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Fault Detection in Combinational Networks by
Reed-Muller Transforms

T. RAJU DAMARLA. Mem. IEEE. 2 M. KARPOVSKY. Sr. Mem. IEEE. 3

ABSTRACT: A new approach for fault detection in combinational networks based on |
Reed-Muller (RM) transforms is presented. ' ._
An upper bound on the .number of RM spectral coefficients required to be verified for |
detection of multiple stuck-at-faults {s-a-fs) and single bridging faults at the input lines
of an n input network is shown to be n. For almost all combinational networks the time
complexity (time required to test a network) for detection® of multiple terminal faults is
shown to be [1.25n], and the storage required for storing the test is [0.75r], where [m]
denotes the smallest integer greater or equal to m.
If any terminal or internal. single or multiple fault distorts at most A spectral coeffi-
‘ ‘cien'ts. then the minimum-number of test patterns :required to detect the fault is shown

to be upper bounded by E!‘:g’{"‘ﬂn-l( n ) We present standard tests, based on this

£
result. with a simple test generation procedure and upper bounds on minimal numbers of

test patterns. N

Index Terms: Reed-Muller Transform. Reed-Muller spectrum, Walsh-Hadamard spec-

trum, signature, stuck-at-fault, bridging fault, fault detection. Reed-Muller codes, general-

il

ized Reed-Muller Canonical expanston.

1. INTRODUCTION

In recent years there has been a renewed interest in applications of spectral techniques

for fault detection in logical networks. Many authors [1-4] have focussed their attention on
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Walsh-Hadamard (WH) spectral techniques for fault detection in combinational networks.
It is shown [1-4] that by verifying few WH-spectral coefficients for a Boolean function it
is possible to detect the faults in a network implementing this function. A minimal set of
spectral coeflicients required for fault detection constitute a spectral signature.

Every WH spectral coefficient depends on the global behaviour (i.e., on all 2" values ) of
a given function :gmd its computation requires 2™ additions and subtractions for a function of
n variables. Hence fault detection by verification of WH spectral coefficients is impractical,
if nis large.

In Section 2, we introduce Reed-Muller (RM)} transforms and their properties. Ev-
ery Boolean function f has an unique Reed-Muller Canonical (RMC) representation [t1].
The RMC form of a Boolean function is determined by the coefficients (see (1)) in the
RMC expansion. These coefficients can be obtained by transforming the functional values
(£(0), £(1), ..., f(2" — 1)) by a suitable RM matrix. Each coefficient in the RMC expansion
Is called an RM spectral coefficient and the complete set is called the RM spectrum. Unlike
WH matrices, RM matrices are sparse and computation of RM spectral coefficient requires .
less time. Fault detection in RMC networks is considered in [5. 6].

In Section 3, fault detection is performed by verification of RM spectral coefficients. We
identify the RM spectral coefficients (or simply RM coefficients) which should be computed
for detection of input stuck-at and bridging faults. The upper bound on the number of
spectral coefficients to be verified for detection of all multiple terminal stuck-at-faults (s-a-
fs) and all single input bridging faults is shown to-be n.

Unlike the WH spectral coefficients. computation of RM coefficients is done in GF(2) and
requires only one bit for storing an RM coefficient, hence providing a good data compression
(storing of one WH coefficient requires an n-bit storage}. We also note that the parity
checking methods introduced in [7. 8] are a subset of a broad class of RM spectral techaiques
introduced in this paper., *

In Section 4. we estimate the time and hardware complexities for computing RM coeffi-
cients. An upper bound on the number of test patterns for detection of multiple input s-a-fs
in combinational networks is shown [9] to be 2n 1+ 4. A standard universal test with 2n — 2
test patterns to detect all multiple terminal s-a-fs in almost all combinational networks is

presented in [10]. We show in Section 4.2 that as n'i— oo at most [0.75n] spectral
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coefficients (or [1.25n] test patterns) are sufficient for detection of all terminal multiple
s-a-fs by verification of RM coefficients and that the time complexity for the corresponding
test is [1.25n] for almost all combinational networks. { These are not standard but device
oriented tests. } Time complexities for tests detecting all single and muitiple terminal
s-a-fs in standard components of computer systems, which include both combinational and
sequential r::ircuits. are also presented.

Results presented in Section 4 indicate that both from the point of view of hardware
overhead and testing time, techniques based on verification of RM coefficients are more
efficient for terminal faults than the techniques described in [1-4].

The problem of detection of stuck-at-faults at internal lines is- considered in Section 5.
In this section RM transforms are used as analytical tools for deriving relations between the
maximum number of distorted RM coefficients as a result of a fault and the minimum number

of test patterns. The number of test patterns required for testing a general combinational

l:l ).\if any fault in the network causes

network is shown to be upper bounded by 3°7_, (
{

distortion of at most 2'+! — 1 RM coefficients.

In Section 6 RM transforms are ysed for construction of small universal tests for detec-
tion of stuck-at and contact faults in PLAs.
Throughout this paper we do not distinguish between stuck-at faults at the different

branches of fanouts.

2. REED-MULLER. TRANSFORMS AND THEIR PROPERTIES

In this section we formally define RM transforms and provide some of their properties
which are akin to classical transforms like Walsh-Hadamard {WH) and Fourier transforms.
These properties will be used for fault detection in combinational networks in later sections.

