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Fast Fourier Transforms Over Finite Groups by
Multiprocessor Systems

TATYANA D. ROZINER, MARK G. KARPOVSKY, SENIOR MEMBER, 1EEE. AND
LAZAR A. TRACHTENBERG, SENIOR MEMBER, IEEE

Abstract—This paper presents a method for an optimal implemen-
tation of General Discrete Fourier Transform {GDFT) algorithms over
finite groups {Abefian and non-Abelian) in a multiprocessor environ-
ment. Tradeoffs between hardware complexity/speed and computation
time are investigated for different multiprocessor implementations with
local nonshared memories (unibus, complete communication network).
Formulas are presented for the number of arithmetic operations, for
the nnmber of inierprocessor data transfers, and for the number of

communication links among the processors.

I. INTRODUCTION

AST Fourier Transforms {FFT) are well known to play
an imponani role in many application fields, such as
spectral analysis, digital filtering, image processing, video
transmission, etc. The increasing requirements of speed
in many real-time applications stimuiated In recent vears
the development of a number of new very fast FT algo-
rithms as well as numerous investigations on comparative
complexity of different FFT versions [2]. [6], [18], [19],
[23]. A systematic approach to the problems of design of
FFT and complexity evaluation was developed by Beth
[2]. [3] who generalized the results formulated in [ 1], [3]-
{7]. £12] having considered the classical FDFT as a spe-
cial case of GDFT (General Discrete Founer Transform)
based on the theory of representations of finite groups.
The powerful mathematical apparatus aHowed Beth to ob-
tain complexity evaluations for different existing FT al-
gorithms as well as to design new versions of very fast
GDFT algorithms for uniprocessor systems in case of de-
composable group structure introduced on the input data
set. The methods of the theory of representations of finite
groups {Abelian and non-Abelian) were also used by other
researchers [9]-]14], [28], [29] for different applications
related to FFT.
As noted in [6]. [19]. and [20] and substanuated 1in [2],
the decrease in the number of muitiplications in a very
fast FT algorithm involves inevitably an increase in the
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number of additions and/or preprocessing operations.
From the viewpoint of further advance as to speed in-
crease of FFT, and with high progress in VLSI technol-
ogy, the multiprocessor highly parallel systems become
an attractive alternative compared to uniprocessor archi-
tectures. Many recent publications suggested a wide va-
riety of multiprocessor implementations for FFT, among
them numerous works on systolic arrays and array pro-
cessors with different intercomnection networks (e.g.,
[171, 124]-[27], [29]-[32]). )

In a multiprocessor environment, a new factor arises
that may strongly influence the efficiency of FFT aigo-
rithm performance. The structure of the algorithm in-
volves numerous interprocessor data transfers which can,
in case of inappropriate or too slow processor communi-
cation network, become a reason for a degradation of per-
formance. Even in uniprocessor systems, the interregisier
data transfers, loads, stores, and data copying operations
may take a considerable part of the total execution time
(up to 80 percent, in case Of certaln architectures, as
shown in [21]). The evaluations performed in [22] showed
that the minimum number of the interregister data trans-
fars in case of uniprocessor system 1s at least of the same
order as the number of arithmetic operations.

Algorithm-independent upper bounds on complexity 1n-
chuding the evaluation of the number of interprocessor
transfers were determined in [23] for the classical FFT
algorithm performance in terms of multiprocessor com-
munication network design. From the viewpoint of group
theory approach, the results of [23] apply to the case of
the cyclic group structure only with multiple processors
performing the group algorithm.

The subject of the present paper is the generaiization of
the results meniioned above for the case of finite decom-
posable (possibly non-Abelian) group structure intro-
duced on the input data set, for the problems of GDFT
spectrum calculations by a multiprocessor SIMD system
with nonshared memeory. The investigation of tradeoffs
between the number of operations (including data irans-
fers) needed for GDFT over arbitrary finite groups and
hardware complexity (multiple processors and difierent
communication networks) is performed. It is shown for
sample evaluations with different group structures that the
use of non-Abelian groups (e.g., quaternions} may resuit
in many cases in optimal (fastest} performance of GDFT.
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II. GDFT as THE GENERALIZATION OF FFT

Biscrete Fourier transforms considered in this work are
the generalizations of the classical Fourier transforms (FT)
in the following sense. For the classical 1-D (one-dimen-
sional) DFT, the vector of input data £{0), £ (1),

S {N — 1) is multiplied by the matrix whose elements are
the powers of the Nth root of unity, resulting in the vector
of N spectrum values:

(w) = (1/N} E S my Wy
j=~-1

where Wy = exp (—2%j/N):
w=0,1,-- ,N~—1.

In terms of group theory approach, the matrix of FT cor-
responds 1o introducing the cyclic group structure Cy, on
the set of input data: the set {0, I, - -+ , N — 1} can be
considered as a group; the group operation * is modulo-
N addition (commutative operation}. The set of group ele-
ments 1s closed with respect to group operation. Also, for
each element a of Cy, its inverse element is defined as
a 'suchthat @ * @' = 0 = N(mod N). Element 1 is
the generator of Cy; any other element can be obtained
from 1 by repeated use of group operation.

Example 1: Group C, of the order 4 contains four ele-
ments: O, F, 2, 3. Group operation * is modulo-4 addi-
tion. Evidently, for each pair of the group elements, the
result of their modulo-4 addition is also the group ele-
ment,e.g,, 1 *2=3 23 =2, 3%3 =], etc. Inverse
of 0 is 0, inverse of | is 3, inverse of 2 is 2. inverse of 3
15 1.

For the cychc group Cy, N distinct roots of unity 1, Wy,
Wy, - -+, Wy ! form the set of N distinct 1-D represen-
tations. A I-D representation R is the homomorphism
R:Cy — i where 1> is the field of complex numbers. For
any two group elements a, b e Cy, R(a * b) = R(a) -
R(b}) (usual multiplication). Therefore, for a cyclic group,
It 18 enough to define N distinct 1-D representations for
group generator 1.

Example 2: For Cy, Ry(1) = 1 (trivial representation);
R(D)=W, =7 R(l)=W.=—1.R(l) = W =
—j. To find R;(3), the property of the homomorphism
can be used: R3(3) = R3(1) - R3(1) - Ry(1) = (—; ¥
= —j, etc.

Representation
Group Element X Ry{x) R (1) R.(x) Ry(x)
0 I I ] |
2 | Hﬂ'; = ] W, = | W= —1
3 ] Wi=—-j Wi=-1 W =j

The tabie is the usual DFT matrix. To obtain FFT, the
inverses of group elements in the leftmost column must
be taken (row reordering):

Group
Element £ R,(x) Rz R.(x) Ri{x)
0=0" 1 l ] ]

3= ] — =1 J

2=72"" 1 -1 : =1

i =3"" : J -1 —J

which is the matrix of FFT (Fast Chrestenson Transform
for 4 points; [13], {271, [28]).

The spectrum f (w) is obtained by multiplication of
vector of data by the matrix given by the table above:

flw) = iEﬂf(I) R.(x: w=0,1,2, 3.

(2.1)

The extension of this approach is to introduce more
general group structure on the input data set. For a general
group structure, 1ts group operation may be noncommu-
tative (non-Abelian groups). The theory of non-Abelian
groups allows us to construct generalized transform
(GDFT) based on group representations that in the gen-
eral case may be multidimensional (matrices with com-
plex-valued elements). The GDFT in this case can be also
defined by a transform matrix; when the input data vector
1s multiplied by this matrix, the result is the vector of
generalized spectrum elements. The GDFT has properties
analogous to DFT (linearity. scaling property, group con-
volution, Parseval’s theorem, etc. [2], [12]. [16]). For
GDFT over certain non-Abelian groups, the transform
matrix has the sparse and simple form; for example, non-
Abelian quaternion group O, (of the order 8, that is, 2
group of 8§ elements) implies GDFT matrix 8 X 8§ with
16 zero elements, and the nonzero elements are +1, +;
only, that is, no multiplication is needed (see Section II],
Fig. 3)..

