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1 Historical Survey.

The first workshop on Spectral Technigues was conducted in Boston, October
1983. The workshop was devoted to the two major topics: applications of spectral tech-

niques and fault detection. The workshop was attended by 35 people from 7 countries:

USA, Canada, UK, West Germany, India, Australia and Peoples Republic of China.
Thirteen invited papers were presented.

The following topics have been discussed at the workshop [1]:

- applications of spectral techniques for logic design and computer architecture (6 pa-
pers). _ '

- applications of spectral techniques for testing of computer hardware (2 papers).

- applications of spectral techniques in digital signal processing and filtering (8 papers).
Four papers have been devoted to testing and self-testing of computer hardware and to
data compression of test responses.

Nine papers presented at the workshop have been selected for the publication as
separate chapters in ” Spectral Techniques and Fault Detection ™ (M. Karpovsky, editor),
Academic Press, 1985 [2|. All these papers have been expanded to make them self-
contained chapters in the book and reviewed by at least four reviewers. The list of the
chapters included in the volume is given below:

e Introduction, by M. Karpovsky, Boston University.
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¢ "Synthesis of Encoded PLA’s ”, by R. J. Lechner and A. Moezzi, University of
Lowell, USA.

¢ "Spectral Processing of Switching Functions using Signal-Flow Transformations”,
by Ph. W, Besslich, University of Bremen, West Germany.

o "The Chrestenson Transform in Pattern Analysis”, by C. Moraga and K. Seseke,
Universitat Dortmund, West Germany.

e "Filtering in Communication Channel by Fourier Transforms over Finite Groups”,

by E. A. Trachtenberg, Drexel University and M. Karpovsky, Boston Univer-
sity, USA,

o 73D Cellular Arrays for Parallel Cascade Image/Signal Processing”, by M. J.
Corinthios, Ecole polytechnique de Montreal, Montreal, Canada.

o "Universal Testing of Computer Hardware”, by M. Karpovsky and L. B. Levitin,
Boston University, USA.

¢ Techniques for Fault Detection in Combinational Logic”, by D. M. Miller, Univer-
sity of Manitoba and J. C. Muzio, University of Victoria, Canada.

e "Signature Techniques in Fault Detection and Location”, by 8. J. Upadhyaya and
K. K. Saluja, University of Newcastle, Australia,

e "The Design and Analysis of High Speed Logic®, by G. R. Redinbo, University of
California, Davis, USA.

In addition to these ten chapters the volume contains a complete (618 items)
bibliography on applications of spectral techniques in logic design, testing and digital
signal processing.

This volume in combination with older books by M. Karpovsky [3], S.L. Hurst [4] and
the new book by 5.L. Hurst, J. Muzic and M. Miller [5] presents a most comprehensive
study on applications of spectral techniques in logic design and testing of computer
hardware. lt also complements two previous books by N. Ahmed and K. R. Rao [6] and
K.Beauchamp |7] on applications of spectral techniques in digital sigani processing.

2 Applications of Spectral Techniques to Logic Design

In this section we present a survey of some applications of spectral techniques

(in particular of the Walsh Transform} for logic design. These design techniques may be
used, for example, {or design of CMOS gate arrays.

Let f = filzo,-e-yZm-1) (t = 0,...,k— 1) be a system of Boolean functions which
have to be implemented by a gate array.

It is well-known | 3, ch.1; ch.2; 8 | that adding XOR gates ( which have simple
implementation in CMOS technology )} to the standard NAND, NOR primitives results
in considerable savings in gate counts of corresponding gate arrays.




The following three structures { Fig 1 - Fig 3 ), implementing this approach, have

been investigated.
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As a complexity criterion for a nonlinear part one can take

k—1
L=, >  5H(X)Y), (1)

i=0  d(X,Y)=1

where d( X, Y) is the Hamming distance between binary m-vectors X and Y.

Justifications for the choice of this complexity criterion can be found in [3, ch.2; 2,
ch.1 |. Minimization problems for complexities of nonlinear parts for impiementations of
Fig 1 are known as problems of linearization of systems of Boolean functions, | 3, ch.2;
8, 9.

It was shown |3, ch.2; 2, ch.1] that implementations of Fig 2 and Fig 3 for most cases
do not generate considerable savings in gate counts.