Corresponding to every binary vector (‘polarity’}, k = (ko, ki, ..., kn-1), k: € {0,1},

there is an unique representation of a Boolean function in the RMC form:
£(20s s Zn-1) = J1(0) ® Ja ()27 @ 2oz © ... @ Fo(2” - Daf.zlny (1)

where z0 = z,z! = Z ; fi(W) € {0,1} and the variables associated with (W) in (1) are

all those variables which correspond to the 1's in W = (wq, wy, .., wy_;).

Exam;)le 1 : Function f{zg,z1) = 2oV Z, has the following four RM expansions.
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lL.f=1®z1 @202y (k=0,0); 2. f=Z @zoBxoZ (k=0,1);
8. f =1 Fpxy (k=1,0; 4. f=1@zoBZpz; (k=1,1).
Relations between f(X), and fi(W) are given in [11], however, these relations are not

convenient for mathematical manipulation. We now define RM expansicons as special type of
linear transforms (similar to the Walsh-Hadamard [12] or the Discrete Fourier transforms).
and investigate their properties useful for fault detection.
Definition. Let X = (xo, z1,..,%4_1) and W = (wg, wy, .., wp-1}. Then the Reed-Muller
(RM} functions are defined as |

Ry (W) =1T1sg 21 (0=1°=1, 0t =0). (2)
2.1 Reed-Muller Transforms
The relation between f(X) and fo(W) for 0** polarity is given by

N
foW)= B Rw(X) /(X)) = @ f(X), (3)
A= XCW .
N .
[(X)= D Rx(W) fo(W) = P F(w), (4)
. wW=0 ' : - WCX '

where & represents modulo 2 addition, ¥ = 2" —~1 and X C W denotes X is a descendant
of W {X C W if and only if z; £ w; for all {). In the case of Ué" polarity "0" is dropped
from fo(W). |

For the generalized RM transform with polarity k,

N
h¥)= € Rw(X0 k) (X), )
X=0
" |
()= D RxaM) h(¥) ©)

where X @ k represents the componentwise (dyadic) addition.
From now onwards, (W) = fo(W) is reffered to as an W RM spectral coefficient and
the complete set of coefficients as the RM spectrum. As in the case of fast WH matrices,

RM matrices have recursive structure [14] given below.

; . ()
1 0 1 0
R{njz @R["_1}= ; T
|R] . 1] [R] L (7)




where @ is the Kronecker product and [R]{™ is the 2" x 2" Reed-Muller matrix for the case

of 0% polarity. Let f=(f(0), f(1), ..., f (N)]T . where T stands for matrix transpose.
Then f = [R]™f. From (2) it can be easily shown that |

N
D Bx(W)Rw(Y)=bxy, (8)

W=0

where x v = L,if X =Y, éxy = 0 otherwise. From (8)
R [R® =1, | (9)

where [I] is the identity matrix,

Computation of f by (7) requires [15. 16] at most n.2""1 modulo 2 operations and
to obtain }';. forall k€ {0,1,.., N}. N iterations of 2*! modulo 2 additions need to be
performed. The approach in [17] for obtaining f) from f is based on folding of the Reed-

Muller map introduced in [16]. An efficient matrix multiplication technique for construction
of fe, (k=1,..,N) from f is presented in [18, 19].

.-2.2 Some Properties Of RM Specira

In this suhsectlun we present some properties nf RM transforms whlch will be used in

Sections 4-6 for detection of stuck-at and bridging faults. Complete list of RM transform

properties and their proofs can be found in [18, 19]. From now on we shall consider only

0*® polarity RM spectra. but all the results obtained for the O'* polarity can be easily

generalized for any polarity.

From (3) and (4) one can find composite spectra of two functions f and ¢, namely,

D¢, f A qf.i, and f v ¢5. where v and A denote componentwise OR and AND operations.

1. LINEARITY: Let o(X) = f(X) ® (X}, then

W) =1(W) o (W) (10)

2. Let p(X) = f(X) A (X), then

2W)= @ JO)HV) . (11)

Uv¥V=W
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3. Let p(X) = f(X)V $(X), then

pW)=1W)edW)e P FU)v) . (12)

Uv¥V=W

4. CONVOLUTION THEOREM: If (W) = J(W) A $(W), then

p(X)= @D fV)e(2) . (13)
YvZ=X

It is worth noting that in the convolution theorem (13) the operation between Y and
Z is componentwise OR where as for the Walsh-Hadamard transform this operation is

componentwise modulo 2 a&ditiun.
In the next section we describe fault detection techniques based on verification of a
subset of RM spetral coefficients called signature for a device under test (DUT). If any one
of the RM spectral coeflicients in the signature differs from the corresponding coefficient

for the fault-free network, then the DUT is said to be faulty.

3. DETECTION OF INPUT (TERMINAL) STUCK-AT AND BRIDGING

' FAULTS BY REED-MULLER SPECTRA -

Fault models considered by many authors for geﬁeral combinational networks consist
of stuck-at and bridging faults. The inter-connecting lines between integrated chips are
often more unreliable than the internal lines and hence some authors have concentrated
their efforts in fault detection at input and outpuf lines of a network [2.3.4.9.10]. We will
use the following fault models.

