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ABSTRACT

The paper presents a method for an optimal implementation
of General Discrete Fourier Transform (GDFT) algorithms over
finite groups (Abelian and non—-Abelian) in multiprocessor
environment. Tradeoffs between hardware complexity/speed and
computation time are investigated for different multiprocessor
implementations with local non—-shared memories (unibus, complete
communication network). Formulas are presented for the number of
arithmetic operations and for the number of interprocessor data

transfers.
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I, INTRODUCTION,

Fast Fourier Transforms (FFT) are well known to play an impertant role
in many application fields as spectral analysis, digital filtering, image
precessing, video transmission, etc. The increasing requirements to speed

in many real-time applications stimulated in the recent years the

development of a number of new very fast FT algorithms as well as numerous -

investigations on comparative complexity of different FFT versions [213
[4],[42],[1*‘4.].}% systematic approcach to the problems of design of FFT and
complexity evaluation was developed by Beth[?] who generalized the
results formulated inl[3,4!5] having considered the classical FDFT as a
special case of GDFT (General Discrete Fourier Transform) based on the
theory of representations of finite groups.

As noted in [ £1f; 13..'"] and substantiated in [2], the decrease in the
number of multiplications in a very fast FT algorithm involwves inevitably
an increase in the number of additions and/or preprocessing operations,
From the viewpoint of further advance as to speed increase of FFT, and
with high progress in VLSI technology, the multiprocessor highly parallel
systems become an attractive altermnative compared to uniprocessor
architectures,

In 2 multiprocessor environment, a new factor arises that may strongly
influence the efficiency of FFT algorithm performance, The structure of
the algorithm involves numercus interprocessor data transfers which can,
in case of inappropriate or too slow processor communication network,
become a reason for a degradation of performance. Algorithm-
independent upper bounds on complexity including the evaluation of the
number of interprocessor transfers were determined in [;4] for the
classical FFT algorithm performance in terms of multiprocessor

communication network design. From the viewpoint of group theory approach,

the results of [:UL]apply to the case of the cyclic group structure only

N

are - ———— g g e e . e ) _. o a ..
; - — Ly
- - N 1 . . - Fa

T T

WT”_-‘_""... - H




with multiple processors performing the group algerithm.

The subject of the pressent paper is the generalization of the results
mentioned above for the case of finite decomposable (possibly non—-Abelian)
‘#ggp structure introduced on the inpuit data set, for the problems of GDIFT

scfrum calculation by a multiprocessor SIMD system with non-ghared
memory. The investigation of tradeoffs between the number of operations
(including data transfers) needed for GDFT over arbitrary finite groups )
and hardware complexity (multiple processors and different communication
networks) is performed, It is shown for sample evaluations with different
group structures that the use of non-Abelian groups (e.g. guaternions)

may result in many cases 1n optimal (fastest) perfermance of GDIT,

II, EVALUATION QF THE NUMBER QF OPERATIONS NEEDED FOR FFT OVER GROUP

STRUCTURE (> =G_¢1‘G-47‘..." m-1 USING MULTIPLE PROCESSORS.

Let (> be an arbitrary finite group of order |G/=N ; let V be the
vector space of dimension . over the field { of complex numbers, and
1et GLV) be the group of all nonsingular dXd matrices with elements
in ' . A representation of (> is a homomorphism K: (& »GL(V) that is,
for £,Y€EGC, Y G R(mg)_-:R(:r)-Rg). A representation [ is irreducible if
there are no nontrivial subspaces an_which are mapped to themselves by
all matrices R(.I), SCEG. Every representation Rw is equivalent to some

unitary representation !au (i.¢. to a representation with unitary
matrix Ru (.'I.) >, that is, there exists a Q GGL (V) such that
R@=GR@Q o 11 XEE . rrotucivie unitary| representations
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for (5 are orthogonal. This allows to dafiﬁé”tﬁ;m direct and inverse i.