The solution of the linearization problem (see Fig 1) with respect to criterion (1) is
based on the total autocorrelation function, which can be defined in the following way:

k—1
B(r)=3_ > (X)X o). (2)
i=0 X
Let M be the set of all nonsingular (m x m} binary matrices over GF(2); T € M and
to, -y tm—-1 are the columns of T, T = (g, ..., tn—1);

B(T) = Z_: B(t;) . (3)

Then (3, ch.2]e e M minimizing the complexity L(f,) of nonlinear part for Fig 1 is the
inverse over GF(2) of T, where

max B(T) = B(T). (4)
TEM
The generalization of this algorithm for lineanzation of systems of multivalued func-

tions can be found in [8; 9].

To compute the autocorrelation function we used the Weiner-Khinchin theorem for
the Wasih transform by applying twice the Fast Walsh transform {3, ch.1].

The computation of T € M, defined by (4), is very time-consuming. To simplify this
process we used the following observations.

Denote by p(m) a probability that a randomly chosen binary (m x m) matrix T =
(3ij), (prob {t;; =1} =051or 1,7 =0,1,..,m— 1} is nonsingular over GF(2). Then

' (2n - 2

A et 5)
and
iim p(m) = p = 0.288788.... . (6)

m— O

Since p(m) converges to p = 0.288788.. very fast as m — oo, on average about one out
of four randomly chosen (m x m) binary matrices is nonsingular over GF(2).




To generate T & M using this observation we first generated &g,14, ..., t5,,_1 such that
B(t;) > B(tiv1) (to £0; i =0, ey dm— 2) (7)

T = (t,..., tm—1) € M, then T = 7. I Ty ¢ M we construct T2 = (iy, coon b1yt );
if Ty € M, then T = T3, etc. This algorithm was implemented for system of Boolean
functions of up to 22 arguments. Average savings in gate counts were about 25% without
an increase in delays for the corresponding gate arrays.

It should be emphasized that this approach based on linearization may be less efficient,
for PLA implementations of nonlinear blocks { see Fig 1), since it may result in a
considerable area overhead required to mplement the linear part ( see, [2,ch 1] ).

J Reed-Muller Transforms for Testing of Computer Hard-
ware

Testing by verification of Walsh coefficients has been investigated in {17 - 19]. A good
survey of spectral techniques for testing is presented in (2, ch.7].

For the Walsh transform every spectral coefficient depends on the values of a function
of m arguments at all 2™ input vectors. This result in two major drawbacks of spectral
testing techniques based on the Walsh transform. F irst, spectral testing requires 2™
steps, the same as for exhaustive testing. Second, since every spectral coefficient is an
m-bit number, testing requires an additional m-bit counter.

In {10 - 15] spectral techniques for testing by the Walsh transform have been modified
to reduce a time complexity of the test. This approach is known as testing by linear
checks. The linear checking approach has been efficiently used in [10] for a chip level
testing, in |[11] for microprocessor testing, in [12] for memory testing and in 13; 14; 15]
for testing of software for numerical computations. Modifications of the linear check-
Ing approach have been also used for self testing in distributed multiprocessor systems
computing numerical functions [16].

We will describe here a new spectral approach for testing, resulting in a simultaneous
reduction of a testing time and a hardware overhead required for testing. This approach
is based on the Reed-Muller (RM) transform defined below. For this approach every
spectral coefficient (W) depends only on 2™l values of the original function {(X) (|| W ||
1s the number of ones in W) and in addition to this f(W) e {0,1} for every W.

Thus, verification of f(W) will require application of 2(%I test patterns and the
corresponding signature will contain one bit only. It will be shown below and in 120,
that this one-bit signature will be sufficient for detection of a very high percentage of
stuck-at faults,

We will discuss here some basic results related to testing by verification of RM coef-
ficients. The detailed presentation and proofs can be found in [20].

The RM transform f — f can be defined in the following way,




Let X = (20,0 Zm—1); W = (wp, ec, 0, 1), (i, w; € {0,1}), and

Rxy(W) = ﬂﬁ z;"  (where 0° = 1). (8)
Then v
W)= P Bw(X)f(X)= D 1(X), (9)
X=0 XCW '
N ~
f(X)= @ Bx(W)j(W) = P F(W), (10)
W =0 WCX

where € stands for the modulo 2 addition, N = 2™ -1, X C W iff z; < w; for
1 =0,1,..,m— 1. -

Computing f{W) for all W requires only m.2™"! two input XOR gates. The corre-
sponding Fast RM trasform described in [20].