Stuck-at-faults (s-a-f): A line A; in a combinational network is said to be at s-a-0{1) if
that line becomes permanently fixed at the binary value 0 (1), as a r_e:sult of a fault. This
fault is denoted by h;/0{1). |

Bridging-fault: If two lines h; and h; are shorted and if the resulting signal after the short

~ is an AND operation, then the corresponding AND bridging fault is denoted by (h;A;). .

Similatly one can introduce OR bridging (h;h;)+ .
From now on a function implemented by a faulty device is denoted as f*. All the
theorems and corollaries presented in this section are proved for 0*» polarity. but they can

be easily shown to be true for any polarity.
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The following theorem presents a condition on RM coefficients for detection of s-a-fs at

the input lines.

Theorem 1 : A stuck-ot fault at snput line z; of a combinational network tmplementing
flzo, %1, ..., Zn—1) can be detected by verification of }'(W] tf and only if for the fault

free network }'(W] =1, and W =(wp,..,wi1,1, Wis1,-.,W0n—q) .

Proof: From (3)

N
Fr(w) = 69 Rw(X)f (X) = @ wie..1%. w7 f1(X).

X--D A =0
i~1 10 =+1 Tn—1 —1 11 Tig1 Tn—1
SIHEE (tun y * ,tﬂill ,1 i-;-l y - ,wﬂil (Wn y* :w,‘1 :1 ;-;-1 t I :wnil ) and

f‘ (Iﬂ: ~ey Tf—1y 0: Tiddy ory In_l) = f* (Iﬂ: ey L]y 1: Li41y -y :rn—l):

the above sum modulo 2 over all X will be zero.

Fauit detection by parity checking given in [7. 8] computes spectral coefficient }(N )=
}(2"—1) for fault detection, and hence parity checking methed is a sub-class of RM spectral
. techniques. |

Corollary 1 : All multiple input s-a-fs are detected by verification of fi,1, ..., 1) if and
only if f(1,1,...,1) = 1 for the fault free network.

From the above theorem and corollary the following theorem is obvious.

Theorem 2 : For any combinational network all single or multiple terminal s-a-fo can

be detected by observing at most n RM coefficients, where n s the number of input lines.
i

The following theorem provides a necessary and sufficient condition for detection of

input bridging faults.

Theorem 3 : The AND bridging faull between two input lines r; and z; in ¢ combina-
tional network implementing f(Z0, ..y Zn—1) 8 detected by verification of }'(wn, vy Wr—1)

if and only if }(tﬂu, s Wn1) = 1 for the fault free network and w; £ w;y.

T
i




Proof: From (3)

N N
I'W)= D Bw(X)1°(X) = P v w? w3 (X).

J W, 1
X=0 X=0

Since w; # w;, let w; =0 and w; = 1. {A similar proof can be used for w; = 1, w; = 0).

Then for AND bridging (ziz;),

N
FPW) = wi..0%. 1% w3 (X)) =0
X =0
i .f t‘

since  (w3°,..,0%, . 11 | s 7') = (wde, .., 00, . 1% ., w "7}, and after the fault
1‘ i
f (ﬂ?l], :0: I{}i :-Tﬂ—l) f (’:D: 30y .01, :In-—l)

The following theorem combines the above results.

Theorem 4 : The lower and upper bounds on the minimal number of spectral coeffi-

cients |Spp| required to detect all input bridging faults for any combinational network

with n input lines is given by

[logan] < |Spp| < n—1

Proof: Let {f(W1),..., f(Wr)}, T = |SBr| and Sgp is the minimal set of RM coefficients
required for detection of all input bridgings. Construct a (T X n) binary matrix with rows

Wi, ..., Wr. Then all columns in the matrix are different and T > [logan]. The upper bound

is obtained directly from Theorem 3 .

The following example illustrates fault detection by verification of RM coefficients.

Example 2 : Let f(zoz122) = zoz1 V2173V 2029, then the gpectra of the fault free and




faulty functions for £, /0 and (zozy). are shown below.

zo 21 @3 f ] [(21/0) F'(21/0) f*({zoz1)s) I*((zoz1)e)

W wp wWs

0 0 0 00 O 0 0 0
0. 1 00 0 0 0 0
0 1 0 0O © 0 0 0
0 1 1 11 o 0 0 0
1 0 0 00 O 0 0 0
1 0 1 1 1 1 1 0 0
1 1 0 11 0 0 1 1
1 1 1 10 1 0 1 0

Faults 2, /0 and (xoz1}, may be detected by verification of 7*(0, 1, 1).

Combining Theorems 2 and 3 we have the following resuit.

Theorem 5§ : For any irredundant combinational network implementing

J(zo, 21, vy Zn-1) there ezists a set S with at most n RM coefficients, such that all
. detectable at'n'gh'; or multiple terminal s-a-fa and single input AND bridging faults can be

detected by verification of ?(W) JoralW e S,

4. HARDWARE AND TIME COMPLEXITIES FOR DETECTION OF
TERMINAL FAULTS BY VERIFICATION OF RM-COEFFICIENTS |
In Section 3 we described fault detection by verification of RM coefficients. In this
section, hardware and time complexities for computing RM coefficients are given and es-
timations on the additional hardware required for testing any combinational network are
provided. Time complexity fnrl testing all input ﬁiultiple s-a-fs is shown to be [1.25n], for

almost all networks.