General Discrete Fourier Transform (GDFT) Gﬁer‘;' as fﬂllnws;_




If-F is a function ;F G-—.l-c , then

Fw) - )= 42 T SR, ()
Fl2) =3 ”Fz(S(w)R (z))

R,,ER (G)

where .'.I(_‘,'-"‘I is the inverse of X in G‘ :

Let G— /G-/:M be a direct prnduct of groups C;J 0“:'&!"-‘5 ”1‘1
where IG /-—- N_"' nﬂ, ﬂm 4 ‘Denote the elements of G- as X & G.
O£k < Mi ] and the elements ﬂf- group GJ‘ as JEGJ’ Oﬁjfm-j. Let

. _ 1
RCG—) be the set of all irreducible unitary representations of G‘ -

with elements Rwe R(G): and Jet R(Gd{) be the set of all irreducible
unitary representations of Qd with elements R{tgé R(%‘)} ofJEM*i [ :l_
Following [8], note that:
1) If XEG then X (xp,xf, mﬁﬂ-.t) P %‘6 G'd{ .
2) If Ky € R®), then R (X)=R AT Ty s Teg) = &t Ru; (Z;)
=& Jd J 7

where RWER(G) symbol ) denotes the Kronecker product of matrices.
Thus, fc:r every RWER(G) we may denote [f) = (wﬂ, qI" w.m-,{).

The direct Fourier transfcarm over group G‘ may be defined as follows [8]2

?{w 76( pr & m-—f ZZ Zf(%; Z .., m..‘f)® JQ (.‘2-:{)

=22 (2 (Z (F@mm, KGR E e, JoR, @)

The calculaticn of spectrum f(wo,wi,...,wmﬂ,) is performed in {1

steps (StepJ over group G;}f ,OEJ'EM—i). Let

£ 2y Tmeg) = F @0y Xmy) ]
o (o, i) = T fo@oy TRy (@75
Lo |

Step Q:
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Let X- be the L -th element of (> . X; GG— 0t <-4 1+ will be

convenient to list the elements of G— in a certain order. If Qfﬁ,
designates the L[-th element of group G" , D& [E {.y- , 0£¢} ..*‘f-.m-f,
let the elements XG;-X"I:'“JXN-I of G‘ be ordered as follows
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Ly Lm-i
Element XP ( & .f,... i .Z',,,_i precedes the element

Xg= (5 2t .. ) 38 borjo s brjasslefer wnd S
for some M , Dck<em-4 .
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In the following evaluations of the number of operations we do not

take into account the operations needed for spectrum reshuffling and

normalization,

—_———.

- Let P denote the number of processors operating in parallel during
the calculation of the generalized spectrum. Assume that each processor

containsg local memory, but there is no global shared memory. (See [44]

for the examples of existing computers of this type) .

steps of spectrum calculation,

In each one of
the N- elements of intermediate spectrum

are partitioned into disjoint =subsets , In step J ; N-/Iy subsets (each

containing fcx} elements) are to be used as input data for butterfly

algorithm of the constituent group Gy In order to avoid 1idle

pracessurs in any step, N/Pn must be integer for 0‘56/5}}1 1.

1
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Denote the number of operations needed to perform butterfly algorithm
of GJ on a single input data set (with one processor) as Z_(G‘-})
general case, the algorithm is characterized by a pair ﬁf numbers - the
number of additions/subtractions and the number of multiplications. We
shall assume that L(Gd) 1s the equivalent number of additions).
To perform the spectrum calculation over G—=GﬂxG‘-’¥_“ xGm_f by a
single processor, L (G-) nperations are needed:
m-1
L(6) = L(G - N 2 LEY (4
L“ﬁ oi::p ;
HJ d
To generalize (1) for the case of P parailel processors, denote

L(P (@') the number of operations needed for spectrum calculation

cverG— with P pProcessors, Evidently,

1P e = L(G—) N"Z (@[)

However, for the number of processors P »>1, the data transfers among
the processors are needed {(at least in one of the algorithm steps).

