compared to the well known Walsh-Hadamard techniques. For almost all combinational
networks the time complexity ( time required to test a network ) for detection of terminal
faults with any multiplicity is shown to be {1.25n] and the storage required for storing
the standard test data is [0.75n]|, where n is the number of arguments for the network
and [m| denotes the smallest integer greater or equal to m. It is also shown that for
almost all networks the additional hardware required for testing is shown to be two T
flip-flops, two 2-input AND gates and two n/2 -input NOR gates. |
Some results on fault detection of internal s-a-fs using the RM transform technique
are also presented. Upper bounds on the number of spectral coefficients that may be
distorted by a stuck-at fault at the output of a gate realizing a product term is given.
"If any single internal fault distorts at most A spectral cofficients, then the minimum

number of test patterns required to detect the fault is shown to be upper bounded

LW = = T oy e i 7 g gy I Cma W EHL

o1 { n . .
by Zt.[fgﬂ‘q“]‘ ! ( ; ), where n is the number of input arguments to the network.

Moreover the test patterns are independent of a function.
Time compiexities for detection of input s-a-fs in some of the standard computer
components are presented.

1 Introduction:

In recent years there has been a renewed Interest in spectiral techniques for Boolean
functions and their applications [7-10, 15-23|. Many authors have focused their at-

IThis work was supporied by the National Science Foundation under the Grant DCR - 8317763,




tention on Walsh-Hadamard (WH) spectral techniques for fault detection in combina-
tional networks. In this paper we consider a new spectral (transform) technique called
the Reed-Muller (RM) spectral technique which is based on the Reed-Muller canonical
(RMC) expansion of a Boolean function, where the spectra of a Boolean function is the
set of coefficients of the Boolean function in the RM canonical expansion. The network
constructed using the RM canonical expansion is called the RMC network. General
structure of RMC network is shown in Fig 1.

Reddy [6] has shown that the RMC networks are easily testable. Many authors
have studied the fault detection in RMC networks 6, 25]. We study the properties
of the RM spectral coefficients and use these properties for fault detection in general
combinational networks, sequential networks, PLA type networks and in some standard
computer components.

Section 2 focuses on Reed-Muller transforms and their properties. Section 3 deals
with the stuck-at-faunlts and bridging faults in general combinational networks. We
describe the properties that must be satisfied by the spectral coefficients for detection
of s-a-fs and bridging faults. Upper bounds on the number of spectral coefficients to be
observed for detection of multiple terminal stuck-at-faults (s-a-fs} and single termina)
bridging faults are shown to be n and n — 1 respectively.

One of the drawbacks of the existing WH spectral techniques is that every spectral
coefficient depends on the global behavior of a Boolean function ie.. the values of the
function at all the 2" nput vectors are required for computation of any single WH
spectral coefficient. This results in enormous amount of computational and testing time.
Unlike WH spectral coefficients RM spectral coefficients depend on a local behaviour of
the function (ie., responses of { at only few input vectors out of the possible 2» vectors).
Another disadvantage of the WH spectra is that every spectral coefficient requires an
n-bit counter and a coefficient selection network. Section 4 deals with hardware and
time complexity for computing RM spectral coefficients. Hardware complexity required
for computation of a single spectral coefficient is shown to be one T flip-flop. one two
input AND gate and a NOR gate with at most n inputs.

Kuhl and Reddy [28' have shown that 2n + 4 test patterns are sufficient to detect
terminal s-a-fs of any multiplicity in a combinational network. Karpovsky and Levitin
127) have shown that there exist a standard universal test with 2n — 2 test patterns
to detect all multiple s-a-fs in almost all combinational networks. We show that at
most 0.75n test patterns are sufficient for detection of all multiple s-a-fs and the time
complexity i1s 1.25n for almost all combinational networks. ( These are not standard but
device oriented tests ).

In section 5, a number of test patterns required for testing a general combinational

network is shown to be upper bounded by Y i_, ( ? ), if a fault in the network causes

distortion of at most 2"*! —1 spectral coefficients. Upper bounds on a number of spectral
coefficients that may be distorted by a s-a-f at the output of a gate realizing a product
term is given. |

In section 6, we estimate a number of spectral coefficients required and their time




complexity for standard componets of computer systems which include both combina-
ticnal and seguential circuits.

2 Reed-Muller Transforms And Their Applications

Fisher 3] has shown a relation between coefficients of generalized Reed-Muller {GRM)
canonical expressions for a Boolean function f and values of f at the input vectors X <

{0,1}", where n is the number of input variables. Corresponding to the 2" possible
polarities, any function has the following GRM expansions.

-y .y ~

f(Zos e Zno1) = o(0) & fo(1)zno1 ® Jo(2)Zn-2 & ... @ fo(2" ~ 1)Z0..-Zp1

1

o~

f:(0) @ fi(l)zin @ £ (227 @ ... & (2" - Dze...amy =

In0) @ Fn(1)Zn1 @ Tn(2)En-2® . @ In(N)TounBny (1)
where 20 = z,2' = 7 ; f,(W)} € {0,1} and N = 2" — 1.

