tecting code (the LFSR is a decoder for this code), it only
guarantees a detection of an unexpected observed test response, such that a
number of distorted bits in an output of a device-~under-test is less than
the minimum distance of the code. However, if the number of erroneocus bits
is greater than the miﬁimum distance, detection probabilities for different
patterns of distorted bits, called error patterns or error sequences, are 0
or 1. (An error pattern is masked if and only if it belongs to the code.)
For communjcation chammels a distortion of a single bit in a message is
-mure likely to occur than a distortion of two or more bits , hence, the
notion of a minimum distance in determining the error-detection capability
(in a probabilistic sense) of a linear coder is justified., However, in the
case of testing, multiple errors (distorted bits) at outputs of devices-
under- test may be as pruﬁahle as single ones.

An alternative compression technique, based on quadratic functiong
will be shown, by probabilistic approach, to be optimal and provide for an
equal error-detection capability for ﬁll patterns of erroneous symbols in

the observed test-response.




1.1 Data Compression of Test Responses.

The major problem in testing of Very-Large-Scale-Integration circuits
is related to an excessive size of the reference data to be stored. For

reducing the storage size required for the reference data , test responses

are compressed into a k-bit word called “signature®™. A block-diagram for

. _SL - . .
data compression“test responses is given by Figure 1. The test response in

Figure 1 1is considered to be a stream of binary digits, which may

correspond to “scan-out” data for a scan-testable design.
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Figure 1: Data Compression of 7¥est Besponses

1.2 Signal-Analysis Description of Faults.

Let us suppose that, a fault-free response (reference data), z is a
string of N binary digits, that is z € V', where V' is an N-dimensional
vector space over {0,1}; theé error sequence 7 (manifestation of a fault) is
added modulo 2 to form the observed response, z®r (see Figure 2).

ETYOY Sequence

T
observed response

*L 2@
ey + i i

fault-free response

signature
e ¥ (Z@T )

Z, T € 'vN, v(z®r) € vk over {0,1}, (?N denotes N-dimensinal wvector space).

Figure 2: Signal-Analysis Description of Faults,




The data compressor implements mapping vy: vNLyK over {0,1}, that is
zor € VN is mapped into a signature, vy(z®r) e Vk, and compared to the
reference signature y(z). The advantage is that only a k-bit reference data
is required, instead of an N-bit of the fault-free response f(eg. N-212,
k=16),.

The major limitation of data compression techniques is related to a

difficulty of predicting probabilitjes of errors r=0 such that an observed

signature is equal to the reference one, y(z®r) = v(z).

1.3 Probabilistic Model,

Since a compressor is to be used for an ensemble of devices and test-
generation techniques, a fault-free response, z ,of a device-under-~test is
considered to he a random wvariable. Note that, even for the-case when a
device-under-test 1is given (one circuit in an ensemble), if it is tested by
a random test, z is a random variable. Another random variable is an error
sequence, 7, which is the manifestation of fault(s) occuring in a device-under-
test. Moreover, z,r are assumed to be sﬁatistically' independent with the
uniformly distributed probabilities:

Prlz] = 27N, and Pr[r|r=0] = (21)°Y, 2, r € V¥ over (0,13,
where Pr[r[ r#U] is a conditional probability that error pattern 7 will

appear at the output of a device-under -test, condition that, there is a

fault in the device.

1.4 Performance Measures,
A quantitative measure describing an error- detecting capability of
4 compressor can be given in terms of the following probabilities:

@ The total ﬁrnbability of the event (z,r)? such that y(z) = y(zor),




is defined as "the total error-masking probability", denoted by Qi ¢41-
@ The conditional probability given s (7=0) , - that y(z) = y(zor),
called "the conditional error-masking probability given r", denoted by Q(r).

® The conditional probability given z, that y(z) = vy(z®r), 7»0,

called "the conditional error-masking probability given z", denoted by Q(z).
- 1.5 Optimal Data-Compressor for Test Respomnse.

A data compressor 1is (asymptotically) optimal if and only if the

probabilities Qtutal’ Q(r), and Q(z), (asymptotically) satify the

following bounds respectively:

1.5.1 Lower Bound on Total Error-Masking Probability.

N [1j.

N _ 4

Qroral = ; Pr{(z,r)| 7=0] =
(z,7)| y(2)=y(z@r)

and Q. .. = 2°F (N + o, k fixed).
The proof of [l] can be found in [1,4].