Therefore the total time T(P) (G') needed for spectrum calculation

over G— with Pprncesscrs is:

TOG)= LOG) 4 + MPE) 4,

where 'l':m is the time needed for one addition/subtraction, "éc is the
time needed for one data transfer {(communication time), and M(P(G)is
the total number of transfers needed for spectrum calculaticen uve:;' G.
with P processors., The value of M(Pzg)is not only a function of F and
of the group structure for a fixed IG{-':N- ;1 it depends also on the
type of the processor communication network,

To minimize M(P)(G), the communication network is needed where each

processor can communicate directly with any other processor (if the

ﬁ
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corresponding communication is required by the algorithm), and is able F
to receive or to transfer a unit of data during communication time
This type of connection network is of high cost for a large number of

processors {(though not always the complete network is needed) . It seemns

more reasonable to assume another extreme case when all processors

communicate via single bus (‘unibus" connection)., In the last case,

during transfer time -tC only one data unit can be transferred from one

processor to snother. This type of connection puts some restrictions nn'ft~—

the unibus must be fast enough, in order not to increase significantly

the total calculation time,

Assume the following:

a) For any d , 056{5)’”‘-1, the N—/Pf’y value is an integer (no idle
processors 1in any step). The Jjob load is distributed equally among f)
pProcessors.

b) The input data are entered into local memories of fJ Processors
as follows: first ND@’ elements of the input array are given to
processor 1, next Aﬂﬂ? elements - to processor 2,etc,

c) For any group GJ (that is, in each step of the algorithm) any set
of input data cuntaining fy‘ elements is delivered to a single
processor, It can be shown that the violation of the rule "single group
set - single processor' results in a drastic increase in the number of

interprocessor communications needed, and in many cases the number of

- operations is also growing.

Define two parameters: P..; =.N-/P- the number of elements of Gper

1 processor; nuﬂf'_-_,'fzf‘ — block size for group 6:-}* , DSO( L h-1.

e

'Since before processing (before Step O Aﬁﬁ3==fh successive elements
of 6; were delivered to the 1lst processor,next  P{ successive elements -

to the 2nd processor,etc.,the block sizes in successive steps of

spectrum'calculatinn allow to trace the distribution of intermediate




spectrum elements in block lines among different processors and to

determine whether interprocessor data transfers are needed in a certain i
|
step. The following rule is wvalid: if bleock size ﬂuﬂ.f %EP“, =WP;
|
no data transfers are needed in StepJ . If block size nﬂnf-"_.;z{. '>P'f , %I

transfers among P processors must be performed. (Note that the term

"transfers needed in Stepol "' means transfers needed before processing
of Stepc{ ) .
[t can be easily seen that transfers are never needed in Step O

(block size My ) if our previous assumption is wvalid that N_/P% is an

integer for anyJ.J Décjfﬁ!-—f .In particular, M-/Pﬂn.f,::f is an integer

which means H, C.TP.; (ne transfers needed). For Step 0, there

H H
are N'/nc. degenerate blocks each containing only one line,

For the case when transfers are needed( ﬂpﬁ,'...‘ﬂd' PP,.= M/P) , define

parameter %0; ,‘f.éJ'ém-'i, as yl;',-_-_noﬂf‘_“-nd-/;;i ; {f{' is the number

of processors per block of group Qﬂ“

Formula (1) may be generalized now for the case of P processors.

Total time T(Fj(G)needed for spectrum calculation over G""Gﬂx@{"?‘G‘m-,is:

TRy Pyt AWEN.) szL(GL) Zm, 1 iz )
(2)

where K:£= 2, for cnmpl-ete- communication network, and K,=f , for

—— B e o ——— "

the unibus connection of Processors; %- (R:nn ﬂ“,,_:fy) =0 for
0 ¥

| nonf,_nd ‘.‘..'-Ff = N./Pﬂ' a.nd Sa(ﬁ, Mo, nij...,lg;) =4 otherwise,

The upper limit of the number of Processors for this approach is:

. <z N N
P< mage M; = [él, nd_[Gd/"
aﬁjﬁm-fcf




Special case of Fast Walsh Transform {gl )

G=€2XC2?‘..." C2 (m Jroups ) ; [@/z:ﬁ'.-: m_ R,0¢)<m-4; [—(@) 2.