The Reed-Muller expansions ( although represented in a different form) have been
widely used in logic design ( see, eg. [21-28] ) and in error correcting codes 129]. We
note also that (9} and (10) are similar to the Mobius inversion formulas well-known in
numbers theory [29].

The RM transform, defined by (9) and (10) has many remarkable properties, some -
of them similar to the properties of the Walsh transform. We will mention here only few
basic ones.

. For any X = (z0,..cs Tm—1)y W = (w0, «ve, Wrp—1)

N
1, X =(0,0,..0);
W — T 1 E
I&@D Bx(W) { 0, otherwise; (11)
N
1, W=(11,.. 1);
R};’(W} — { E .7- ) b 1 12
;.il 0, otherwise; (N =2™-1) (12)
) m—1
Rx(W)Rx (W)= ][ = - (13)
1=0
2. Forany X, Y, W
Rxay (W) = Ry (W) Ry (W), -_ (14)
Bx(WVvV)=Rx(W) Rx(V). (15}

where A and V stands for componentwise AND and OR operations respectively.
3.For any f(zg, ..., Zm-1)

£(0,0,...,0) = £(0,0,...,0), (16)

N
f(L,1,.,1)= P f(x). (17)
X=0




4. If p(X) = f(X) ® $(X), then

(W) = J(W)® $(W) (linearity). (18)
5. H (W) = f(W).$(W), then
o(X)= B [(Y)#(Z) (convolution). (19)
YvZ=X

Properties of the RM transform with respect to detection of terminal (input/output)
faults are very similar to those of the Walsh transform, but of course, for the RM
transform all spectral signatures are one bit wide.

A stuck-at fault at input line z; can be detected by verification of f{W) iff }'(W) =1
for a fault free device and w; = 1 (W = (wy, s Wrn—1)}. A bridging between lines T
and z; can be detected by verification of J(W) iff f(W) =1 for a fault-free device and
wy # w;. for example, if f(1,1, ..., 1) = f(N) = 1, then all multiple terminal stuck-at
faults can be dtected by verification of J(N ).

Thus, the problem of minmization of testing time for detection of all terminal stuck-at
faults with any multiplicity can be formulated in the following way.

For a given f(X) construct W1, W2 . W7 such that: 1) f(Wi) =1 (1=1,...,r); 2)
for any { = 1,...,m — 1 there exists J € {1,...,r} such that wf = 1; 3) 2oi=1 2wl _
min. Some partial solutions of this problem are given in |20].

Kuhl and Reddy [30] have shown that 2m + 4 test patterns are sufficient to detect all
terminal stuck-at faults with any multiplicity in a combinational network. Karpovsky
and Levitin (2, ch.6] have shown that there exist standard universal tests with 2m — 2
test patterns for detection of all multiple terminal faults in almost all combinational
networks. It is shown in [20] by the use of the RM transform that onlyl.25m test patterns
are suflicient to detect all multiple terminal stuck-at faults in almost all combinational
devices as m — oo ( of course, these RM-based tests are not standard but device-
oriented tests).

Some resuts related to detection of terminal faults in standard computer components
and to detection of internal stuck-at faults by verification of RM coefficients are also given
in [20). We will present here only one important result concerning the sensitivity of RM
coefficients to internal faults and a number of test patterns in a minimal test detecting
all internal single stuck-at faults in a network implementing a given f(xq, ..., z,,. 1)

If any single stuck-at fault in a network implementing f(zg, ..., Tm_1)} causes a distor-
tion of at most A RM spectral coefficients }'(wﬂ, ooy Wy 1}, then we have for a minimal
number R of test patterns detecting all single stuck-at faults in the network

T) - (20)

Thus, networks with a low sensitivity of RM coefficients to internal faulis have a good
testability. To illustrate formula (20} let us consider detection of stuck-at faults at
outputs of AND gates in 2 canonical Reed-Muller network 126]. Then any fault of this

R < >

=0

[fegz{A+1}]-1 (




type distorts only one spectral coeflicient, A = 1, by (20) R = 1 and test pattern

(1,1,.

[1]-

(2.

13]-

..,1) detects all single stuck-at faults at outputs of AND gates,
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