Let the binary representation of k and W be (kg, k1, .., kn-1) and {wg, wy, .., wp_1),
then the variables associated with f(W} are all those variables which correspond to the
’sin W = (wg, wy, .., Wn_1).

Example 1 ; Function f{xo, 21} = zo V T has the following four GRM ezpansions.

1. f=1® 21 P 21 (k= 0),
2. f=31® 70D ToT1 (k = 1),
3. f=1& Zg2, (k = 2),
4. f=1& 74P T0T, (k = 3).

Though relations between f(W), and fz(W) are given in [3], these relations are not
convenient for mathematical manipulation. The following expressions are introduced.
Definition : Let X = (29, Z1,-., Tn-1) and W = {wg, w1, .., wn_1). Then the Reed-Muller
{(RM) functions are defined in the following way:

n—1
Rx(W) = z§oatr..zpnyt = [« (2)

1=0

where 0°=1,1=1,0' = 0.




2.1 Reed-Muller Transform
The relation between f{X) and fo(W) for 0** polarity is given as

(W)= Rw(X) f(X), (3)
X=0
N -
[(X)= & Rx(W) fo(W), ' (4)
W =0

where D represents the modulo 2 addition and N = 2" — 1. In the case of G!* polarity
"0’ will be dropped from fo{W). For the generalized RM trasform we have

N
(W)= P Rw(X k) f(X), (5)
X=0
N s
fIX)= P Rxac(W) fi(W) (6)
Ww=0

where X @ k represents the componentwise (dyadic) addition, and k is the polarity.

Example 2 : The following four matrices represent Rw (X ® k), for k € {0,1,2,3} when

¥l =

X= 00 01 10 11 00 01 X0 11:00 OL 10 11 00 61 10 1I
= 00 01 10 11

X@k= 00 01 10 11°01 00 i1 10310 11 00 01 ‘11 10 01 00
W | |

oo [t o o olfo 1 o ol]fo o 1 o6 o o 1]
01 i 1 0 o|/f1 1 o0 offo o 1 1l o0 1 1
10 1 0o 1 oljo 1 0o 1M1 o 1 ofi 1 o0 1
DA TS TS S 1) § WD WS U ¥ I D U S TS 1 N S NS B |

1t will be shown in the following sections that RM coefficients have similar proper-
ties as those of Walsh-Hadamard or Walsh-Chrestenson spectral coefficients [16, 22-24].
Hence, f(W) can be termed as RM spectral coefficients and the complete set of coeffi-
cients as the RM spectrum.

As in the case of WH matrices, RM matrices have recursive structure and can be

represented as }
(7
n I O e 1 0
IR]”:[I 1]®[R]{ 1}:[1 1} ’ (7)

where ® is the Kronecker product and [R]'™ is the Reed-Muller matrix of 2" th order,
and n 15 the number of arguments. The fast RM transform based on this Kronecker
factorization requires n.2"! operations and 2" memory cells.




Let
f=1[f(0), £(1), ..., f(N)T,

. “ X . T
Je = [1x00), Ji(1), ., Fu(M)]
where 'T' stands for matrix transpose. From (2) it can be easily shown that
N
5 Rx(W) Rw(Y)=éxy, (8)
W=0

where &x y is the Kronecker delta function. From (8)
(B (R = (1] (9)
where |I] is the identity matrix.

Besslich |9, 10} and Wu, et all [8] have shown that spectra f; can be computed with
at most n.2"~! modulo 2 operations and to obtain f,, k € {0,1,.., N}only N iterations
of 2°~1 modulo 2 additions need to be performed. However, their approach is based
on folding of the Reed-Muller map introduced in [8]. In the following section it will be
shown that spectra of any polarity can be obtained by a matrix multiplication.

2.2 Generation of ﬂ from }ﬂ and }.;. from h

From (3}, (5) and (9)

Jo=Rg".f = {Rly.f , (10)
f=R Jo= Ry To (11)
fe= R .F = (R, (12)
where (R F] = [Ri, is the RM matrix of ¥** polarity, n is the number of input arguments

for the function and the order of [R|, is equal to 2" . From (8) and {9)

Ji = [Rly-|[Ro- [Rlo}-f = [iR],- [Ric)-[[Rlo - = [[R]y-[Rip]-Jo - (13}

Whenever the polarity of the spectrum is 0, 0 will be dropped for convenience. The
matrix [|R], .|R;,} is sparse and a number of operations required to compute f, from
f is very small. To illustrate this point [|R], .[R],] for k € {1,2,3} are computed for
the case n = 2.