4.1 Hardware Complexity
Testing of a network for any fault involves verification of a set of RM coefficients. Since
}'"(W) for any W depends on the modulo 2 sum of the output responses of the network, it
" requires only one T flip-flop to compute }"(W). Inputs to the T flip-flop can be controlled
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by a NOR gate whose inputs. depending on the RM coefficient being computed. can be

determined as follows, We have from (2) and (3)

N
Fw) = D w5..wF..winP f(X)

X=0

but w’ = wi VZ =2, f gy=0;and w* =1if w;=1, Therefore

N
M= I zfx) = b V = f(X).

X=0 ;=0 X=0 +:w;=0

For example, let n = 3 then

A N N
1(010) = P 7022 f(X) = B 7oV 3 f(X)

X=0 X =0
hence the inputs to the NOR gate are zo and z,.
The test circuit for the general case is shown in Fig 1. (If more than one RM coeificient

has to be computed. then the corresponding NOR gates and T flip-flops have to be added.)

Thus, instead of an n bit counter and a network for coefficient selection as in the case

.-of WH coefficients [4]. RM coefficients require only one T fiip-flop and a couple of gates.

The fnllnwmg theorem pmwdes an estimation on a number of RM cnefﬁclents required for

detection of all multiple input s-a-fs for almost all networks.

Theorem 6 : For almost all combinational networks as n — oo there ezist two spectral

coefficients which would detect all input s-a-fs with any multiplicity.

Proof: Consider any coefficient }'(W;}, then
prob { J(Wi) =1} = prob {J{W;) = 1} =0.5 and

prob { J(W:) # Lor JW:) # 1} =0.75,

Let || W; || denote the number of ones in W. Then we have for the probability that there
exists W;, with || W; ||l== [n/2]. such that f(W;) # 1 or FW) #1

prob { (J(W) # Lor JO7) # ), | Will=5} = (3) (“ﬂ”) .

) . . . "-. . l| .
- cdt - . . . . . - . N :
. : e 'i"-"' a ,,,!‘ T . L _-.“.-....-_l: "‘:
£ "'.--..'. ..-J-"'-* ""-I * --“ ﬁﬁh'ﬂ? Tl n r'.." .-:'l' - \. 5 '_:':-.:' r".'”' L ..|| ".':""l' .. ‘1'-..";._:"."" : I|IM-‘t-:l -'1 f
“!:':.":'i"'.'é' ‘E-“”*‘fﬁ"'_?-‘"ﬂwm'*- i e e, =¥ e e i s L i e i a Y g B .e-.—-.-:n-. ot T

D e T e o

L e T T

R P T L T




which goes to zero as n increases. Hence only two coefficients are sufficient for almost all
combinational networks.

From the above theorem, the additional hardware required for testing almost all com-
binational networks for input s-a-fs is two T flip-flops, two [n/2] input NOR gates and
two 2-input AND gates. When compared to the n bit counter and a coefficient selection
network required to compute every WH spectral coefficient [4]. hardware required by the

RM spectral technique is very small.

4.2 Time Complexity
Time complexity (time required to test the network) is equal to the total time neces-

sary for computing all spectral coefficients of the spectral signature. The time complexity

depends on the spectral coefficients being computed. From (3)

Jw)= @ m(X)f(X)= @ J(X),

X=0 XCwW

where X € W means z; < w; for all ¢, and hence the fewer 1’s in W the less time required

to compute W. The time complexity to compute }' (W) is
time complezity = 2I%I {14)

The following theorem provides an estimation on the time compiexity required for testing

almost all combinational networks.

-

Theorem 7 : For almost all combinational networks as n — co the number of RM
coefficients required to detect all multiple terminal s-a-fs 1s equal to [0.75r] and the time

complezily is equal to [1.25n] where n is the number of input variables.

Proof is given in the appendix.

We have performed a statistical analysis using computer simulation to substantiate the
above theorem and found that the results of the simulation are very close to the results
presented in Theorem 7. For simulation purposes 50 randomly generated functions are
considered for each value of n. The curresp;:m‘ding optimal RM spectral siénatures for these
functions are constructed and the time complexities to compute these signatures are found

by (14). Average testing time is computed by averaging time complexities for all 50 networks
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and similarly standard deviation is found. We summarize the computer simulation results
in Table 1.

Time complexities for aetectiun of input s-a-fs by RM spectral techniques for some of
the standard computer hardware components are presented in Table-2. (In case a device

has multiple outputs the EXOR sum of all the outputs have been used for observation).

5. DETECTION OF INTERNAL STUCK-AT-FAULTS

This section deals with detection of internal s-a-fs in combinational networks. Theo-
rem 9 presents an estimation on a number of test patterns to detect any fault, from a given
fault set E, depending only on the maximum number of RM coeflicients that are distorted
by any fault from E. This result is independent of the architecture of the network and the
type of fault (s-a-f or bridging fault) and where the fault occurs.

5.1 Detection of Internal Faults by Verification of RM Spectral Coefficients

The following theorem deals with detection of internal faults in a general fanout-free .

network using RM coefficients.

Theorem 8 : For any fhnout—freé network with n p:l-:'mnry inpuls there exists a set of
at most n RM coefficients which detects all multiple input s-a-fs and all single internal

s-a-fs.

Proof: Since the network is fanout-free there are exactly n paths from the inputs to the
output. Consider a path p; starting from input line x;. Let X; be the input vector which
sensitizes path p; such that || X; (| is minimal and f(X;) =1 . From (3). /(X)) =1and if
any line h; on the path p; is at s-2-0 or s-a-1 then }*(X;) = O detecting the fault.