Multidimensional DFT that is of interest in many ap-
phications 1s defined for m dimensions as [1]:

fﬁ(wﬂ’ Wi, =50, wm—i)
| l np—1 -1 Far = | = |
= TS
R~ "y " " " Ry o=0x0=0 Km—| =0
‘f('rﬂ“'xl* Tt !Im—l)
Wltnmw::ll.':l + + o r om W;-;-m; :Imnl (22)
where
W, = exp (<2mi/n); 0=y <nm— I
C=w=n-—-1, i=01"-".,m-1:

the dimension 7 has n; points.

In terms of group theory. multidimensional DFT is
equivalent to the FT over the group G with the following
structure:

G:GU.XG| X ) xGm—i"




whare ** X" denotes the direct product of cyclic (com-
mutative) groups Go, Gy. = , Gu-1- The group theory
approach allows us to obtain the matrix of m-dimensional
FET as the Kronecker product (&) of FFT matrices for
the constituent groups. -

Example 3: 3-D FFT (with 2 points in each dimension)
can be described in terms of the group structure G = C;
%X C, x C,. The FFT matrix is the direct preduct of three
matrices [ _;]:

m 1 1 1i1 1 1 1
1 =1 1 -1} 1 =1 1 -1
i1 -1 -1 1 1 -1 =1
I -1 =1 1 1 -1 -1 1
11 11}—1 1 -1 -
1 -1 1 -1 i-1 1 -1 1
1 1 -1 -1 i-1 -1 1 |1
1 -1 -1 1i-1 1 1 =1
=[1 1}@{1 1}@[1 1
1 -1 Po—1 1 -1

{Fast Walsh Transform [1], [13]).

In this work, even more general muitidimensional FFT
(i.e., multidimensional GDFT) is considered. The group
structure G = Gy X G, X * * + X G, -, introduced on the
N-point data set (N = ng -~ ny © - * Ry, Where N 1s
the order of group G, that is, the number of elements of
G ) may include noncommutative groups as well as com-
mutative (e.g., cyclic) ones. That implies that the matnx
of GDFT may be expressed in terms of smaller transform
matrices (for comsmutative groups, in terms of their Kro-
necker product) [8], [12]. These generalized FFT's over
finite mon-Abelian groups have been widely used in dif-
ferent applications [9], [14], [15]. The rule of multiph-
cation of the input data vector by such a maurix for fast
GDFT is equivalent to the factorization of the GDFT ma-
trix. As a consequence, the GDFT algonthm can be per-
formed in m steps. Step number i corresponds to the but-
terfly algorithm of the GDFT for constituent group G
performed in parallel on a number of disjoint subsets of
data (input data or the intermediate spectra). This creates
a possibility of exploiting the parallelism of the algorithm
in each step by use of a muitiprocessor system. However,
multiprocessor execution creates a problem of interpro-
cessor data exchange. Both aspects of multidimensional
GDFT (paralielism and additional time needed for data
transfers) are considered in the following sections. Est-
mation will be given for the execution time and for the
number of data transfers as a function of group structure
and of the number of processors.

[11. EVALUATION OF THE NUMBER OF (OPERATIONS
Neepep FoR FFT Over Group STRUCTURE & = G
X Gy X +++ X G,_, UsiNG MULTIPLE PROCESSORS

Let G be an arbitrary finite group of order |G| = N;
tet V be the vector space of dimension d over the field <
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of compiex numbers, and let GL(V) be the group of all
nonsingular 4 X d matrices with elements in ... A rep-
resentation of G is a homomorphism R: G — GL(V), that
is, forx,ye G,x*ye G, R(x*y) = R(x} * R(y}
(where * is the group operation). A representation R 1s
irreducible if there are no nontrivial subspaces of V which
are mapped to themselves by all matrices R(x}, x € G.
Every representation R,. is equivalent to some unitary rep-
resentation R, [i.e., to a representation with unitary ma-
trix R, (x)], that is, there exists a ¢ € GL(V) such that
R,(x) = O 'R.(x) @ for all x € G. The set of all irre-
ducible unitary representations for G has the following
orthogonality properties [7). Let R, denote the (s, #)th
element of matrix representation R, .(x), and let R, (x) be
of dimension 4,.; then

.
ﬁ TR () RET) = 7 bbb, (3.1)

> d,TrR,(x) = Né (3.2)

Ru'ER[G ]'

where R{ G ) is the set of all irreducible unitary represen-
tations of G; ¢ is the identity element of &) & 18 the Kro-
necker symbol; Tr A4 is the trace of matrix 4, and A de-
notes the adjoint matrix (transposed and complex
conjugate) of A. The relations (3.1} and (3.2) aliow us fo
define the direct and inverse General Discrete Fourier
Transform (GDFT) over G as follows. If fis a funcuon

f: G — .-, then
. d, -
flw) == 2 f(x) RGT)
f@) = X Tr(f(mR(x)  (33)

where x~! is the inverse of x in G (cf. formula (2.1),
Example 2 of Section II where d,, = 1).

Let G, |G| = N, be a direct product of groups G;, 0
< j<m-— 1, where |G;| = n;, N = myn = -+ -
Rpp— | -

In the case of non-Abelian groups, G; and conseguently
G have matrix representations {7}, [12], {15].

Denoie the elements of Gas X, e G, 0 = bk = N — 1,
and the elements of group Gy as x; € G 0 = j=m — L
Let R(G) be the set of all irreducible unitary represen-
tations of G with elements R,. € R{G ), and let R(G;) be
the set of all irreducible unitary representations of &; with
elements R,, € R(G;), 0=j=m-—1][I2].

Following [121, note the following.

NIfXeG then X = (X0, X3, " " v Xy 1 5 € G (X
may be represented as m-tuple of elements of groups G;,
0=j=m-—1)

2y If R, € R(G), then R.(X) = R, (xp, X}, ="
Xp_1) = @;-";ﬂ' R, (x;), where R“,J. € R(G;); symbol X
denotes the Kronecker product of matrices. Thus, for
every R,. € R{(G), we may denote w = (wp, w;, **

wm-—]}*
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The direct Fourier transform over group & may be de-
fined as follows [12]:

f(H-’) =.F{WD! Wy, """, wm—l)
ZZ Zf(ar{}-,-rh - ﬁ*rm—l)
N {1 I | A — |
m=]
® R, (x")
j=
d..
= E tz—}l (' T (IZI:' (% (f(-‘rﬂ: Xy, "0 TIm--l)
R, (x"))
& R“.l(g:,'l)) @ - - ) ® R“.m_,(x,;'_,)).
(3.4)
The caiculation of spectrumf[wﬂ Wy, © Wy, 1) IS

performed in m steps (Step j over gmup Gj, 0 = =
m— 1).
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During Siep j, the variables wg, wy, - - -, w,_|, X4,

*, X are fixed, and the summation ts performed by
vanabie x; € G;.