1 1 0 0 1 0190

6 1 0 0 0 1 0 1
* | = A

00 0 1 000 1




1 111
. 01 01
Ry 1R = | 10!
00 01
It can be shown that || R|, . :R}D](”} are given by
Ty (n—1}
pln) [[R]y - [R]o] 0 : n-1
“R]k [ 10 l 0 “R]k-[R]u]{ﬂ-l} lf k{Z .
n Al (A . n—
N N A Bt (14

where 4] = (R} 0 IR

Since {R], and [R}], are upper triangle matrices with all diagonal elements equal to
1, the inverse of [[R],.[R],] is [|R],.|R],] itself. Hence

| Bix- [Blo] - [[R]i - [Rlo] = [1], (15)

and from (10), (11) and {13) one can obtain

J=[RR".f = Rl [Rlo] - Ji (16)
Example 3 : For the function given tn Ezample 1, the four possible spectra are given
below

o Iy f fo i 12 1

O 0 1 1 O 1 1

0 1 01 1 0 0O

1 O 1 0 1 0O 1

1 1 i 1 1 1 1

2.3 Some Properties Of RM Spectra

From now on we shall consider only 0'* polarity RM spectra. The following relationships
can be easily verified from (2), (3} and {4):

}.(ﬂ) = f(U) : (17)
.
Ny =B f(x), (18)
XA =0
Rx{0} = 1, VX, | (19)

By (0) =1, VW, (20)




Ry(W)=1, VW, (21)

Bo(W) = bwo (22)
N
D Rx(W)=éxp0, (23)
D Rx(W)=ébwn, (24)
X=0
Rx(W)Rx(ﬁf) = ’ﬁ z; = Rx(N), (25)
1=0 _:
Ry povy(W} = Bx(W]}Ry(W), (26) ;
Rx(W\/V) = Rx(W)Rx(V), (27) E

where A and \/ stands for componentwise AND and OR operations respectively. Using
the above relations one can find composite spectra of f, f & ¢, f A ¢, and f Vv ¢.

1. Let ¢(X) = f(X), then

s ) TW),  if W £0;
“’(W)_{ 16 (W), if W=0. (28)

2. Let p{X) = f{X)®¢(X), then

pW) = f(W)o $(W) . (29)

The above two relations are straightforword. The following relations are proved in
the appendix.

3. Let o(X) = f(X) ~n¢{X), then {
N
eW)= P 7(U).0(V) buvvw - (30)
U,V =0

4. Let p(X) = f(X) v é(X), then

N .
SW)=fW)ooeW)e & FU) V) éuwvw . (31)

U, V=0

5. CONVOLUTION THEOREM: If (W) = (W) A ¢(W), then

N

o(X)= D 1(Y)-4(2) byvzx - (32)

Y, Z=0




3 Fault Detection In Combinational Networks

Stuck-at-faulis (s-a-f): A line &; in a combinational network is said to be at s-a-0(1)
if that line becomes permanently fixed as a result of the fault at the binary value 0 (1),
and it is denoted as A, /0(1).
Bridging-fault: If two lines h; and k, are shorted and if the resulting signal after the
short is AND operation then h; and h; are at AND bridging fault which is denoted as
(hik;). . Similarly one can introduce OR bridging (h;h;) .

From now on a faulty function is represented as f*. The following theorem presents
a condition on spectral coefhicients for detection of s-a-fs at input lines.

Theorem 1 : A stuck-at fault at input line z; of & combinational network implementing
flzo, 1, -y Tn_1) 15 detected if and only if for the faulty network f*(W) =10, for all
W suchthat W = {wg. w1 P wiig .. w, q) .

Proof: From (3)

N N
P = DRe(X)(X) = @ wpa el £(X).
X=0 X =0

Since
To i1 q0G it Tp-1y __ o Ty—-1 11 Ty+1 Tr—1
('I'.Un -’--nj_w:'_l ’1 jwi“"]. ,-t!wn_l — (wn :...._,wt-___l !,1 ’wi"b'l ,-n,wn__l ]
and
» _ &
f (Iﬂa'-:I£~1301I£+1=—-aIn-l) = (=0, s Tio1, 1, Tin1y ey Tno1),

the above summation mod 2 over all X will be zero.

From Theerem 1 it is clear that a s-a-f at input line z; can be detected by verifying
fIW)iff f{(W) =1 for a fault-free device and w; = 1 (W = {wq, ..., w,_1)).

Corollary 1 : In a combinational network the multiple input s-a-f at z,,,...,z;, ts
detected if and only if for the faulty network f*(W) =0, forall W = (wo. .oy wp_1)

such that w;, = ... =w;, = 1.
From the above theorem and corollary the following theorem is obvious.

Theorem 2 : In any combinational network all single or multiple terminal s-a-fs can
be detected by observing at most n spectral coefficients, where n is the number of input
arguments to the network.

Corollary 2 : In ¢ combinational network if f(N) = 1, then all single and multiple
terminal s-a-fs can be detecled by verification of only one spectral coefficient f*(N).

It can be readily seen from (5) that the above theorems and corollary are true for spectral
coefficients with any polarity.

The following theorem provides a necessary and sufficient condition for detection of
AND bridging fault between two input lines z; and z;.




Theorem 3 : The AND bridging fault (z;x;). between two input lines z; and z; of
combinational network implementing f(zo,5,...,2n_1) is detected if and only if for the
favlty network f*(W) =0, forall W = (wo,..,wi,..,wy,..,wp_1) such that w; # w;.