The fnllﬁﬁing results are concerned with detection of internal s-a-0 faults in networks

implemented by AND-OR two level structures. The s-a-1 faults in AND-OR networks are

. detected by verification of f*(W) for any FW)=1and W £ (,0,...,0).

Lemma 1 : If in an irredundant AND-OR network implementing a Boolean function

on n variables, all AND gates have n inputs, then only one RM éacﬂ‘iﬂ-’ent ] (1,1,..,1)
ts sufficient for detection of all single internal 5-a-0 faulls.

12




Proof: Clearly
N
f(1,1,.,1) = P f(x)

X=0
is a parity function and any single internal s-a-0 fault changes the parity detecting the fauit.

Corollary 2 : For any threshold function

f(X) ={ 'f E;-u Ty > t;

of Yhom < t,

smplemented by a two level AND-OR network only one RM coefficient 1s sufficient to
detect all single internal s-a-0 faults. |

Proof: Every product term in f consists of exactly ¢ variables. If any AND gate in an

AND-OR structure realizing a product term. say p; = x1T3...%, is s-a-0, then only one
f(X:). where X; = (z1,%3,..,24,0,..,0) will be zero and RM coefficient 7*(1, 1, ..., 1) will
be distorted. Hence f(1,1,..., 1) would detect ali single s-a-0 faults.

b.2 Estimations on Number of Test Patterna for Detection of Internal Stuck-
" at Faults -

Let E be a set of faults in a given network. For ¢ € E denote by Ax(e) a number of

coeflicients in the RM expansion with polarity k. which are distorted due to the fault e.

Denote also

_A;-, = ma:Ag(e)- forall ec E .

We present an upper bound on A; in Lemmas 2 - 4. A relation between A, and the minimal
number of test patterns to detect all faults in E is given in Theorem 9. The corresponding

tests T' have the following standard structure
T=T,={X| dk,X) £ r},

where r depends on A; and d{k, X) is the Hamming distance between X and

k = (ko, ky, ..., kn_1). This standard structure of test sets results in a simple test generation

procedure.
The following three lemmas provide estimations on a number of RM coefficients that

rﬁay be distorted when the gate implementing a product term is faulty. The estimations are
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provided on the assumption that a function is realized as a sum of product terms. Since s-a-
1 faults at the outputs of AND gates can be easily detected. only s-3-0 faults are considered.
It is shown that the number of RM coefficients that may be distorted by the s-a-0 fault at

the output of an AND gate is directly proportional to the number of variables appearing in

the negated form in the product term in 0*? polarity spectra, General result for any polarity

k is presented in Lemma 2.

Lemma 2 : Suppose f(zq,...,Zn-1) 15 implemented by a 2-level AND-OR network. If
the ouiput of an AND gate implementing a product term P = g, ..., £p-1,

&; € {z;,%,d} (d stands Jor “don’t care”) 18 5-a-0, then the number A; of RM coefficients
in fi, k& {0,1,..., N}, that may be distorted by the fault is upper bounded by

A; < gn-llp@k| ’ (15)

where k = (ko, ..., kn_lj_ ts the polarity of the RM transform and p is obtained from
P by replacing z; by 1 and Z; by O in P and || p @ k.|| is the number of I’sinp D k
(d®k; =0, k; € {0,1} .}

--Proof: From (5)

N |
HW)=P Rw(Xok) f(X)= P 1x).

X=0 XQECW

Clearly. if || X & k [|= m, then there exists 2"~™ W's which satisfy X @ k¥ C W. Now if

ﬂ(W] % }'; (W) for a given W, then there exists an X such that X&k C W and P{X)=1.
Without loss of generality, suppose that

i J—i n-j
P = Iuﬂ;l..ixi_li;...ij_'l — p= mmm = _;‘Jgpl...pn_l.
Ifs < 7—1and k,®p, = 0. then for all W = (wo, w1, .oy Wp—1) With w, = Oor w, = 1, }'(W)
may be distorted by P s-a-0. If k, ® p, = 1, then only }'(W) with w, = 1 may be distorted
by Ps-a-0. fs> j—1,thenforall W = (po @ ko ,p1 D k1 ..., ps—1D ki1 y Uiy veey Wip—1)
with w, = 0 or w, = 1, ;’ (W) may be dist?rted by P s-a-0. Thus, we have for a total
number of RM coefficients that may be distorted by the fauit |

Ay < 27~ llp@k{4n—§ _ on—|lpok]
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In particular if k£ = O, the number of RM coefficients that may be affected by a s-a-0 fault
at the output of an AND gate realizing P is upper bounded by 2"~[IPll, where || P | is the

' number of variables appearing in P in their true form.

Lemma 3 : For a two-level AND-OR network sf f = V‘E FP;, where P; AP, = @ for
all 7,8 the number of RM coefficients A (k = G} that may be distorted by a s-a-0 at the
output of an AND gate realizing P, is upper bounded by

A < mazx 2IP|T|-‘—HP-‘|I = rmazg 2 ef negated variables in P; . fﬂl‘ all .

where |F;| denotes the number of variables in P; and || P; || denotes the number of

variables present in true form in F;.