A du'
f(W{}, Wy, =" ,Wm—l) %Eﬁu(""ﬂ& W, - awmﬁl}'
et X;bethe ithelementof G: X, e G, 0 =i = N —

1. It will be convenient to list the elements of G 111 a cer-

tain order. If x; designates the ith element of group G;, 0

=i=n—1,0=j=<m-—1,letthe elements X;, X,
, Xy— of & be ordered as follows:

X, = (x5, %9, x9, -

X, = (J:L!,, :c':,],.rg, R ,J:E!_l)

. ,IE;-I)

v o o 0 (3.5)
XI =(IEITII='I"’1 Iﬂ'i"l)
............. H ; : -1 [ I 3 "i.: .‘- .I 4 ‘-" : . HH'

XN—I=(IG Il ,.-rm_-ll_l)*

Element X, = (;cﬂ, PYEEE ) xi—\) precedes the ele-
ment X (J: .r-“, - , IJ.-;:’-]I) if iy, = jo, i = = Jis

Step O ,z'k_;‘:jk_,,andfk < jyforsome k, 0 =k = m —
l.
Jolxg, 21, » =+ X ) Example 4: Let G = (5 X §; X Co;ng = ny = 2,
& flxg xp = " 0 X1 ) = 6; N = nmgnyny, = 24; m = 3 (5, ts the permutation
group of the order 6). Elements of G are listed as follows
Jilwo, xys " LX) (only superscripts of x; are given); group number j, 0 =
= 3 flxg X1 -t Xy ) R (x5 "), J = 2, is implicitly determined by the position of super-
0 " " script in a 3-tuple corresponding to X; € G.
X=10(0,0,0) X, =(0,3,0) X.=1(0,0,1) X53=1(0,3,1)
X, =1(1,0,0) X, =(1.3.0) X;3={(1.0,1) X9=1(1.3.1)
Xz — (0, l, 0} Xg = (0, ‘4, D) XH - (0, 1, 1) X_ﬂﬂ - ([}# 4, 1}
X, =(1,1,0) X=(1,4,0) Xs=(1,L1) Xo = (1, 4, 1) (3.6)
Xe=1(0,2,0) Xip=1(0,50) Xi¢=10(0,2,1) X =(0,5,1)
XS-(I,Z,{]) X” ={l, 5,0) X”:(l, 2,1) X33=(l, 5,1}
Step [: The generalized Fourier transform over group G = G,
o X Gy X - X G, _ is performed in m steps as shown
f2(wo, w1, o » Fm 1) earlier. Stepj, 0 = j = m — 1, involves the calculation
= Wae X1. *** . x. _ 1% R of ntermediate spectrum using the algonthm speci-
2 filwo, %1, <+ Zpoy) @ Ry (x7) f intermediate sp ing the FFT algorithm sp
o fied by the nature of group ;. To perform the spectrum
Step j: calculation of step j, N/n; subsets of elements of the in-
termmediate spectrum are to be taken as mput data for the
Sar(Wo, Wi, » 0 oW X s Xe) algorithm of group G;. The structure Df‘ each one of N/n;
_ _ _ _ | subsets is as follnws (X Xon -0 X, 3 (X denc}tes
%ff (wo, Wi, j=1 A > Fm=1) an element of intermediate spectrum array} where
& R (x'). _
;( J } Xk.;. = (,:-:D, ST L I_E. Xty 77T Im-l)
Step{m — 1):

fm(wﬂ'.r Wi, =7, 1"""’m—l)

= Z fmul(wl}ﬂ Wy, * 77

AT

s Wiy Xy o i)

@ R“n |(~":m— I )

X, = (xo, X0, """ X0 X, Xyt Xt )

Ly Xm—1)

C o X L)
(3.7)

L7 .
Xk: — (Iﬂ, II? o=k ) Ij—l'l' "{'1_1']:;’,_.._]! —
wi—1

Ag,_, = (xg, X1, = " - X XD T Xy
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that 15, each set (3.7) must contain all elements of group
G;mn (j + 1)th position: elaments xg € Gy, x, € Gy,

;—I € G f=1I _;+I € G+ i» © T Ay E Gm-—l are
cunstant for each set (3.7) bul different for different sets.

From the viewpoint of practical calculation, we can
consider the formally defined procedure of spectrum eval-
vation (3.4) as the m-step procedure that transforms the
input array of N values into the output array of the same
size, In the following consideration, we shall denote the
elements of input, output, or any intermediate spectrum
array by their numbers only, since the values of array ele-
ments are not important for our purpose (that is, to trace
the data distribution and transfers in case of multiple pro-
cessors). We shall assume also that for the butterfly al-
gonthm of any conmstituent group, the numbers of input
elements are retained for the outputs. For example, if X,
X, are entered in Step j into the algorithm of C, group,
the resulting outputs X; + X,, X; — X, will be considered
as updated elements number / and number &, respectively,
of the Intermediate spectrum array of N elements. (For
Crh, Rp(x) = (=1 w,xe {0, 1})

In the following evaluations of the number of opera-
tions, we do not take into account the operations needed
for spectrum reshuffling and normalization.

Let p denote the number of processors operating in par-
allel during the calculation of the generalized spectrum.
Assume that each processor contains local memory, but
there 13 no global shared memory [23]. In each one of m
steps of spectrum calculation, the & elements of the in-
termediate spectrum are partitioned into disjoint subsets
(3.7). In step j, N/n; subsets (each containing n; ele-
ments) are to be used as input data for butierfly algorithm
of the constituent group G;. In order to avoid idle proces-
sors in any step, N/ (pn; } must be an integer for any j, 0
=7j=m-1.

Denote the number of operations needed 10 perform the
butterfly algerithm of G; on a single input data set (3.7)
(with one processor) as L(G; ). (In the general case, the
algorithm is characterized by the pair of numbers—the

number of additions/subtractions and the number of mul-

tiplications. We shall assume that L({G; ) is the equivalent
number of additions.)
To perform the spectrum calcuiation over G = G, X

Gy X -+ X G,_, by a single processor. L(G) equiva-
lent operations are needed:
=1 m—1 L(G)
L(G) = EL(G}H n-NZ (3.8)
l':#j

To generalize (3.8) for the case of p parallel processors,
denote L'”’( G ) the number of operations needed for spec-
trum calculation over G with p processers. Evidently,
L{G)y NS L(G)

LYNG) = (3.8a)

P P i=0 K

However, for p > 1, the data transfers among the pro-
cessors are needed (at teast in one of the algorithm steps).
Therefore, the total time 77'(G) needed for spectrum
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calculation over G with p processors is:
TOHG)Y = LPYG) - 1, + M'P (Gt

where 1, is the time needed for one addition/subtraction,

t. 15 the time needed for one data transfer (communication
time), and M'7'(G} is the total number of transfers
needed for spectrm calculation over G with p processors.
The value of M*”'(G ) is not only a function of p and of
the group structure for a fixed |G| = N, it depends also
on the type of the processor communication network.

To minimize M'7'(G), the communication network is
needed where each processor can communicate directly
with any other processor (if the communication is re-
guired by the algorithm), and is able to receive or to trans-
fer a unit of data during communication time r.. This type
of network is of high cost for a large number of processors
(although not always the complete network is needed). It
seems more reasonable to assume another extreme case
when all processors communicate via single bus (*‘uni-
bus’’ connection). In the last case, during the transfer time
1., only one data unit can be transferred from one proces-
sor to another. This type of connection puts some restric-
tions on 7, — the unibus must be fast enough. in ovder not
to increase significantly the total calculation time.

Assume the following.

a) Forany j, 0 = j = m - 1, the N/pn; value is an
integer (no idle processors in any step). The job load is
distributed equally among p processors.

b) The input data are entered into local memories of p
processors as follows: first N /p elements of the input ar-
ray are given to processor 1, next N/p elements io pro-
cessor 2, ekc.

¢} For any group G; (that s, in each step of the algo-
rithm), any set of input data containing n; elements is de-
livered to & single processor. It can be shown that the vi-
olation of the rule **single group set — single processor®’
results in a drastic increase in the number of interproces-
sor communications needed, and in many cases the num-
ber of the operations is also growing.