The following two lower bounds are easy to prove,

1.5.2 Lower Bound on The Maximum Value of Q(r).

N-k
Min Max Q{(r) = 2 - 1 : Min Max Q(r) =.2'k (2].
(y} r SN (y} r ’

where {y) denotes a set of all possible cumpressorsjthat is,

mappingsy: z =+ i, z € v”, i e vk,




1.5.3 Lower Bound on The Maximum Value of Q(z).

Min Max Q(z) = 5 Min Max Q(z) = 27K (3).

iy} =z = N | {y} =z .

The equalities in the above bounds hold if and only if mapping ¥y
partition vY into equal-cardinality equivalent classes ( a,b belong to the
same class if and only if y(a) = y(b); in #i¢ case ¥ 1s said to be a uniform

mapping). A linear mapping is uniform; however, the converse is not true.

In the next section, optimum compressors, which asymptotically satify

the above bounds (1){3) are presented.

2. Quadratic Compressor.

The concept ofa quadratic compressor is based on the quadratic
nonrepetitive function of 2m variables over the field GF(q) of q elements
[1]:

y(z) = 3031@3233@...@zzm_zzzm_l, zevzm over GF{g), ziEGF(q) [4].
Let q=2k, and for z being a string of N bits, Zg in [&) is the first k-bit
block in z, and z; 1s the ith k-bit block, i =0,1,...,2m-1 (provided that,
N/k = 2m), The signature, y(z®r), can be computed by multiplying two k-bit
blocks 242441 (t even) and wupdating (accumulating) the sum. Note that,
multiplication of symbols from GF(Zk) .is a multiplication of polynomials
degree less that k modulo an irreducible polynomial degree k over {0,1),
and the addition (sum), ®, is a polynomial (vector) addition modulo 2
(componentwise mod 2 sum). In Section 3 hardware zrealizations and
complexity analysis for quadratic compressors are presented. )

The following theorem states, that Q(r), for a quadratic compressor

described above, asymptotically satisfies the lower bound [2] on the maximum

_—



value of Q{r). Moreover, it is shown that Q(r) = q'l - Z'k; hence, the

total error-masking probability Qeoral Ffor a quadratic compressor

asymptotically satisfies [i]; Qtotal 2.(2H'k-1)/(2m-1) = 2'k.

Theorem 1.

Let y{(z) ©be a quadratic nonrepetitive function y(z) =

va

3031@3233@'“Q?Zm*ZEEm-l’ where z & over GF(q), z; € GF(q), and Pr[z],

1

Pr[rl r#ﬂ] are uniformly distributed. Then, we have for conditional

probability Q{r) = Prﬂb[y(z) = y(z@rﬂ f] for a given r = 0, Q(r) = q'l —
2k,

Proof.
Denote Zm = (3022...32“1_2] ; E@ = [2123"'32]3'1)’ that is. ZE,E@ L= vm over

GF(q); consider a fixed r, +»0, with r defined similar to =z

T Then,

o' 7o o %p*

y{(z) = y(z®7). can be writen as ﬁgm,zm} - (zm@fm)=(zm@T@) > , where < >
denotes inner-product defined in V® over GF(q). It follows that

v(z)=y(z®r) & {r@,zm> @ {rm,z@} @ {rm,r@> w 0, [5]‘

Notice that, [ {EI y(z)=y(z@r)}| equals to the number of solutions (zm,zm)
of (5]. Thus, if (fm,f@)#ﬂ, then,l {zl y{z)=y(z@r}}] - qm qm'l. Therefore,

Q(r) = Px(z] - | {z[ y(z)=y(zory} | = ¢ = 27K, | ]

In Theorem 2 the conditional error-masking probability given =z,
Q(z), is derived for quadratic compressors and shown to be asymptotically

satifying the bound given in 1.5.3,




Theorem 2.

Consider a quadratic nonrepetitive function y(z) = < >, z €

2y Zg
ﬂzm, Zp12g € Ve over GF(q) (q=2k), and Pr[r] r#{}] - qzm-l_ (uniform

distribution). Then, Q(z) =« q'l = E'k.

Proof.

For a given z, suppose y(z) =i and | {Tl y(z)=y(z®r), r#ﬁ}[ = A;-1.

]

Then, Q(z) = (Ai-l)/(qzmAl), where .Ai is a number solutions for the

following equation

{zm,z@} — 3031 @ 3233 @ ... E‘Ezm_zzzm_l = i, ie GF(Q) [6]
First, let i=0, then Ag = qm + qm’l(qm-lj, since for any choice of 2570 .
there are qm'l values of z, satifying [ﬁ]; us for zg, = 0 all q" possible

values of z, are sgolutions of [E] Similarly, A, = qm"l(qm—lj for i=0.