Proof: Since F; A P; = 0, for all 1, §, function f can be expressed as @1_1 P;, and from
(10} we have '
NF
- Dh.
i=1
Clearly, if F; is s-a-0 then from the above formula the number of RM coefficients that may

" be distorted will be equal to | P; |. Now we will-estimate | 2 |. Without [oss of generality,

let P; = Zg...Z;-12;...25_1dd..d. From (3) we have

AW) = @ P(X).
XCW

-'--‘

i §i
For any vector W = 0,0,..,0,1,1,..,,1,d,d,...,d , there are even number of X's such
that X C W and P;(X) = 1 and hence B;(W) = 0. Now, for any vector W =

$ j—i -
mmﬂ 0,..0, there is only one X C W, such that P, (X) = 1 and hence
P;(W) = 1. Since there are 2I7-1IPil W's, such that f(W) is distorted by the fault and
A = 2lFil=lFd

in Lemma 3 product terms are disjoint. The following [emma generalizes the results of

Lernma 3 for any two-level AND-OR netwurk.

Lemma 4 : For a two-level AND-OR network if f = V:__l Py, then the number of RM
coefficients A that may be distorted by s-a-0 at the oulput of an AND gate realizing P;

. el ’ . . -.'-|.:'. ' ’ ¥ "'-" i'I: -. .
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18 at most
o o B o ™ nega ria in P!
Z 2]Pij[ "P-':-“ — Ezm. of negated variables P-,- (lﬁ)
L j=1 =1
where P = {X| P(X)=1, Bi(X)=0if j#i} = U, P,

and ﬂ!jﬂﬂ =0, ﬂ‘:ﬂﬁ" =@ for alls, 3,1 and q.

Proof follows directly from Lemma 3 .

In the next couple of paragraphs we recall some results from coding theory which we
use for derivation of a relation between A and the number of test patterns required to test
a fault, which distorts atmost A RM coefficients. .

Consider the vectors vy, vy, vg, ..., v, of length 2™ and all products of r or fewer vectors

from {v1,v3, ..., va} at a time which form the basis for Reed-Muller codes of the r'* order

n
_ ) rows and 2™ columns,

[21). They can be arranged in a matnx form V, with 37, (
:

It can be easily seen that the set of rows of V' is the subset of the set of rows in [R]{"] (see

(7)). Hence, from (4). components of V.} are values of f(X)for | X2 n-r
For example, for n=3 and r = 2

r a -

[ ] 1111 1111 | ;Eﬁ; [ F(111) |
v 1111 0000 | | ° 10) f(011)
| v ‘ 1100 1'100'| ;gu) f(101)
V.i=|vs |.f=]1010 1010 | | (100) I = | £(110)
vy vy 1100 0000 . J(001)
| vyvs 1010 0000 {(101] f{010)

f(10) |

| vavs | | 1000 1000 | 11(111) |- lf(mo)

The following theorem gives an estimation on a number of test patterns required to test a

network.

Theorem 9 : If any stngle or multipie fault in a network implementing. f causes distor-
tion of at most A speciral coefficients in the RM ezpansion with k = 0, then a minimal

number of test palierns required to detect all single or multiple faults in the network is

\:
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upper bounded by
ﬂﬂj‘g{ﬂ'l' 1” -3 n
> - (17)
i=0 '

Proof: Let us take as test patterns all X's such that | X || 2 n—r, where

r = [log2(A+1)] — 1. It is known from coding theory [20]. that any 2"t! — 1 columns in
V' are linearly independent, since V is the matrix whose rows are basis vectors of the rth
order Reed-Mulller code and hence 2"+ — 1 errors in  can be detected by the code with

check matrix V. Computation of r and the number of rows in V yields {(17).

Example 3 : Let fis a 9 or more out of 12 function, te.,

f(X]={1’ f || X[Iz9; (n = 12)

0, otherwige.

It is clear that every product term P; consists of nine vartables and P! (see Lemma {)
consists of 9 variables in direct form and § variables in negated form. If any single fauit
affects at most one product term then by Lemma 4, withm =1 we have A =23 ¢ =3

and a number bf test patterns rcqu:r:d to test stuck-at-0 faults at outputs of AND gates

T,:fj(?):ﬁg.

=0

©of the network 18 at most

In general, for a given k # O the set of test patterns forms the Hamming ball of radius
r with center k, which results in a simple test generation procedure. (It is easy to show

[19] that a gate count for the corresponding test generator in this case is proportional to rn).

6. DETECTION OF STUCK-AT AND CONTACT FAULTS IN PLA’%:

In this section we consider the problem of stuck-at and contact faults in PLAs. We
establish that if a test set T, described in Section 4. detects all s-a-0 faults at the outputs
of AND gates (AND array), theh the test set T,.,; would detect all contact faults. An upper
bound on thé number of test patterns requi_red for detection of all single s-a-fs and contact
faults ( crusépnint ) is presented in Theorem 10.

A design for PLAs with universal test set was presented in [22] and the number of test

patterns is shown to be of order n + N, where n is the number of input lines and N, is the
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number of product terms. A testable design for PLAs is considered in [23] and design for
self r.:heckmg PLA is presented in [24]. In both the designs it is assumed that the product
terms are mutually disjoint.

We assume that product terms are mutually disjoint (this assumption has been widely
used in literature on PLA testing [22-24]), and show in this case that PLAs can be tested
for all single cross point faults and internal s-a-fs by small universal test sets.