Define two parameters: p;, = N/p — the number of
elements of G per processor; ng * ry * + + + - n; — block
size forgroup G;, 0 = j = m — 1.

The concept of block size will be helpful in evaluation
of the number of interprocessor transfers. In consequence
of {3.5}, the accepted ordering of the elements of G is as
follows. For processing over group Gy (Step 0 of the al-
gorithm), N/n, sets of elemments of G are to be entered
into the algorithm of G, as input data. Each set contains
ny elemems, and they follow in succession (again, we List
only the numbers of the elements):

{0, 1,2, --+ ,ng— 1} (Set0)
{mg.mg + 1,mg +2, -+, 2ng~ 1} (Set 1)
{”u'ﬂ1‘ " T Ry T Rpy vt

fip © N **nm—l__l_'Nh"l}
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For the case when transfers are needed (ngn; ~ » -+ -
n; > p1 = N/p} deﬁne parameter K;. 1 = j =m-— 1,

For processing over group G, (Step 1}, N/ sets of
elements of the intermediate spectrum are to be entered

into the burterfly algorithm of G,: each set contains n, as K = pony " cn;fpy = (Rgny » - n;p)/N: K
elements. The elements are chosen ‘“‘skipping over ng — 1S the: number of processors per block of group G;. By the
| definition, K; is an integer greater than . The numbar of
{ﬂ, (e 2?’1[), . ,(H| - l}ﬂ{]} {SEIG)
{1,”u+1,2ﬂn+1.“‘a(ﬂl"“l)ﬂn+1} (Set 1} (3.9)
2, +2.2ng+2, -+, (m = N)mg + 2] (Set2) |
_{ﬂn“‘l,z.ﬂu_l,:inu“'l, ,[ﬂ]_l}ﬂﬂ+ﬂﬂ“* ].=ﬂ|[;.ﬂ'|_i} (SE[(HU"‘ 1)].
The elements listed above form block 1 for group G;
there are N /ngn, blocks in total for G, each containing lines (i.e., group G; sets) in a block of G; is
ngn, clements. Similarly, forgroup G;, 0 < j = m — 1, N
there are N/(ngn, - - - n; ) blocks each containing Bghy * " " Bjoy = e "
nony - - -+ - n; elements. (Evidently, for G, _,, there is S+ m— 1
a single biock containing all N elements of group G.) For N PRph, n, |
the group G;, elements in block iines are chosen *‘skip- = pn; N = E " Ky
i J

ping over ngry ¢+ - oo — 1.7

Example 5; Let G = Gy X 57 X (5 {where S5 18 the - (3.10)
permutation group of the order 6}, N = |G| = 24, m = Since ngn; + -+ * n;., is an integer as well as N /( pn; )
3, 1y = n, = 2, n, = 6. Block structure for 3 steps of the  (by the assumption made above), X; is also an integer.
spectrum algorithm is as follows:

Step O Step 1 Step 2
{0, 1} Biock 1 0,2,4,6,8, 10 0, 12
Block |
2, 3} Block 2 1,3,5,7,9, 11 1, 13
{4, }Blaek 3 2, 14
Block |
12. 14, 16, 18. 20, 22
Biock 2
£20, 21} Block 11 13, 15, 17, 19, 21, 23 10, 22

{22, 23} Block 12

Since before processing (before Step 0) N/p = p, suc-
cessive elements of G were delivered to the 1st processor,
next p, successive elements to the 2nd processor, eic.. the
block sizes in successive steps of the spectrum caiculation
allow us to trace the distribution of the intermediate spec-
frum eiements in block lines among different processors
and to determine whether the interprocessor data transfers
are needed in a certain step. The following rule 1s valid:
if the block size ngny - -+ - n; = p) = N/p, no data
transfers are needed in Step /. If the biock size ngn; + + - -
* n; > p|, the transfers among p processors must be per-
formed. (Note that the term *‘‘transfers needed in Step ;7
means transfers needed before processing of Step j.)

It can be easily seen that the transfers are never needed
in Step O (block size ng) if our previous assumption 18
valid that N /( pn; ) is an integer forany j, 0 = j = m —
t. In particular, N/( prg) = 1 is an integer which means

< p, (no transfers needed). For Step 0, there are N/n,
trivial blocks each containing onty one line.

11,23

The relation (3.10) means also that it 1s always possibie
to distribute the lines of a block equally among p proces-
sors (in case transfers are needed in Step j).

The number of transfers in Step j of the algonthm de-
pends upon the relation between n; and K;. Consider two
cases: n; = Ffjand n < K.

Case n; = K;; Assume that Step j is the one where
transfers are needed. Since the elements 1n any block col-
urmn follow in succession, and since the ngny » - -+ - A,
elements of a block belong 1o K; different processors, then

the gmup order n; must be an mteger multiple of X;: »;

AK;, A = ] mtager

Blﬂck size for group G; may be expressed as

ﬂ

nﬂnl - - = w - nj — n{]ﬂl L] = B & ] j K E

Since ngn; - - -+ + n; and K| are integers. the value of 4;
= n;/K; is also an integer.
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Deliver first nyn,
G; to the first one of the participating processors, the sec-
ond ngn, - - - n;_/K; lines to the second processor,
€ic., then In each line of a block A; = n;/K; elements
belong to the proper processor (that 18, they are already

located in its local memory), and the remaining n; — n;/ K

elements are to be transferred from other Processors. The
total number of transfers in all blocks of G; (that is, in
N /n; lines of all blocks together) is

N n; ]
— (nj — _;) =N(1 - ——).
n K, k;

Case n; < K;: In this case, rigry ot oy < Knﬂn;

"Ry, OTHgily * =t oy D ngny c n;/ K,

= p,. In other words, one biock column contains more

clements than the number of elements per processor. The

block column size must be an integer multiple of p, (block
cotumn is distributed among N; > 1 processors):

flighy = = ** " I = NPy
block size
HDHI L LI I | ] ”j_l

flghty * * 0~ = p pw; = N; - png,
|

since p, and n; are integers, N, is also an integer. It fol-
lows by deﬁmtmn that ¥; > I:

N_”D”T""'”j—1 ”ﬂ”i..i..qj_%-
! P Flnj Hj
N; = 1 for K; = n; which is the case we considered above.
In the last case all elements of each biock line belong
to d1ﬂ'erant processors. It 1s possible to distribute ngn, -
n;— lines of the block among X; processors in such

a way that only one element of each line belongs to the
proper processor (that is, this element is aiready located
In memory of the processor that the line is delivered to),
and the remaining n; — 1 elements are to be transferred
from the other pmcessnrs The total number of transfers

for all blocks is

g(rzjﬁ [} =N(l _-nl)

4 g

Both cases (n; = X and n; < K;) may be unified in
one formula for the numbf:r ﬂf transfers among p proces-
sors in the beginning of Step J:

1
M (G =N[1 -
(G)) ( min(nj,ﬂ}))

(note that X; by definition depends on the number of pro-
CESS0rs).

Formula (3.8} may be generalized now for the case of
p processors. Total time T'7' (G ) needed for spectrum

n;_/K; lines of a block for

2. FEBRUARY 1990

calculation over G = Gy X G, X X G, _, 18

TP (G) = L™ (G) 1, + M (G) - 1,
m— 1! m=

N L,
=_{Ia2 (J)'i‘kﬂfz

=0 Hj i=1

I
“ (P o) (1 N min (»;, K;)f)I

(3.11)

where N = |G| =ngn, -+ - - n,_ 31y = 1Gi|. 0=
= m — 1; p is the number of processors: t, is the time
for one addltmn 1. is the time for one data transfer; L( G;)
15 the number of operations (converted to the equwaient
number of additions) to calculate the spectrum over G;
(single butterfly algorithm with one processor); k, = 2,
for the complete communication network, and k, = p, for
unibus connection of processors; p, = N / p is the numbar
of elements of G per processor; & {p.n, - ,n)=
for ngmy - - -+ - n; < p, =N/p,and¢(p,nﬂ, R
n; } = 1 otherwise; K ts the number of processors per one
blnck of G;; L“”(G} 15 the total number of operations
for Spectrum calculation over G (converted to equivalent
number of additions), with p processors; M*?’ (G ) is the
total number of interprocessor transfers of data.