2]11-].’ E.n'd

Therefore, as Zm»» and k is finite, Ay = g

Qz) = (A;-1)/(q*™-1) = q"1 = 27K, .

3. Hardware Implementationsand Complexities for Quadratic Compressors

Consider the following implementation of a quadratic compressor

(Figure 3):

QUADRATIC COMPRESSOR

Test sequence Divice
> . > Finite-feild > T-Filip-Flops
undex .
fest ~ Multiplier |[. -
test response Signature register

Figure 3: Hardware Implementation of a Quadratic Compressor.

In Figure 3 the observed response, Z = z®r, is processed in a serial

fashion, based on. the quadratic function over GF(2k), y(Z) = Eoil & 5253 ®




. ® Zy 9Zon 7, Where Z is a binary sequence length N = 2mk, and Ze, Zigqs

are blocks of length k, t=0,2.4,...,2m-2. The product, is computed

e+l
when the two k-bit blocks of & test response, z, and Et+1* are available.
A 2k-bit register may be required to store the two operands Et and z,., , for
the multiplier, however, the already exsisting output register of a circuit-
under- test may be sufficient for storing Z, and 2, . {

We will consider now combinational and sequential implementations of

multipliers.

3.1 Combinational Multiplier,
The finite field multiplier may be designed as a combinational
circuit to speed up a testing procedure. The presented combinational circuit

performs a multiplication of two polynomials degree less than k,

k-1 k-2 ~ k-1 k-2

Et = ak_lx @ ak_zx @ ... @ EU, zt+l el bk_l}i @ bk_zx @ ... @ hﬂ.’
(recall , that Et’ Et+1 are Elemen_ts in GF(Zk), and {ak—l’ak-Z' e ,ao}
and {bk-1=bk-2""’b0} are two k-bit blocks (multiplier operands) mentioned
earlier). The resulted product, Et$t+1 - c2k_232k'2 ® c2k-332k-3 ... @cq,

is obtained by a two-level (AND,XOR) circuit (Figure 4), which requires k2

two-input AND gates and (k-l)2 two-input XOR gates. The final step is E_'_

reduction of EtEt+1 = fk_lxk’lﬂ fk_zx '2@...@fo modulo a(x) , where e(x) is
the irreducible polynomial a(x) of degree k; (£ 1, ST TN fo} 1is
obtained by an XOR-network with inputs {c2k_2,...,c0} from the first XOR

plane (Figure 4). If a(x) is a trinomial, (which it is often the case),
then. the second XOR plane requires 2k-1 two-input XOR gates. In summary,
the hardware complexity (number of two-input pgates) of the k-bit

combinational finite feild multiplier is approximately 2k2.




Example 1. Let k = 3, g = 23, oa(x) = x3 ® x ® 1. Since 33 = % ® 1 and

x# = xz ® x, we have,

Let EtEt_l_l - (321{2 @ al}: ® ao)(bzxz ® bli{ ® bo)
== (E.zbz)Kﬁg(albz@azbl)RBE(EDbzﬂalhlﬁﬁath)Rzﬁ(aoblﬁ‘)&lbo)]{@aﬂbo
= Ca}{ﬁ ® 23}5‘.3 @ szz ® Cl @ Cb

= (c& ® czsz ® (c, ® cq @ cl)x @ (c3 @ cpy) modulo a(x)

Thus,
fz = ﬂ2b2 & a{)bz @ albl & Ezb{}, fl = azbz @& a1b2 @ azbl @ aﬂbl ® albo, Eﬂd,
fﬂ - 31b2 ® ashy ® anU' Note also that, f2= £1, and fy, are quadratic

{repetitive) Boolean functions of {az, a3, ag, b2, bl, bD} [1].

From a device-under-test

EU al aéﬁhho by ;2 - ' .KOR.PLﬁHE
. o
SR
I :
= —
: ti'i i I AR —

. * |
Signature { fi ;I i. k_ XOR

PLANE
| %
“4 ©3 ©2 1 %o

Figure 4: Combinational Finite Field Multiplier.
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3.2 Sequential Multiplier.

Since the hardware complexity of a combinational multiplier is twice
the square of k (for k-bit signaturé), an alternative implementation is
ﬁnnsidered. ' Sequential finite field multiplication can be reduce to the
shift, Boolean multiplication, and modulo? addition of product terms
EtEt+l'

Example 2. Let k = 3, q = 23, a(x) = x> © xe 1,
With EtEt_l_l given in Example 1, the seguential circuit cnmput-ing_

Z,2,,1 modulo n(x} ig presented in Figure 5,

| s f
2
P%iﬁE .i. _ * if gl Sipnature
O
€4 3 €2 €1 €0

shifg* B ~ SHIFT-REGISTER

IJ. KlJ K'J K|J K‘J KIJ KJ“

—\ ]
—./ ]
:_H
l-\\
W,
l
l
.