For the number of processors P:QL , where L€ m -1, transfers are

needed in steps with numbersja m-y

For unibus connection (K P 2L ,

T(ﬂ)(cz C-‘“ KC ) -QMh-'éﬁ . L_zm-i‘fe ) (3)

Special case of Fagst Chrestenson Transform iﬂ]__

G=CorCyx...x Lo (m groups)

I6]= N = q,m' hi=9 L(G) q (9~ 1) p£f<m-4
For the number of processors P Q/ , where L< -1,

interprocessor transfers are needed in steps with numbers o(?m .
T(CVJ(C‘}’" C{;X___x C?, )_Z_m@ "L(q-.{){meqmﬁ{j(g-j)f‘c (4
™ m gmuf.c’
For g 3£ (FFT over groups c?' L(C‘ )'-'—‘ ﬂ?(&?‘zfl”i)f‘g;

and (Z2) gives for P q

6950(' éa?icia.g' CTZ;)-*
| - QE(M—L !)-!"f (Qf(f"{)-i-»{)'f . ﬂgfﬁf f) (2f 1) ZL (5Y

I11. COMPUTER VERIFICATION OF THE NUMBER OF TRANSFERS.

ll

2 Processors:

To verify the the number of interprocessor transfers in formula (2), a
simulated multiprocessor spectrum calculation has been performed by
uniprocessor computer. The simulation algorithm provided an independent
way to count the number of transfers; computer experiments with numerous
sample groups confirmed the correctness ot (2) and consegquentliy of the

derived formulas 3) — (5).

With the use of introduced concept of block, a simple rule for the




crdering of constituent groups has been determined., To minimize the number
of transfers for a fixed set of the constituent groups (;‘, 1t 1S necessary

d

to order the groups according to the rule:

(Gl € (G, 14 [G,]2... £ 6m-4] .
Small groups in the initial steps of the algorifhm produce small block
sizes, and the transfers are required in the minimal number of steps,

For sample calculations and comparison, several groups with ﬁr= 912 were
chosen. Table 1 gives the numbers of transfers fnr the groups for different
number of processors., It may seem at the first sight that low-order group
implementation of (;rmay result in the lowest number of transfers due to
the lower degree of ''data intermixing'' in the successive steps of spectrum
calculation algorithm. However, small-size group ''design' of é; results 1in
the larger number of algorithm steps. As 1t can be seen from Table i, C}g
group seems to be the worst choice . Nevertheless, cz? turns out to be a
goody implementation in many cases due to relatively low number of the
arithmétic operations.

To compare fhe different groups of Table 1 as to the speed of spectrum
calculation, the assumption 'l':m= '{_‘a_ has been made ( 'Z‘m isg the time needed
for one real multiplication). The ratio'thﬁrvaries within the limits from
1 (Cyber-205, Cray-1,CDC Star-100C 481y to 20 - 30 (Zilog Z-8000 [2]) for
different computers and types of operands. Since in the constituent group
algorithms chosen for our estimations E1j all multiplications are fhe
multiplications by real constants, the choice of i”f=tﬁlseems to be
reasonable, The ratio E='_-':'_:—E’varied from .02 (fast bus as the Nanobus of
Encore Multimax) to K. =1 f'.1.5. The choice of the upper limit for

depends on speedup values to be given below,

The use of}D processors decreases the number of the aritbmetic

operations for spectrum calculation to L(P)(G)=L(G’)/P We shall use the

term ""ideal speedup' to denote speedup equal to f’ for F> processors. The

",
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ideal speedup can never be achieved because cof the additional time needed ié
for interprocessor data transfers. However, for a bus that is fast enough

it is possible to obtain the speedup rather close to ideal.