The upper limit of the number of processors for this
approach 1s

= N/( max n),

!
Qij=m—1

Example 6: G = C, X C,; X @, by 4 processors: N =
32,m=3,ny = n; =2, n, = 8 (see Fig. 1). Number of
additions/subtractions: 8 + 8 + 20 = 36. (A processor
can perform C,-butterfly with a pair of input data at a
time; for example, P; processes the pair (0, 1) and then
the next pair (2, 3} in Step 0.) Number of data transfers:
24 =32 X (1 = 1/4)Y(¢; =0, ¢y = 1).

N=|Gl, n=|G].

special Case of n; = B, p, Integer B; = I for All j, 0 <
J=m-—1|

In this case, formula (3.11) can be simplified. It can be
shown that the data transfers are needed in the last step

only:

‘f’ﬁ:qﬁ'i = - =¢'m-2=[}= and rrbur—-l = 1.
In the last step, K,,_, = p, and n,,_, = p, so that min
(7n—1, K,,_ 1} = p. Formula (3.11)} is simplified as fol-
lows: |
m=|
N L{G,
TPHG) == (:ﬁ 2 LG) + k.r{.(l — 1))
P Jj=0 n P

n; = B;p, O0=j=m— 1.

(3.12)

I e L 1y e
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STEFP O STEP 1 STEFRP 2
N (8] [e]])

__L_Hbcgm BUTTERFLY L_g____':—"
— it of Q, [E——
—— P [ Z Py i 28
—— = 8 — SUTTERFLYE—*
= = e
L] R 15 ; L, P, ﬁ‘::
— s e & ) QRHT—E‘"“"__
———y . o 3 —]t:
E o
Fy Py Py E
= i RFLY] 7 ™
of Q, 11-7—_:
N L B
P, s P, P, E

Fig. 1. The group & = C, x €, X 4 by 4 processors.

Special Case of Fast Walsh Transform {13]
G=Cy; X (Cy X -+ XCy=C7{(mgroups);
Gl =N=2% nm=2 L(G)=2
0=<j=m-1.
For the number of processors p = 2°, where / < m —

1, transfers are needed in steps with numbers j = m ~ i,
since block size for Step J is

Agity * Mgy
N

p=— = zm—:';
P

forj + 1 >m~— |,

= 2.!'4-'1; 2_;'+I ~ zm—r'

orj=m — i
For unibus connection (k, = p = 2')
TPNC =m-2""" ,+i-2""" - 1. {3.13)

Example 7: G = C, X C5; X Cy X C5 by 4 processors:
16 transfers (unibus}, and 16 additions/subtractions {(see
Fig. 2). Data transfers are needed in Steps 2 and 3 {(before
the processing). |

The number of transfers in (3.13) for Fast Walsh Trans-
form is similar to the result of Gannon and Rosendale [23]
(differing by a factor of 2 since the algortthm used in [23]
includes spectrum reshuffling).

Special Case of Fast Chrestenson Transform [13]
G=C,xC, x "
IGl=N=4¢" n=q L(G)=q(qg—1),

0=j=m-— 1.

X C, = C7,

I

A

2/Y110 é

12 4 14/% 14 14
X1 3/ W 2 7 7.
o 15 15 3 15 15 P 15, 15| E, 13

PFER Fllow bbbl kbl

4

Fig. 2. The group G = - x £, X C; x T by 4 processors.

For the number of processors p = qi, where i = m —
1, the data transfers are needed In steps with numbers f
= m — i

I (Cm < mg" (g ~ D),
i(g = . (3.14)

(In (3.14), the relation L{C,) < g(g — 1) was used that
overestimates the number of operations needed for spec-
trum calculation.) In case of FFT over a group C, ¢ =

+ qm_l

>

L{C,}) = 2q(log. g — 1) + 2.
By (3.11) forp = 2° = 2%, we obtain

TR (C) =2/ (2T - D)+ 1) g,
4 2000 (2T = 1) - 1. (3.15)

The Number of Communication Links Among p Proces-
Jors

Up to now, the term “‘compiete communication net-
work’™’ has been used, without entering inte details of pro-
cessors connection. It was assumed that the network al-
lows communication in parallel among any processors that
need to exchange data. In fact, our model of *‘complete”
network does not always need to have all p(p — 1}/2
communication links among p processors; which links are
to be present in the network is determined by the structure
of group G = Gy X Gy X *++ X G,_,. The concept of
block introduced in this section allows us to obtain the
formula for the exact number of communication links for

the arbitrary group structure G = Gy X G X -+ X
G,_,and forany p < (N/{ max n;)).
J=j=m-1

One case when the complete network is needed is rather
evident: the case whenp = n,,_,. Forj = m — 1, there




234 IEEE TRANSACTIONS ON ACOUSTICS. SPEECH. AND SIGNAL PROCESSING. vOL. 38, NG, I FEEBRLUARY 1990

is a single block of N elements, and K, _; = P. By defi-

nition, N, = K;/n; (we recall that K; is the number of
different processors per block. and N ts the number of
different processors per one block :::ﬂiumn} Ifp =n,_1,
then N,,_, = 1, and all the processors in each block line
are different. Evidently. the complete network 1s needed
in this case. As to other cases, consider again two possi-
bilities: n; = K; and n; < K. {Note that bidirectionai

i
cammumcatmn lmi.s among all processors are assumed.)

Case n; = K; (ngn, - - - * 'Hj}ﬁ:N/P}

It has been shown that in this case, n; = A;K;, where
A; = 1 is the number of block columns with the elements
located in the memory of one processor (there are K; pro-
cessors in a block). The number of communication finks
is (XYmoo s omeoy = (p/2) (K; — 1) (where

Mioy* * " * My 18 the number of blocks).

Case n; < Is;

In this case, N; = ng - n n,_/p = K;/n;; N,
> 1 is an integer (N, is the number of different processors
in one block column}. A block column contains ngn, -

n;_, elements; the number of different processors
in one block line is n, = K;/N;, and the number of links
needed for the transfers amnnﬂ n; processors is (7).
This value is to be multiplied by pfn , to obtain the total
number of needed communication links, since there are
K; processors per one block, K;/n; sets of different pro-
cessors {each set consisting of n; processors), and the

number of biocks 18 #5.¢ * ** - Byl
K;
1; e R
_ Mol oy By * My
P 7
-_N _r
(N/p)ny

The general formula for the number of communication
links needed for the spectrum calculation over an arbitrary
aroup G = Gy X G, X - -+ X G, -, With p processors
that may commaunicate in parallel, is as follows:

nt—1

CL'PYG) = ZI ¢ (P, mos 1 "7 7 L 1)
=
44
; (%ﬁ’l.j(”jsf’f_;')i(ﬂ} - 1)
p .
+ Yo (7. K)) 5 (m; — 1)>1 (3.16)
where
th(pﬂ g, =" - ﬂnj}
=}., ifﬂﬂﬂ‘l""'n EPI=N’XP,

and 0 otherwise;

V(g K
= ]. forn;, =z K,
’:L'E.j(”j* ‘E‘:')

and 4 otherwise;

=1, forn, < K;, and 0 otherwise;
ﬁa=n@n.* R
N

Special Case of Fast Walsh Transform 1], [13]

ForG=C, X Cy X +++ X C. = C7, the number of
comimunication links does not depend on the order of
group G. Forany |G| = N = 2", the number of links is
the function of the number of processors only. It 1s the
minimal network for p processors: all the other group
structures invelve the larger number of links for p > 2.
Assume p = 2°: as it has been shown earlier, for Fast
Walsh transform, the interprocessor transfers are needed
in steps with the numbers j = m — i where i = log. p

_  —fm—ii=1,
K, = 2 ,

forj = m — 1,
K; = 2,
CLYN(CPy=(m—-1~—{m—i—-1))(3)2""

—1 ioe
zp g p

andn_,-=2£Kj-.