1

3.2 E.l 30 b2 bl bo (initiﬂl State)

From the device-under-~test
Figure 5: Sequential Finite Field Multiplier.
In general, the presented sequential finite field multiplier requires

3k-bit registers, k two-input AND gates. and (vy-1)(k-1) two-input XOR gates,

where y+1 is the number of coefficients in a{X), (v = 2 for trinomials).
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4. Quadratic Space Compression,

The general block diagram for space compression is shown

in Figure 6_[5"7Jw

2L output-lines

Test patterns Device- Space r-bit Signature
T; )‘ Under- : Compres- : . (r<<t)
Test - SOY
Z

Figure 6: Space -Compression Schematic Diagraﬁ

Since a quadratic space compressor is a system of quadratic Boolean
functinn;}y(Z) - (£5(Z), £,(2), ..., fr_l(Z)}, the number of outputs for a
device-under-test is assumed to be even. The response pattern, Z,is a
vector in 2L-dimensional space over {0,l), which to be mapped into an r-
bit signature by a quadratic function over a finite field. For example, r =
L =5k, y(2) = Zozhwhere zﬂ,zl are k-bit vectorsjthat is, Z € V‘? G?E;:'
GF(Ek), Zg,Z71 € GF(Zk), Assuming that Pr[z:l and PI[TI -r;-éO] are uniformly
distributed, by Theorem 1, the space compressor, Y(Z) = ZgZq, 1s optimal.

The generalization of this example is given by the following theorem.

Theorem 3.

Let g(Z) be a system of r Boolean functions, g(Z) = {30(2), gl(Z},

,gr_l(Z)}, arbitrarily chosen from a set of k ' quadr_atic Boolean
functions, F --{fO(Z), f1(2), cee g ﬁk_I(Z)}. The set F is constructed by
Y(2) = ZgZ) @ ZyZ3 @ ... @ Zy, oZy 1 = £(2x5 L 0 £ (2)xk 2 o

. @ fk-l modulo a(x), where Z € va

over GF(q), Z; € GF{q), and a(x) is
an irreducible polynomial used in constructing GF(gq) (q = Zk).

The compressor, g(Z), is optimal, that is

Qrotal: QUr), and Q(Z) = 2°%, -

12




To illustrate the usefullness of Theorem 3, consider the following
example. Let the number of output-lines 2L = 128 ,  the size of signature
is r, and k = L = 64. Then, one can use the following function for data
compression _1{(2) = 2021 = f63(2)}{63 o f62(2)362 @ ... ® fD(Z) rodulo a(x),

vhere a(x) is an irreducible polynomial of degree 64 over {0,1}. A subset

of 1T =< 64, Boolean functions out of {fD(Z),fl(Z),...,fs3(Z)} forms an
optimum compressor g(Z), with the probability of masking any error
being 2°T.

5. Conclusiong

A new technique for data compression of test responses which is based
on quadratic functionsin a finite field of 2K elements was presented. The
proposed quadratic compressors are optimal from the points of veiw of a
_tntal error-masking probability Qeorgls Daximum value of a conditional
error-masking probability given an error sequence 7, Q(r), and maximum
value of a conditional error-masking propability given z, Q(z). (Widely used
linear compression schemes, based on LFSRs, are optimal only from the points
velw of Qtotal and Q(z).)

While a quadratic compressor requires slightly more hardware for data
compression than a linear one, it can provide for a minimum of the maximum
value of Q(r), in contrast with the case of a signature analysis by LSFRs,
when Q(r) is either 0 ﬂrll for different r. (With respect to the lower bound
on the maximum value of Q(r), signature analysis is the worst compressor.)

Another aspect related to the constant:Q(r) property of+thg guadratic

compression scheme is its "robustness" with respect to assumptions on a

13




statistics of errors, Pr[r] f#O], since the total error-masking probability,
by the

(Qtntal = % Q(T)Pr[r[ r#ﬁ] over all 7, r=0), attained I+ quadratic scheme,

does mot change its wvalue due to variationsgin Pr[rl T#D]. (However, for

the case of a (linear) signature analysis, Q{r) is either 0 or 1, hence,

Qrota] 18 sensitive to Pr[f| r#ﬂ].) ~ E
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