Proof: From (3}

N N
W)= D Bw(X)'(X) = D witwfwwim ] f(X).
X=0 X=0

Since w; 7 w;, let w; =0 and w; = 1. Then

N
W)= €D w0 1w f(X) = 0
X=0
since
1 3 £ J
XL — n—
(w®,..,0% .., 11, ., wi*l') = (wde, ..,0°%,..,1%, ., wi"7Y)

and after the fault

. i g . i g
f (Iﬁv-aoa--&ﬂ:“tin—l) = f (I{],--,ﬁ,--,l,--,ﬂ?n_l)-

From Theorem 3 it is clear that a bridging fault between input lines z; and z; can
be detected by verifying 7(W) iff f/(W) =1 for a fault-free device and w; % w; (W =

(W0 vvs 1)),
The next theorem follows immediately from Theorem 3.

Theorem 4 : In a combincetional network implementing f{xo, 71, ..., Tn_1) all single

and multiple inpul AND bridging faulls cen be detectied by observing et most n — 1
spectral coefficients.

Example 4 : Let f(zoz122) = Tozi V &1T2 V ZpZ2, then the fault free and faulty spectra
of the function for various faulls are shown below.

f*(x:/0) f*(21/0) 1*((zoz1)s) F*{{zoz1)s)
0 0 0

o
3

MHHHQQDC}E
e D et e 3O N
[ T o T T v B T v TR Y
O O = DD D e
—_— 0 = O oo OO
e R e Rl [ i e

e e e D e OO G ey
L == T o ete R i R
e B S e B e B o N o B e

It can be easily seen from (5} that the above two theorems are valid for spectra with
any polarity.
Combining Theorems 2 and 4 we have the following result.




Theorem 5 : For any irredundant combinational network implementing f(xg, 1, ..., Tn_1)

there ezisis a set of n spectral coefficrents, which detect all deteciable single or multipie
terminal s-a-fs and single input AND bridging faults.

Internal faults in combinational networks will be considered in Section b.

4 Hardware And Time Complexity for Testing

4.1 Hardware complexity

Scheme 1: Testing of a network for any fault involves computing a set of spectral
coefficients called spectral signature {19] and each spectral coefficient must be equal to
1 for the fault-free network. Since f*(W) for any W depends on the modulo 2 sum of
the output responses of the network it requires only one T flip-flop. However, an input
to this T flip-flop depends on the spectral coefficient being computed. Inputs to the T
flip-flop can be controlled by a NOR gate whose inputs can be determined as follows.
We have

N
JW) = @ wiewf w2 f(X)
X=0

but
T, _ . — Zsi lf w; =0
Wi T WY = {1, if wi=1,
Therefore .
iwy=p I] z /(x).
X=0 w;,=0

For example, let n = 3 then

N N
}(UIU) = @ ToZo f(X] = @ xg V I2 f{X)
X=0 A =0

hence the inputs to the NOR gate are g and x3. The test circuit for the general case
is shown in Fig 2.

If more than one spectral coeflicient have to be computed, then the corresponding
NOR gates and T flip-flops have to be added. Instead of a n bit counter and a network for
coeflicient selection as in the case of Walsh-Hadamard spectral coefficients, Reed-Muller
spectral coefficients require only one T fiip-flop and a couple of gates.

Scheme 2: Another scheme for testing which can be used in real time is to store
all the responses of the function for computing spectral coeflicients of a signature in a
shift register as shown in Fig 3. This scheme can be useful only if || W {| is small,
where || W || is the number of I’s in W, in each spectral coefficient. Each spectral
coefficient is computed by hard-wired EX-OR gates. For a fault-free network these
spectral coefficients should be 1. All the spectral coefficients are then ANDed together
to provide the error output. If this output i1s 1 then the network is fault-free otherwise
it is faulty.

10




Example 5 : Forn = 4 and tf }'(lﬂﬂﬂ)ﬁz 1, f(0100) = 1, F(0011) = 1, then the
network tn Fig § which compuies f{1000}, f(0G100), and f(0011), can be used for testing.

In this case the following sequence of test patterns should be applied
T = (0000, 1000, 0100, 0001, 0010, 0011).

Fig 3 shows the hardware implementation details.
In general the additional hardware required for the second scheme amounts to one
shift register of length (L + 1), where

L= z (2||We|| - 1),

W.c8

L 2-input EX-OR gates and (] § | —1) 2-input AND gates, where | § | is the number of
coefficients in the spectral signature S.

The following theorem provides an estimation on a number of spectral coefficients
required for detection of all single and multiple s-a-fs for almost all networks.

Theorem © : For almost all combinational networks there exists two spectral coefficients
which detect all terminal s-a-fs with any multiplicily.

Proof: Consider any coefficient W;, then

prob { J(W:) = 1} = prob {J(W:) = 1} = 0.