(3.17)

(bidirectional links). The network for Fast Walsh Trans-
form is the binary cube with p vertices and (1/2) p log,
p edges. Table I summarizes the numbers of communi-
cation links needed for different groups with N = 64 and
N = 512. The minimal communication network 1s the bi-
nary cube (for C$ and C groups) for any value of p. For
cumpansun one of the table columns shows the number
of links in the complete network for each p. It can be seen
that for the smalier groups (N = 64), In most cases the
complete network is needed; the exceptions are CS (for
all p) and C3 (forp =
case of large groups (e.g., with N = 512), for p >
n,_|, some of the sample groups are nexi to the best
(minimal) network of €3 having smaller network than the
complete one. However, these networks, although being
noncomplete, contain about twice as many links as the
binary cube network of Fast Walsh Transform. Note that
among the groups next to the best, there are those con-

taining non-Abelian guaternion nmups (. or a {actor of
0, combined with C, groups (Q3, C3 x 03, C x 0,).

IV. CoMPUTER VERIFICATION OF THE NUMBER OF
TRANSFERS AND SAMPLE CALCULATIONS FOR
DiFFERENT OROUPS

To verify the number of mterprocessor transfers in for-
mula (3.11), a simulated multiprocessor spectrum calcu-
lation has been performed by a uniprocessor computer.,

8, 16,1e.,forp > n,_,). Inthe .

T d g A e m A
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L
TABLE 1 :
THE NUMBER OF BIDIRECTIONAL COMMUNICATION LINKS NEEDED FOR !
INTERFROCESSOR DATA TRANSFERS WITH pp PROCESSORS. FOR DIFFERENT
GQROUPS
M= 512
3 a .2 8
G CB ﬂzxca EEJ-:CE
e\ |complete ] 3 - E 2 2
natwork Ce Q; CuxCp xC,.  CpxQ, CoxQ5 C,*Cig
2 1 1 1 1 3 1 1
4 6 4 8 6 6 5 6
8 28 12 28 28 28 28 28
16 120 a2 64 120 G &4 120
32 496 a0 1680 256 160 144 496
64 20186 192 A48 - 448 320 -
M = G4 2 3
= ':B czx{:‘xcﬂ czxﬁﬁ
Complete 6 a 2 3
\ network Co Ce @a G %G, %xQ, CoxQy
2 1 y’ 1 t 1 1
4 5 4 6 6 6 6
g Z8 12 16 28 28 28
18 120 az 48 - - -
ap 406 20 - - -
TABLE I
THE NUMEBER OF INTERPROCESSGR TRANSFERS M7 (&) FOR G COMPOSED
As A DirecT PropucT ofF Six €, Groups anD ONE O GROUP
@ CE cﬁ C_xC c‘xc xEE EEJ{E xC3 L':‘Ex{: xc" C.xC J-u:E' c xcﬁ
B 27Cg  CpxlgXts 2XCg*hs P pHCgxLs 2%Cg*tp 8%z
2 256 256 256 256 256 256 256
4 384 512 512 512 512 RIZ 512
8 448 640 TB& 758 768 768 THB
16 704 704 1024 1024 1024 1G24& 1024
32 360 964 1152 1152 1280 1280 1280
64 1216 1216 1216 1216 1408 1535 1536
of order 512, for different numbers of processors. It may

The simuiation algorithm provided an independent way to
count the number of transfers; computer experiments with
numerous sample groups confirmed the correctness of
(3.11) and consequently of the derived formulas (3.12)-
(3.15).

With the use of introduced concept of block. a simple
rule for the ordering of constituent groups has been de-
termined. To minimize the number of transfers for a fixed
set of the constituent groups G;, it is necessary io order
the groups according to the rule: '

G| = |G| = -+ = |Gl

Smal} groups in the initial steps of the algonthm produce
smail block sizes, and the transfers are required in the
minimal number of steps. Table Il shows the transfer
numbers for a fixed sample set of seven constituent groups
(six groups C» and one Cg group; N = 512} taken in dif-
ferent order. For two processors, the number of transfers
is the same for all versions of G. However, forp > 2,
the group C3 X C; always has the lowest number of trans-
fers, while the group Cy X €9 is ‘‘the worst’” having the
greatest number of transfers forall p > 2.

For sample calculations and comparison, several groups
with N = 64 and with N = 512 were chosen. Table Il
gives the numbers of transfers for eleven sample groups

seem at the first sight that low-order group implementa-
tion of G (when n; are small) may result in the lowest
number of transfers due to the lower degree of “‘data in-

“termixing” in the successive steps of spectrum calcula-

tion algorithm. However, small-size group “*design’’ of
G results in the larger number of algonthm sieps. As can
be seen from Table HI, C3 group seems to be the worst
choice having the largest number of data transfers. Never-
theless, C5 turns out to be a good implementation in many
cases due to relatively low number of the arithmetic op-
erations.

To compare the different groups of Tabie 11} with re-
spect to the speed of spectrum calculation, the assumption
1,, = t, has been made (¢, is the time needed for one real
multiplication}. The ratio 1, /¢, varies within the lmits
from 1 {Cyber-205, Cray-1, CDC Star-100 [33]) 10 20 +
30 (Zilog Z-8000 [2]) for different computers and types
of operands. Since in the constituent group algorithms
chosen for our estimations, all multiplications are real
{{1], Ch. 5, cyclic groups) or trivial (the butterfly for the
quaternion group shown in Fig. 3 [13]), the choice of 1,
= 7, seems to be reasonable. The ratio k = 1./, varied
from 0.02 (fast bus as the Nanobus of Encore Multimax
(34D to k = 1 = 1.5. The choice of the upper imit for k
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TABLE III

THE NUMBER OF INTERPROCESSOR TRANSFERS (U NIBUS) FOR DHFFERENT
CONSTITUENT GROUPS WITH &V = 512

NN

~
f3 fy
—— il e - » 5 .
] /AN
FS L fﬂ
fﬁ i-b;i‘l!t.., ﬁs i
""'-,_ )
IF? . L ) '."'-u“ fﬁ' -

Fig. 3. Flow diagram (**butterfly "} for the quaternion group Q..

depends on speedup values to be obtained below; it will
be shown that for k = 2, the speedup that can be achieved
with two processors instead of one becomes too low to
compensate the expenses on the additional hardware. With
the increase of p, the speedup decreases.

The use of p processors instead of one reduces the num-
ber of the arithmetic operations for spectrum calculation
to L' (G) = L(G)/p. We shall use the term “‘ideal
speedup’’ to denote the speedup equal to p for p proces-
sors. The ideal speedup can never be achieved because of
the additional time needed for data transfers. However,
for a bus that is fast enough, it is possible to obtain the
speedup rather close to ideal.

The total time T'? (G ) needed for spectrum calcuta-
tionover G = Gy X Gy X - -+ X G, _; was evalnated
for 8 sample groups of the order 512, and for 6 sample
groups of the order 64, for different number of processors
p and for different bus speeds characterized by the param-
eterk = 1,./1,. The T'#' value has been compared to T
time needed for uriprocessor spectrum calculation (no
data transfers). Both 7'7’ and T*!’ were calculated in terms
of the equivalent number of additions (multiplications and
data transfers were converted to equivalent numbers of
add operations) using the relations 7,, = 1,,t. =k - 1.