The following fault model will be considered.

Contact or Crosspoint faults: These faults are classified as follows.

- Shrinkage fault: An erroneous cantact in the AND array causes a prime implicant to
gain a literal and thus include either half of its original minterms or none.

- Growth fault: A missing contact in the AND array causes a prime implicant to loose a
literal and hence include twice as many minterms.

- Disappearance fault: A missing contact in the OR array causes a prime implicant to

be dropped from the corresponding output function.

- Appearance fault: An erroneous contact in the OR\array causes a prime implicant to

be added to the corresponding output function.

- In the following lemma an estimation on the number of RM coefficients that may be

distorted by a contact fault is presented. This estimation will be used for finding an upper .

bound on a minimal number of test patterns using Theorem 9.

Lemma 5 : Any contact fault may resuit in distortion of at most
maz 2.2101-1Pdl for all &, RM cocfficients, if F; A P; = @, for all i,7 # i, where | Fi |
denotes the number of variables present in P; and || P; || denotes the number of variables

present in P; in the true form.

Proof: i. Shrinkage fﬁu]t: Without loss of generality let P = 20...Tg—-1Z4.-- Tatb—1.
Then due to a sh'rinkage fault F; is replaced by P! = 9. Za1Za... Bg+d—1Tatdpe OF P =
n:u...::;_IE.,..,EEH_l:EﬂHH for'some ¢ > 0. Since ,AP; =0, forall £, 7 , it can be easily
shown that PPA P; =0, and P'AP;=0fcrallj#i If f=Pv ...V Py, then the faulty

function f* can be represented as

f'=P1$...$P*_1$R!$E+1$PN, or f‘ - P1$-*'$E—1$R!'$E+1$Pﬂr’
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But P} = Pi ® Za4s+c P and P! = P @ 24434 F; . Hence

f* = f$5u+a+¢Pi or f' = f$¢u+&+¢Pi .

Thus. by (10) the number of RM coefficients that may be affected by a shrinkage fault is

equal to a maximal number of coefficients in RM expansions for prnduct terms P! and PY.

From Lemma 3 these numbers are upper bounded by
maz 2Fers+ePil-2etnsePill = pgg 2 2WPI-IPA  £or aii s,

Hence, a maximum number of RM coefficients that may be distorted by a shrinkage fault

in product term is upper bounded by maz 2 21F-IFll for all ¢

li. Growth fault: In this case it can be easily shown that the maximum number of RM

coeflicients that may be distorted by a growth fauit as mam%ﬂp dA=l1P:k, for all <.
Disappearance or appearance fault: In this case a product term is dropped or added

to a function. In either case the number of RM coefficients that may be distorted is upper
bounded by maz2|FI-lIFll for ali g,

Hence, the maximum number of RM coefficients that may be distorted by a contact

. failt is upper-bounded by maz2.2IP-lIFill for al .

From Theorem 9 and Lemma 5. a number of test. patterns required to detect all sin-

gle stuck-at-0 faults at outputs of AND gates. and all single contact faults is at most
E:i';( _ ) where r = maz (| P, | —~ || B ||) for all i. The cnrresm:nd-ing test
t ,

Tiy1 ={X ||| X || 2 n — r— 1} contain all vectors with at most r + 1 zeros.

Every test pattern which detects the s-a-0 fault at the output of an AND gate also
detects z;/0 (zi/1} if z; is'an input to this AND gate and z; appears in its true (negated)
form in the corresponding product term. Thus, a test set which detects all single s-a-
0 fauits at outputs of AND gates also detects n input stuck-at faults (out of 2n possible
input stuck-at faults}. Hence. at most n more additional test patterns are required to detect
all single input stuck-at faults. Similarly, at most g additional test patterns are required to
detect stuck-at-1 faults at outputs of AND-gates and all output stuck-at-1 (f;/1). where ¢
is the number of outputs in a PLA under test,

These results are summarized in the following theorem.
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Theorem 10 : For any PLA with n input vartables, with FP;AP;=0 foralli,f and q

oulput functions, the number of teat patierns raqu:r:d to delect all single stuck-at faults

and all single contact faults ia upper bounded by
r+1 n
21 | +n+g
i=0 { |

where r =maz (| B | — || B ||} for olls.

EXHIIIPIE 4 : Let h=PVvEhv Py Py = Zgx1zaze V ToL1T3Z4 V ToT123T3 V Tpx1 T2y,

fa=BV FPovBv P = Inmgmg.ﬂ:; VIpxi122Z3sV ZToT123%4 V 2oX3T3%,, and f,g PivPsv

P v Py,
Though P, P;, Py, Py are not disjoint, from Lemma 4 we have | P! | — || P! Y =1
for all ¢ € {1,2,5,6}, where P/ is defined as in Lemma 4 and | P; | - || P; ||l= 1 for ali

7 € {3,4,7,8}, hence r = 1, the number of test patterns required for detection of all single

5 ]
contact faults is | T3 |= 31 ( _ ) = 16 and the test set T; consisting of all vectors .
)

with at most two zeros can be used for testing of this PLA. Since every variable is present

in direct and negated forms, all input stuck-at faults are detected by T3. It is also easy to

check that all ouput stuck-at faults are detected by T». Thus. T% with 16 test patterns can

be used for testing of all single stuck-at and contact faults in this PLA.