Thus ‘ ﬁ
prob{ f(W:) # Lor f(W)) # 1} =0.75,
A " 3\ 2"
prob { J(W:) £ 1or J(W,) # 1 forall i}= (Z) .
Now consider the case when | W; | = {n/2]|. Then

)

prob { (J(Wi) # Tor JO7:) # 1), [Wil=2) = (4)( 3/

w3 3

which goes to zero as n Increases. Hence only two coefficients are sufficient for almost
all combinational networks.

From the above theorem it is evident that the hardware complexity for testing of
almost all combinational networks for input s-a-fs of any multiplicity amounts to two T
flip-flops, two {n/2] input NOR gates and two 2-input AND gates only. When compared
to the n bit counter and a coefficient selection network required to compute every WH
spectral coeflicient, hardware required by the RM spectral technique is very small.

11
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4.2 Time Complexity

Let the time complexity for testing a network be defined as the total time required for
computing all spectral coefficients of a spectral signature. The time complexity depends
on the spectral coefficients being computed, since

N
JW)= P rRw(X)f(X)= @ 1(X),
X =0

XCwW

where X C W means z; < w; for all i ( we call these X’s descendants of W ). For example,
the descendants of (101) are 000, 001, 100, 101 . Therefore, the fewer 1’s in W less the
time required to compute W, and the time complexity to compute }'(W) IS

time complexity = 2%l (33)

Time cmplexities for testing of input faults for some standard cmponents of computer
systems are presented in Section 6. The following theorem provides an estimation on a
time complexity required for testing, for almost all combinational networks.

Theorem 7 : In almost all combinational networks the number of test patlerns required
lo detect all multiple terminal s-a-fs by Reed-Muller transforms ts equal to 0.75n and the
ttme complexily ts equal to 1.25n where n 1s the number of input variables.

Proof i1s given in the appendix.

We have performed a statistical analysis using computer simulation to check the
apphcability of the above theorem and found that the results of the simulation are very
close to the results presented in Theorem 7. In the following table we summarize results

of simulation.
n Av.tirme sid. div

8 11.96 1.28
16 22.54 1.66
24  32.12 1.33
32  42.22 1.56

where Av. time is the average time complexity required for 50 randomly generated
networks with n arguments.

If the second testing scheme is used for testing in real time, from the above theorem
and Example 5 it 1s evident that the additional hardware for testing consists of one shift
register of length [1.25n} bits, [1.25n] 2-input EX-OR gates and [3n/4] 2-input AND
gates. |

5 Detection of Internal Stuck-at-faults

This section deals with detection of internal s-a-fs in combinational networks imple-
mented by two-level AND-OR structures. In the previous section it was shown that at
most n spectral coefficients are sufficient to detect all multiple terminal s-a-fs in any

12




combinational network. If a network has an AND-OR structure, then all multiple ter-
mianl s-a-fs and all multiple internal s-a-1 faults are detected since any internal s-a-1

fault results in f*(W) =0, for all W # (0,0,. .,0}. The only s-a-fs to be detected are
the s-a-0 faults at the outputs of AND gates. The following theorem deal with internal
faults in fanout-free networks.

Theorem 8 : For any faenout-free network there exists a set of n spectral coefficients
which detects all multiple terminal s-a-fs and all single internal s-a-fs, where n is the
number of tnpul argumentis for the network.

Proof: Since a network is fanout-free there are exactly n paths from inputs to the
output. Consider a path p; starting from input line z;. Let X; be the input vector which
sensitizes path p; such that || X; || is minimal and f(X;} = 1. Clearly f(X;) = 1 and if
any line k; on the path p; is at s-a-f then f*{X;) = O detecting the fault. Here there is
no assumption made on the method of immplementation of the fanout-free network.

Lemma 1 : If in an AND-OR network all AND gates have n inputs, then only one
spectral coefficient f(11...1) is sufficient for detection of all single internal s-a-fs.

Proof: Clearly
N
F1r) = @ 7(x)
X=0

is a parity function and any single internal s-a-0 fault changes the parity detecting the
fault.

Example 6 : If f(X)=3(0, 3, 6, 9, 12, 15) mod 3checkerfarn = 4, then f(W) =1
where W € {0,1,2,4,5,7,8,10,11,13,14} and f*(1,1,. y1) = 1 for any single internal
s-a-f, detecting the faull.

Theorem 8 : If f = fiv ..V f, where f; = fi(X;), X; NX; =8,

,
U X=X = {20, 15 - 201 },
1=1

and every product term of subfunctions f; depend on all of its erquments X;, then a
number of speciral coefficients required to detect all internal s-a-fs is at most r.

Proof: It suffices to note that every product term of each subfunction is a minterm and
by L.emma 1 the theorem is true.

Theorem 10 : For any threshold function tmplemented by a two level AND-OR network
only one spectral coefficient is sufficient to detect all single internal s-a-fs.