We shall take the ratio T(f)/é:)T(Pyas a measure of closeness of an actual

speedup T{f)/T{F) to the 1deal speedup. Figures 1'}2 show the dependence of
the relative speedup for different groups of the order 512 of the bus speed
and the number of processors. Table 2 summarizes the results of
calculation of the equivalent number of additions {(including converted
multiplications and data transfers). The two criteria - high relative
speedup and low equivalent number of additions - are conflicting. With the

increase in the number of processors, the number of operatiocns tends teo

decrease as well as the relative speedup. The comparison of different
implementations of (s with = 512 reveals that the fastest performance in
most caseg is provided by (}GK(92 group. The group is the best one for
ali.P in case of the fast bus (K=0.02). With the decrease of bus speed,
the czgxaz group is still the best for P = 2,4,8,16,while for the larger
values of P and K >0.02, the Cgsﬂa‘f group has the smallest number of
operations. The groups next to the best are 02.9‘ (for all P in the fast
bus case and for the lower range of P with the decrease of bus speed) ,C;sxé?z
(for P =32 and K =0.1 as well as for k=0.5, 1 and P =8, 16), and 023

(for K =0.5, 1 and P =32, 64).

It can be assumed that fast performance is typical for the groups C;
and CQZ (quaternion group) used as constituent groups in the direct
.prr::duc:t for Q— . The group algorithms for C'.Z and QJ?. do not require
multiplications (except of trivial ones). It could be expected that G-=
= CEI CAXQZ will also be characterized by a low _number of operations since
C4 also has only trivial multiplications in its algorithm. The

calculations showed that the perfnrmancé of this group is very close to

3
that of Q..?. group being about 5% slower in the worst cases.
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Table 4 . The number of interprocessor transfers (unibus) for

different constitueni groups with ﬂ':[_ﬁi" 512.

Gl %6 07 G GGl Gl (¢Gr GO ;
2 256 220 256 256 296 296 2096 - 256 |
4 512 384 384 384 384 384 384 384
8 768 448 448 640 448 448 443 448
16 1024 704 704 765 480 480 480 704
32 1280 960 832 1024 736 736 - 832
64 1536 1216 896 1152 - = — -
128 1792 — — - — — = —
2906 2048 — - - — — - —

——— e, N



Table 2, Equivalent number of additions ('té ='fa,

413

) for different groups of

the order N = 512 as a function of bus speed parameter k =t,./44q for different

number of processors ( p ).

k = 0,02 (Fast bus) I

o)

9

(2

G GG GE GO G0 GG & G LGl GG GO

2309 3200 4485 4997 3461 2693 2181 429312330 3226 4506 5018 3482 2714 2202 4314

[iﬁ (s Q’G; |

2

4 (1162 1608 2248 2504 1736 1352 1096 215211203 1638 2278 2534 1766 1382 1126 2182
g1 591 809 1129 125Y 873 681 553 10811 653 845 1165 1293 589 1117
j6| 309 414 574 634 446 350 286 5S546] 390 470 342 584!
32| 170 217 297 327 233 185 155 - 272 283 232 -
&4 103 118 158 — 126 102 Q2 - 226 190 190 —
E{ k = 0.5 1.0 (Slow bus)

L

g 3

G O G Gt GG 6 Go.GG| & 6

G GG G G0, G, G|

2432 3328 4608 5120 3584 2816 2304 4416|2560 3456
1408 1792 2432 2688 1920 1536 1280 2336|1664 1984
960 1024 1344 1472 1088 896 768 1296|1344 1248
800 752 912 864 784 688 624 T76|1312 1104
784 616 696 680 632 584 616 - 1424 1032
840 548 462 - 9506 532 674 - 1608 996

[ggese

4736 5248 3712 2944 2432 4544
2624 2880 2112 1728 1472 2528
1568 1696 1312 1120
1264 1104 1136 1040
1112 1048 1048 100GC

1036 13804 980 1284 -

I

992 1520
976 1016
1096 -

il |

— e, — 1 — — | — ¢ — ™—r