APPENDIX

Proof of Theorem 7: The proof consists of two parts.

i). It will be shown that there exist B; and B such that

N, Wu—u,

wWeB;uB,

Bi={W|[W|=1, me;=(o,n,---,o), IV wi=n/2]},
WeDB,;

prob {f(W)=1 for al We B} — lasn — oo

and
Be = {W ”f 14 H: 2, W; A Wf — (U:O:-": U), ” v 14 H — fﬂ/ﬂ}:
' Wehy
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prob {;"(W)=2 JorailW e By} — 1lasn — oo

ii). From i) it will be shown that Theorem 7 is true.

i): First we note that prob {f(W) =1 } = 0.5 for any W, Hence, with the probability
converging to 1 as n —» oo there exists a set B; of |n/2| RM coefficients }'(W) with
| W [l= 1 which are sufficient for detection of stuck-at faults at the corresponding |n/2]
input lines, { If W; = (O,D,...,D,i,(},...,ﬂ]. and }'(W;) = 1. then by Theorem 1 the
stuck-at fault at input line z; can be detected by verification of }'(W;) ).

Stuck-at faults at the remaining [n/2] input lines will be detected by verification of
F(W) where | W l= 2. It will now be shown that such a set of W exists with probability

converging to 1 as n — oo. Let us denote [n/2] = m.

Consider B, such that for any W € B,, || W ||=2

il Vwep, W ||=m and for any W;, W; € B;, W; AW; = (0,0, ...,0).
Then

prob {}(W) =1forallW e Bz‘} > g~m/2
Let P = {B;}, the set of all B, satisfying the above definition. Then
prob {3 B3e P} >1—-(1-2""/29

where Q =| P |, and

@ (3)(7)-()- 0 &

Using Sterling’s formula one can get  Q ~ m™/2¢—m/ z\/f and

Jim (1 - 2-mf2)q Ulff 2

— 0O a8 m — 00,
m—o00 f

lear!) . |
Clearly P S /3
omf2 — omf2 om/2

—+ 00 a8 M — o0 .,

This implies that there exists at least one set B, which is sufficient for detection of stuck-at

faults at the rematning [n/2] = m input lines.

ii). The total number of coefficients to be observed is | By | + | By |[< [n/2] +] z[n/2]] ~
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3n/4. Hence 3n/4 memory cells are sufficient to store these coefficients. The time com-

plexity required to compute these RM coefficients can be estimated as follows. Suppose

We = (0,0, s 1,0). Then Ji) = | {@b® if 1(0,0,..,0) =0
1 P Wy ssigdy iy, b 1@,1’(0,_..,1,-":0); ‘.f f(U,U,...,U)=1.

In both cases only (0, ..., i, ..., 8) has to be applied to the network and the ouput of the T flip
flop or its complement is taken as }'(U, w0y 1,...,0). Since there are |n/2| RM coefficients
with || W |l= 1 only |n/2] steps are required. Similarly, for the case when HW li=2,3n/4

steps are required. Thus, the time complexity for detection of all multiple terminal s-a-fs is
1.25n .
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Figure 1: Network for computing RM spectral coefficient.

I S T L [l B | . -
Iy .
TR e AR Y e A Y, o= Rw | T

.. R .
Tl Byl odpp o =T 1 g dTy -

[

26

LT P L T SRSy
AR YRR e p
E - J'-J_ < -

BT o L P g L e L SR E SR

. . - :11-' : Ca= - ..:‘_. ‘--'5.'.' -, 'I.'Fll . . et '.-n.'-'-'::'r
e T e T AT S T A L e T i L T J

e

- -

cma
- Lo

e R T E Y e Y .



16
24
32

Av. testing time Std. dev.

11.96
22.54
32.12
42,22
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S.No. Function time complezity
1. parity checker f(X) =z @ ... D 2p—y 2n
2. OR function f(X) =29V ...V Tn-1 B 2n
3. NOR function f(X)=T3V ...V Zn_1 | 2n
4. Quadratic funciion f(z) = 2021 B ... D Tp-2En—1 2n
5. Match detector f(XY)=1iff X =Y 2n
6. Threshold detector (t =2); f(X)=14iff || X }|=2 2n
7. f(X)=8(X)=1iff | Xll=2 n
8. Threshold function {t =¢); f(X)=14ff || X |=¢ [2]2°
0. 1) = S(X) = 1iff || X [|=c [22e
10. AN Dfunction f(X) = zo...xn-1 2"
11. NAND function Z5... %51 2n

12. . comparator X <Y =1 an
l . ' n .
13. Multiplezer f(yo, vy Y2n_1, Z0--ny ::“__1) =y iff X =4 :;:ﬂl ( ' ) i1
: !

14. f(Xy=x n+1
15. FIX)=X+1 n42
16. [(X)=X+1 n+t2
17. f(X,Y)= X +Y (adder) | n+1
18, fIX,Y) = XY (multiplier) | 1.5n+1
19. O shiftleft/right { [{X) = (@1, s 2p-1, 20) n+1

| f(X) = (%n-1,Z0, ..., Zn—2)

| | f(X) = (%1, .e., Zn—1,0)
] h
? ohiftleltriaht { 7(X) = (0, 20, o Zn2) e

([m] denotes the least integer greater or equal to m).

29




Table 2: Time Complexities For Standard Components For Detection Of
Input S-A-Fs With Any Multiplicity
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