Proof: The threshold function is given as

D N MRS D Diar F T
f(x)_‘ {05 lf Z—ﬂ‘tl &

i ¥

o I
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where { is the threshold. Therefore, function f is a sum of product terms consisting
of exactly  variables. H any AND gate in an AND-OR structure realizing a product
term say, p; = Z1Z;...7: is s-a-0 then nnl} one minterm X; — (Il,mg, T4, 0,..,0) and

the corresponding spectral coefficient f*(X;) will be effected. Hence f(1,1,. ..+ 1) would
detect all single s-a-0 faults.

Theorem 11 : For any unate fuclion if every product term depends ezactly on (n—¢)
variables and the total number of product terms is equal to

( ((n - )/2) ) ’ (349)

then }'(1, 1,..., 1} is sufficient to detect all single internal s-a-fs, where \m| is the inieger
part of m.

Proof: It was shown in [26] that the maximum number of product terms in any unate
function with exactly {(n—1) variablesin each product term is given by (34). Hence as in
the previous theorem any single internal s-a-0 fault effects only one minterm. Therefore
f(1,1,...,1) detects all single internal s-a-fs.

A relatiﬂn between the number of spectral coefficients that may be effected by a fault
and the mimmum number of test patterns required to detect the fault will be presented

by Theorem 12. Now the following lemmas give an upper bound on the number of
spectral coefficients that may be effected by an internal stuck-at fault.

Lemma 2 : Suppose f(zo,...,2n-1) is tmplemented by e 2-level AND-OR network.
Then 1f the output of an AND gate implementing a product term P = #q,.... 5,,_1, & €

{ziy Zi, d} 1s 5-a-0, then the number Ay of spectral coefficients in fi, k € {0, 1, ... N},
that may be effected by the s-a-0 fault ts at most

Ag < 2nilp®kl (35)

where k = (ko, ..., kn_1) s the polarily of the RM transform and p is obtained from P
by replacing z; by 1 and Z; by 0 in P, d 1s the don’t care veriable, dDk; =0, k; € {0,1}
and || p@ k || i5 the number of 1’s in pD k.

Proof: From (5}

N
W)= Rw(Xok) f(X) = @ f(X) (36)
X=0

X@eCW

Clearly if || X © £ [{= m, then there exists 2"~™ W's which satisfy X @ k¥ C W. Now 1f

fk(W} =+ fk (W) for a given W, then there exists a X such that X @ k CW, P(X) =
Without loss of generality, suppose that

1 -1 n-—-2
FP = InIl...I,'_]i't'...f:j_I = p= 11...100...0dd...d .
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If k, ® p; = 0, then all W = (wg, w1, ..., w,_)} with w, = 0 and w, = 1 may be distorted
by P s-a-0. H k, @ p, = 1 then only W = (wo, w1, ..., ws_1) with w, = 1 may be distorted
by Ps-a-0. Hs> 37— 1thenforall W = (pp @ ko ,p1 B k1 yoeoy i1 B ki1 s W5y ey Wn_y)
with w, = 0 and w, = 1 may be distorted by P s-a-0. Thus, we have for a total number
of spectral coefficients that may be effected by this fault

Ay < ¥ lp@kll+n—3 _ on~{p@k|

In particular if £ = 0, a number of spectral coefficients that may be effected by a
s-a-0 fault at the output of an AND gate realizing P is upper bounded by 2% 1Pl where
| P || is the number of variables appearing in P in their true form.

As we will see below an upper bound on the number of test patterns increases mono-
tonically with A,. Since the number of spectral coefficients that may be effected depends
on the polarity of spectrum k, we will now describe a simple procedure to minimize an
upper bound on A; given by {35).

Let

Np
F=VP,
=1

where IV, 1s the number of product terms in f. Consider minimal weight vectors b; such
that F;(b;) = 1. Form a matrix B = (b,;), with b;’s as rows. Then the elements of
k = (kg, ..., kn—1) are found from the matrix B as shown below

ky = { 0, if Zt—l ;2 [ Np/2])5

1, otherwise.

From now on only £ = 0 will be considered { results may be easily generalized for
any k ). The following lemma is obvious.

Lemma 3 : In a network tmplementing f = Vi’lﬁ of F; 5-a-0, then none of the
speciral coefficients W’s such that b; € W, are effected by the s-a-0 fault { where b; ts
the minimal vector such that P;(b;}) = 1).

Example 7 : Let P = Zgz z2d, & = 0110 and W = 0101. Then the descendants of W
are { 0000, 0001, 0100, 0101 ), none of them would make P = 1, and hence any s-a-0
at P does not effect W,

Lemina 4 : In ¢ nelwork tmplementing | = V 1 Fi tf P; 5-a-0 then for all W’s such
that b c W, (b; # W) end for all b,(s #1), b, € W f(ljlf’) = f"‘{W). The only spectral
coefficient that s effected by the s-0-0 foult is W = by, (f(b;) # f*(&)).

Proof: From (3)
N

JW)= @ Rw(X) /(X) = P F(X). (37)

=0 XCW
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Consider W such that b, ¢ W for all 5, and b; ¢ W, then the number of descendants of
W at which the value f equalsto 1 is even and hence }(W] = {). Similarly, f* is 0 for all
the descendants of W and f*(W) = 0, Therefore none of the ®’s such that b; ¢ W and
for all s b, ¢ W are effected. However, if W = b; clearly f(b) # f*{&).