We shall take the ratio 7' /( pT*"") as a measure of
closeness of an actual speedup T'"/T'" 10 the ideal

& 3 3 .2

Cox@, Cy Cond,

9 b 3 % 2 3., .2

D 1:'.:E CE (> Qz EEJ:E " c ‘:Esxc‘ & L4 P :m:l::1 1 E:u:ﬂ 22 EE:-:CE
2 256 256 256 255 256 2b6 236 235
o4 512 354 JB4 JpL 384 384 <S84 Jo4
B TER 448 448 G40 445 + 4.8 448 448
18 1024 T4 704 768 480 480 480 TO4
32 1280 960 B32 1024 7368 736 - 83z

B4 1536 1216 B9E 1152 - - - -
"y
fa t, speedup. The value of the ratio 7"’ /( p7"'} may be cho-

sen as a criterion for the comparison of different groups
for different p and k. Other criteria may be the total sys-
tem cost, the number of arithmetic operations, the accu-
racy of calculation, etc.

Fig. 4 shows the curves of relative speedup
T J( pT*?) for sample groups C3(N = 64) and CH(N
= 512) for different values of k (that is, for different
speeds of the bus). The smaller group has lower values of
speedup due to the relatively large number of transfers
compared to the number of arithmetic operations. It can
be seen that if the minimum acceptabie speedup is chosen
2s 0.9 of the ideal speedup value { =p for p processors),
then for bus speed parameter & = 1 it is not worthwhile
to have two processors instead of one for G = (5. Fast
increase in the number of transfers results in a decrease
of the speedup fork = 1, p = 2 10 0.86 of the **ideal”’
value only. For k = 1, p = 4 for the same group the
relative speedup becomes only 0.6, thai is, the absolute
speedup is 2.4 only. For a fast bus (k = 0.02), both
groups C5 and C?3 may have up to 16 processors (relative
speedup values forp = 2, 4, §, 16 and & = 0.02, are
higher than or equal to 0.9). '

For another pair of sample groups G = 0, x O, (N =

64)and G = @, X Oy X O, (N = 512), the same rule

can be observed: the smaller group allows us to have the
smaller number of processors for the same bus speed, to
provide the relative speedup not lower than a given cutoff
vaiue (0.9 for our examples). It can be concluded that
smaller groups are more sensitive to the decrease of the
bus speed; for the same value of &, the speedup curves of
the smaller group are lower than those for the larger group.
Figs. 5 and 6 illustrate the speedup change with the in-
crease 1n the number of processors for different bus speeds
in case of two quaternion groups. From Figs. 5 and 6, it
can be seen that there is a fast speedup decrease ¢(below
the cutoff level 0.9) for 4 processors and k¥ = 0.25 in case
of 0, X (2, while the large group @, X @, X O, allows
k = 0.5 for 4 processors for the chosen cutoff value 0.9,
Fast bus with £ = 0.02 in case of 0; X @, X O, allows
us to have up 10 32 processors for the same restrictions
on the relative speedup; for & = 0.02 and p = 32, the
speedup will be about 30 = 32 x (.94, |

For the chosen minimum speedup value, the bus speed
of k = 0.5 is about the critical value for small groups
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Yk =0.02

10,25
}0.5
~——
! ! |
2 4 8 16 3z
PROCE SSORS

Fig. 4. The relative speedup T’ /( pT'*") for groups G = C3 (N = 512)
and for G = €3 (N = 64) as a function of the number of processors and
the bus speed. The value of £ = 0.02 comresponds to the fast bus case;
dotted lines show speedup for C*.

04 - 1.5 -
G=Q,x Q,
0.2 — =
l 1
2 4 8
PROCESSORS

Fig. 5. The relative speedup T*'' /( pT"*") for the small quaternion group
(> x Q. (N = 64) as a functien of the number of processors and of the
bus speed.

k=002

CLi

0.25

0.5

I I !
2 4 8 16 32

PROCESSORS

Fig. 6. The relative speedup T''' /( pT**") for the large quaternion group
G =0, x @, % @ (N =3512)as a function of the number . f processors
and of the bus speed.

€S and @, x O, (two processors give the relative speedup
not less than 0.9). For & > 0.5, the relative speedup is
less than 0.9 for p = 2. It means that if we choose the
relative speedup = 0.9 as the only criterion for the choice
of the number of processors, 1t makes no sense to have
two processors instead of one, if the communication time
is greater than a half of one addition time. For large groups
(C3and @, X Q> X (), the bus may be slower under
the same restriction on the mimimum relative speedup: for
0, X @, X (-, it can be shown that the critical value of
k is about 1.55. and for C3, it is about 1.1 (for two prO-
cessors). Larce groups are ‘‘less sensitive’’ to the bus
speed because of the relatively large number of the arith-
metic operations compared to the number of data trans-
fers; the bus speed becomes less significant.

The quaternion-based groups 0% and 03 compared to
€% and C3 have the higher values of relative speedup for
the same number of processors and bus speed. However,
both quaternion-based groups as well as the groups

'C%, C; are characterized by rather low speedup values

compared to other groups of the same order (see Tables
IV and VI and Figs. 7 and 8). The relative speedup
T /( pT*?)) may be considered as an efficiency index of
a multiprocessor system or as a measure of how much the
expenses on the additional hardware (processors) are cov-
ered. With the increase in the number of processors, the
relative speedup tends to decrease drastically; however,
the total time of spectrum caiculation also decreases. To
compare different group performance (for different p and
ky in terms of calculation time, one can compare the
equivalent number of additions (multiplications and data
transfers converted to the eguivalent number of addi-
tions). _

Table V summarizes the results of calculation for the
equivalent numbers of additions (including converted
numbers of transfers) which allows one to compare dif-
ferent groups G and to determine the ones with the fastest
performance. The two criteria—relative speedup and the
equivalent number of additions—are evidently conflict-
ing. With the increase of the number of processors, the
number of operations tends to decrease as well as the rel-
ative speedup.

The comparison of different structures of G with N =
512 (Table V) reveals that the fastest performance in most
cases is provided by Cg X (), group. This group is the
best one for all p values in case of the fast bus (k = 0.02),
With the decrease of bus speed (£ > 0.02}, the group is
stifl the best for p = 2, 4, 8, 16, while for the larger
values of p and & > 0.02, the C% X Q% group has the
smaliest number of operations. The groups next to the best
are C; (for all p in fast bus case and for the lower range
of p with the decrease of bus speed); C3 % Q% (for p =
32andk =0.1l aswell asfork = 0.5, 1 and p = 8, 16),
and 03 (fork = 0.5, 1 and p = 32, 64).