In the next couple of paragraphs we remind some results from coding theory which
we will be using for testing of networks for internal faults.

Consider the vectors vg, vy, v2, ..., v, of length 2" and all products of r or fewer
vectors from {v1,vs. ..., v} at a time which form the basis for Reed-Muller codes of

r‘® order [29]. They can be arranged in a matrix form V, with 2o ( :1 ) = M rows
and 2" columns. It can be easily seen that the rows of V are same as some of the rows
of [R], (see (7), (10} - {12})}). Hence, from (4), components of V. f are values of £f{X) for
I X ||[2n—r.

For example, for n = 4 and r = 2

f(0000)
7 (0001)
r _ _ . | 7(oo10) _ )
Yo 1111 1111 1111 1111 F(0011) f(1111)
vy 1111 1111 0000 0000 | | %(5100) f(o111)
Vs 1111 0000 1111 0000 | | %gy07) f(1011)
vs 1100 1100 1100 1100 7(0110) f(1101)
_ vy _ 1010 1010 1010 1010 70111} f(1110)
V.fz Vo .f: 1111 GO00 0000 0000 - — f(ﬂﬂl])
vyea 1100 1100 0000 oooo | | £(1000) 1(0101)
v, V4 1010 1010 0000 oooo | | F(1001) £(0110)
vyta 1100 0000 1100 0000 | | f{1010) £(1001)
Uy tg 1010 0000 1010 0000 | | f(1011) £(1010)
V3 U 1000 1000 1000 1000 | | f(1100) f(1100)
' ) ] " | f(1101) ] )
f(1110)
- f(i111)

Remark 1: It is known from coding theory {30| that any 2"+! — 1 columns in V are
linearly independent, where V' is the matrix whose rows are the basis vectors of r** order
Reed-Muller code.

The following theorems give estimations on a number of test patterns required to
test a network.

Theorem 12 : If any fault in a retwork implemeniing f causes a distortion of at most
A spectral coeffictents in the BEM expansion with k = 0, then a minimal number of test
patierns required to detect all single faults tn the network s upper bounded by

[qug{A+lﬂ—1 "
> ( :':)‘ (38)

ES |
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Proof: Let us take as test patterns all X such that || X i|> n — r, where

r = [logz(A+1)i— 1. From Remark 1, since the number of linearly independent columns
in V is 2"*1 — 1, that many errors in f can be detected by the code with check matrix
V [29]). Computation of r and the number of rows in V yields (38).

Example 8 : Let fis a 9 out of 12 funciion, 1e.,

0, otherw:ise.

It 15 clear that every product term consists of nine variables. If any single fault effects at
most one product term then by Lemma 2, withk =0, || b; ||= 9, we have A = 21279, r =3

and ¢ number of test patterns required to test the network is at most

3
M=Z(?):299.
t=0

Definition: Let Ths = { X1, ..., Xas} be the set of test patterns such that || X; [|> n—r. |

Denote for a given

Ny
f=VP~R,
1i=1
by @; a number of X's, X € Tyy, such that X has exactly 5 product terms which are
proper descendants of X.

Theorem 18 : In any 2-level AND-OR network all internal single s-a-0 faults can be

detected by at most
Z(?)-—Qﬂ—ql (39)

=0
test patterns, where r = mti::(n.— | P: ||}, | P; |l denotes the number of variables appear-
tng tn thewr true form wn F;.
Proof: Consider the test patterns from Ty = {Xi, ... Xm} (I X: || > n — r). Then,
the first two terms in {39) are obtained directly from Theorem 12 and Lemma 3. Now,

let b; corresponding to F; be the vector such that & C X; and & ¢ X, for all {. Since
Y e Xj, we have [l b, | < :| Xj H, and

R i X <n- b < -
Now by definition of Ty, there exists X; € Thy such that X; = §,. Then both X; and
X; would detect a s-a-0 fauli in F;, but any one of these test patterns is sufficient for
detection of this fault. Hence, §, redundant test patterns are subtracted.

It is possible to select a polarity of the spectrum such that the r in the above theorem
is small. For example, if f is unate then the number of test patterns required to test all

i—.ﬂ

where r = maz{n — | F; |), and | P; | number of variables in F,(1F|>]| B ).
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Example 9 : Let [ = gz, V 2273 V Zox3, then by = 1100, b, = 0011, b3 = 1001, for
ol i, |Bll=2,r=n-|F|=2,

Tas = (1111,0111, 1011, 1101, 1110,0011, 0101, 0110, 1001, 1010, 1100)

end Qo = 2 since the test patterns { 0101, 0110, 1010 } have no product terms of f as
their descendants. Similarly Q) = 2 stnce each one of the test patterns ( 0111, 1110 }

has ezactly one product term as ils descendant. And by Theorem 13, a number of test
patterns 15 at most 6.