The calculations of the number of equivalent additions
were repeated for N = 512 for the slow multiplication
case t,, = 5a, to examine the influence of the multiplica-
tion speed on the performance of groups that need nontri-
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TABLE IV

RELATIVE SPEEDUP FOR DNFFERENT GROUPS OF THE ORDER N = 512

AL A

FUNCTION OF BUS SPEED AND OF THE NUMBER OF PROCESSORS | plit, =1,

k = 0.02 (FAST BUS)

g 3 3 32 3_.2
g | ¢ Q c T XCqXC. . CIxC s z
P 2 2 8 4% 2%Cqy Caxa; CaxGy “2xCig
2 .998 998 .99 .99y .994 998 _g98 _999
4 .992 .995 .997 .997 . 996 954 .993 _996
a . 976 .988 992 .99 .98 .987 .983 .99
16 .93 966 .98 .98 .87 .96 .85 .88
a2 .84 .92 .94 .95 .93 .91 .88 -
64 _71 .85 .BS - .86 .82 .74 -
k = 0.1
2 988  .992  .994 . 894 .993 . 981 .988 _994
4 | .9s8  .977 .98 .a85 .98 .97 .97 .98
& . B8 . 947 .96 .96 .95 .94 .92 .96
16 .73 .85 .89 .93 .86 .83 .79 .92
2z .53 L7 77 .81 .72 .67 .59 -
64 .32 .53 .61 - .55 .48 .36 -
k = 0.5
2 .95 .96 .97 .98 . 964 _955 .94 .97
4 .82 .89 Y .93 .90 .88 .85 .92
s | .80 .78 .83 . 85 .79 .75 LT .83
16 .36 .52 .63 .72 .55 _49 .44 .69
ap .18 .32 .4D 46 .3k .28 22 -
64 .08 .18 24 - 19 .16 10 -
k = 1.0 (SLOW BUS)
2 .90 .93 .95 .95 .93 .91 .89 .94
4 | .69 .81 .85 .87 B2 .78 .74 .85
8 .43 .64 LT .74 .86 .60 .55 LT
16 .22 .36 a4 _SB .38 .32 .28 .53
32 BT .19 .25 .30 .21 17 12 -
64 . D4 10 A4 - 1t .09 05 -
1
e ! !
pTF =,
09 i D e
08 o*n FAST BUS
: o3 (k:0.02) - 08 —
2
--------- Cglcg
0.7~ C_3 — o.7
8
—————— CxC xC
4 -g* s
Dﬁ__-___cﬁxqi —_ 4T -
22 Ca*CgeC
X X
Y ol T ot 4% 16
L e U : 0s 4
4 8 &
1 32 37
PROCESSORS PRCCESSORS

Fig. 7. The relative speedup T'''/{ pT°"") for eight sample gronps of the
order 512 as a function of the number of processors { fast bus with & =
0.023.

vial multiplications. The results showed the same pat-
tem—the fastest groups were again C-; X (O, C' C% X
03, and Qﬁ

It can be assumed that fast performance is typical for
the groups C, and @, used as constituent groups in the
direct product of G since the group algorithms for €, and
¢}> do not need multiplications. It can be expected that the
group G = C, X €, X (-, will also be characterized by
a low number of operations since C, also has only trivial
multiplications by +1, +/. The total caiculation time for
the group turns out to be very ciose to the time for the
03 group, being only about 5 percent greaier.

For small sample groups (N = 64, Table VI}, the group
C3 X (3, is the fastest one (forp = 2. 4, 8). The groups

Fig. 8. The relative speedup 7''7 /( pT'"*) for eight sample groups of the
order 512 as a function of the number of processors { slow bus with &k =

I).

next to the best are C5 (for the fast bus, k = 0.02. 0.1
and/orp = 2, 4), and Q3 (fork = 0.5, 1.0and p = §).
The slowest groups in both cases of N = 64 and N = 512
are those that contain high-order cyclic groups Cg and C)
in the direct product for G.

For N = 64, the C; group is aboui 1.6-2 times slower
compared to the best group C3 X Q5. It is very likely that,
in general, the best performance (the fastest one) can be
achteved with a combination of 5 and O, groups in the
direct product of G.

V. CONCLUSIONS

Investigations of tradeoffs between the number of op-
erations needed for GDFT over arbitrary finite groups

—l
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TABLE V
EQUIVALENT NUMBER OF ADDITIONS (2,, = {,) FOR DIFFERENT GROUPS OF
THE ORDER N = 512 as A FuncTION OF BuS SPEED PARAMETER (£ =
r./t.} AND OF THE NUMBER OF PROCESSORS [ )
k = 0.02 (FAST BUS) g
= 8 3 3 a2 3 .2 6 2
N c, Q Cy CXCXC, . C,xCp CoxaQy C,xa, C,xei . .
2 2309 3205 4485 4897 3461 2693 2181 4293 _
4 1162 1608 2248 2504 1736 1352 1596 2152 :
& 591 8049 1129 1257 a73 681 553 1081 é
16 309 Atd 574 634 446 350 286 546 il
. 32 170 217 297 327 233 185 155 - i
B4 103 118 158 - 126 102 92 -
k = 0.t
2 2330 3226 4506 5018 3482 2714 2202 4314
& 1203 1638 2278 2534 1766 1382 1126 2152
a 652 845 1165 1293 4909 717 589 t317
16 390 470 630 672 502 406 342 584
32 272 233 363 386 299 251 232
64 226 190 230 - 198 174 190 -
k = 0.5
2 2432 3328 4608 5120 3584 2816 2304 4418
4 1408 1782 2432 2688 1920 1536 1280 2336
8 G0 1024 1344 1472 1088 896 768 1296
16 800 752 912 a64 784 888 624 T76
32 784 516 T 680 633 S84 616
64 840 548 462 - 556 532 674 -
k = 1.0 {SLOW BUS)
Vi 2580 3456 4736 5248 3712 Doad 2432 4544
4 1664 1984 2624 2880 2112 3728 1472 2528
8 1344 1248 1568 1686 1312 1120 992 1520 j
186 1212 1104 1264 1104 1138 1040 976 1016 i
a2 1424 1032 1112 1048 1048 1000 1096 -
64 1608 994 1036 - 1004 980 1284 -
TABLE VI G, —; introduced on the set of A input data (N = [G]).
RELATIVE SPEEDUP AND THE EQUIVALENT NUMBER OF ADDITIONS (¢, = 1) 3

FOR DHFFERENT GROUPS OF THE ORDER NV = 64 A5 A FUNCTION OF Bus
SPEED PARAMETER (& = 1,/1,) AND OF THE NUMBER OF PROCESSORS { )

general formulas have been developed for the number of
arithmetic operations, the number of interprocessor data
transfers, and the number of communication links among

G [ 2
> cs c: O G xCaxQ, € xC,xC, c3xa, P Processors operating in paraliel. | +
Sample calculations with several groups of different or-
RELATIVE SPEEDUP: k = 0,02 (FAST BUS) . :
| der and different structures revealed some typical features
z -997 288 -39 -33¢ 34 35>  of the constituent groups and the influence of the group
a8 -896 aTT -984 984 986 =k |
‘o1 order on the performance speed. Smaller groups (N =
2 983 99 - 988 a9 asz  04) are more sensitive to the speed of the processor com-
- T 1 * ] -
i | 3 4 3% :§8° 32 85 munication network. For these groups, the increase in the
k = 0.5 cominunication time relative to the addition time results
g 92 3% 238 -4 a3 -32 in a drastic decrease of the speedup which can make the
8 atl 1 6a 69 T4 .61 f 1 ], bl Th f
K = 1.0 (SLOW 8US) use ot multiple processors unreasonable. The fastest
4 . a1 8B 89 91 a5 groups, m most cases, were the ones combining smali
1 160 ) : i ) : : + : )
s |59 56 53 3 69 b cyclic groups (C,) and non-Abelian quaternions ( 0,) in
NUMBER OF ADDITIONS:| K = 0.02 (FAST BUS) the direct product for G. As shown by an earlier work
[I5], the quaternion groups as the components of the di-
i '57 18] i) 123 18] ‘45 rect duct for G i ses show th irnal
4 37 &1 21 29 g1 89 product fo in many cases show the optimal per-
K = C.1 formance as to the accuracy of calculations.
2 195 323 243 25 323 179 |
8 gz 182 125 123 g3 g3 ACKNOWLEDGMENT
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2 208 336 256 272 236 192 " . .
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= 1] 120 B& g2 108 i2
k = 1.0 {SLOW BUS} R
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