6 Time Complexities For Detection Of Input Faults In
Standard Components

In this section, time complexities for detection of input s-a-fs by Reed-Muller spectral
techniques for some of the standard computer hardware components are presented. In
the case when the function has multiple outputs the EX-OR sum of all the outputs have
been used for observation.

Time complexities For Standard Components

S.No. Function time complezity
1. partty checker 2n

2. OR function 2Zn
3. NOR function 2n
4. Quadratic function 2n
5. Match detector 2n

6. T hreshold detector (t = 2) 2n

. f(X) = Sy(X) = 1iff [| X ||=2 20

8. Threshold function t = ¢ [2]2°
9. (X)=SX)=1iff [ X |=c 22
10, AN D funetion 2"
11. NAND function - 2"
12. comparator X <Y =1 an
13. Multiplezer oy ( T ) 2i+1
14. f(X)=12 n+ 1
15. fIX)=X+1 n+ 2
16. f(X)=X+1 n+ 2
17. f(X,Y)=X+Y (adder) n+ 1
18. f(X,Y)= XY (multiplier) 1.5n+1
19. () shiftleft/right n—+ 1
20. shift left/right n+ 2

where {m| denotes the least integer greater than m.
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APPENDIX
1. Let o(X) = f(X) A $(X) then |

N
= @ FUV) bpovw -

V=0

Proof: From (3), (4) and (13} we have

N
= @ Rw(N(X)8(x) =

;{@ Ry (X) @ EBx(U)f(U) @ Bx(V)$(V)

0
N
© v x) D ExORVIOHY) =

V=0

@ Ru(X) @ Re(UVV)IU)HY).

UV=0
Interchanging the order of mod 2 addition and from {15) we have

N
p(W) = F(U)(V) buvvw -
V=0

2. Let (X)) = f(X) v ¢{X). Then
p(X} = f(X) @ ¢(X) & F(X)$(X).

From the previous result we obtain

N
pW)=fW)asW)e P HUV) svwvw .

U,V=0

3. Let (W) = f(W)a{W). Then
N
p{X) = Q_% Rx(W)F(W)g(W).

Proof 1s similar to case 1.

4. Proof of Theorem 7: The proof consists of two parts.
1). It will be shown that there exist B; and B; such that

IV Wl=n,

WeB,uB,

19




Bi={W[|W|=1,W,AW;=(00..0), | \/ W|=1ln/2]}.
WehR,

prob {f(W)=1 forall W € By} — 1 as n —+ oo

and
By ={W |[|W [I=2, W AW, =(00..0)}, | \/ W |i=[n/2]),
WeB,

prob{}’(W)ZE JoralW € Boy — lasn — oo

ii}. From i) it will be shown that Theorem 7 is true.

i): First we note
E{W:| f(W)=1,]|W;[[=1} =n/2

From this it is clear that with the probability converging to 1 there exists a set B,
of |n/2| spectral coefficients which are sufficient for detection of stuck-at faults at the

corresponding [n/2] input lines. (If || W, ||= 1, W; = (00...0 ] 0..0), f(W;) =1
the stuck-at fault at input line z; can be detected by verification of f*(W;) ). Stuck-at
faults at the remaining [n/2] input lines will be detected by verification of 7*{W) where
|| W |l= 2. It will now be shown that such a set of W exists with probability converging
to 1 as n — oo. Let us denote [n/2] = m. We note that

prob (J(W:) = 1,{| Wi ||=2) = 0.5 .

Consider B; such taht for any W € By, | W ||= 2,
! Vwep, W [[= m and for any W;,W; € By, W; A W; = (00...0).
Then
prob {f(W) =1 for all W € B,) > 2~™/2

Let P = {Bs}, the set of all B, satisfying the above definition. Then
P!‘ﬂb {3 Bg i P} > 1 - (1 - z—mﬂ)Q
where @ =| P |, and

o () (2)("7)-(2)- ()" 2

Using Sterling’s formula one can get
Q ~ mm;’zﬂwmﬁ‘\/ﬁ!

and

bm (1 -2"™%9 =0 {ff < — 00 as m-— 0o .

m— o gm/f2
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Clearly
Q ™/ 2 \/E

gm/2  gm[Z gm[z

» 00 as mo— 00 .

This implies that there exists at least one set B, which is sufficient for detection of
stuck-at faults at the remaining [n/2] = m input lines.

ii}. The total number of coefficients to be observed is | By | + | B {< |n/2| +
[3[n/2]] ~ 3n/4. Hence 3n/4 memory celis are sufficient to store these coefficients.
The time complexity required to compute these spectral coefficients can be estimated as
follows, Suppose

o= (00..1..0) Then j4) = { {0000 | r 1(00-0) =0

In both cases only (0... 1 ...0) has to be applied to the network and the ouput of the
T flip flop or its complement is taken as the f(0...1...0). Since there are in/2]| spectral
coefficients with || W ||= 1 only |n/2| steps are required. Similarly for the case when
| W {|= 2, 3n/4 steps are required. In total the time complexity for detection of all
multiple terminal s-a-fs is 1.25n .
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