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one can expect to identify pOI. For suppose dn,, = poi&, dt + 
dm,, 7 i = 1,2, and let n, = n,, + nzf. Then eventually all the 
observations of n, are almost entirely those of rz2,, which does 
not yield much information about pOl. Indeed C now becomes 

[ 1 i 7 . Similarly, if lim, _ m+l,/+ZL = c E (0, cc), one can only 
expect to identify cpOl + p02. 

It might be difficult to check assumptions 2 and 3 of Theorem 
2. Assumption 1 will in general be easy to verify. A sufficient 
condition for assumptions 1 and 2 to hold is, for example, 
+t - to (a > - l/2). A necessary condition for assumption 3 is 
that the eigenvalues of &#@~ ds are of the same order as t + cc. 
Assumption 3 is similar to the notion of persistence of excitation 
that appears in identification problems for ARMAX systems. 

Condition 3 of the theorem appears as a technical condition, 
necessary for the proof of Theorem 2. It seems, however, to be 
related to 

1 
lim ~ J 

t WJZ- - dr > 0 
f ’ m P,T4r, 0 Porps 

almost surely (6.1) 

Wiener filters. A general model of a suboptimal Wiener filter over a group 
is defined, which includes, as special cases, the known filters based on the 
discrete Fourier transform (DFT) in the case of a cyclic group and the 
Walsh-Hadamard transform (WHT) in the case of a dyadic group. Statis- 
tical and computational performances of various group filters are investi- 
gated. The cyclic and the dyadic group filters are known to be computa- 
tionally the best ones among all the group filters. However, they are not 
always the best ones statistically and other (not necessarily Abelian) group 
filters are studied. Results are compared with those for the cyclic group 
filters (DFT), and the general problem of selecting the best group filter is 
posed. That problem is solved numerically for small-size signals (I 64) for 
the first-order Markov process and random sine wave corrupted by white 
noise. For the first-order Markov process with the covariance matrix 
II”,” = pi’-‘1 as p increases, the use of various non-Abelian groups 
results in improved statistical performance of the filter as compared to the 
DFT. Similarly, for the random sine wave with covariance matrix B(“,‘) = 
cos X (s - I) as h decreases, non-Abelian groups result in a better statisti- 
cal performance of the filter than the DFT does. However, that is 
compensated for by the increased number of computations to perform the 
filtering. 

where Qr = /&& ds. Here (6.1) has an appealing interpretation. 
To see this, define a normalized version of (3.1) by I. INTRODUCTION 

H,(P) = j&J,(P). (6.2) 
t 

Then minimization of H,( .) is equivalent with minimization of 
J,(.). One can easily check that for large t H/(p)l,=,, can be 
approximated by (6.1). Hence (6.1) says that for t --f cc pO is 
indeed a minimum point of H,(e). 

We have not discussed the asymptotic distribution of the 
estimates j, generated by (3.2) and (3.3). This issue will be 
addressed in another publication. 

In recent years interest has grown in utilizing orthogonal 
transforms in digital signal processing in order to improve statis- 
tical or computational performance to permit a trade-off between 
these two criteria by utilizing a certain chosen orthogonal trans- 
form PI, [31, 171, 1141. 
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A common quality shared by many fast transforms which 
enables their classification (see, e.g., [4], [5]) is that they can be 
represented as Kronecker products of matrices which may or may 
not be sparse or structured. By virtue of this Kronecker product 
representation new transforms can be generated from old ones 
simply by using the Kronecker product. In a given problem, such 
as Wiener filtering with given statistical characteristics of a signal 
and noise, one can select a computationally good approximating 
transform to a statistically optimal transform and the selection 
can be done out of the family of known fast transforms with a 
Kronecker product representation. (See [lo], where a good refer- 
ence list can be found, and [l].) 
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Ahstrac~-A class of suboptimal Wiener filters is considered, and their 
computational and statistical performances (and the trade-off between the 
two) are studied and compared with those for known classes of suboptimal 

Another approach to the same problem of Wiener filtering 
would be to construct a computationally good approximation to a 
given statistically optimal transform. A possibility of solving that 
problem analytically for classes of signals defined by their covari- 
ante matrices (e.g., for signals whose covariance matrices are 
Toeplitz) has been pointed out in [12], [18], [19], [28] and this 
approach deserves further elaboration. Yet another approach is 
to construct experimentally a computationally good approximat- 
ing transform to a transform which is known to be good statisti- 
cally. For example, the discrete cosine transform (DCT) has a 
nearly optimal statistical performance for highly correlated 
Markov signals (see [24]), and it has recently been approximated 
by computationally convenient transforms [8]. Here even for 
small n (up to 32 vector-components of a signal) the problem is 
difficult, involves tedious trial and error procedures, and requires 
artistry rather than clear-cut methods. Another disadvantage is 
that a success with approximating one transform (as DCT) for 
some n (say n = 16, 32) cannot be generalized to be used to 
approximate other transforms [8], [26]. 
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A number of researchers [15], [l], [3], [ll], [17] have selected a 
family of fast transforms which are group theoretic by their 
nature; i.e., they are based on group characters of corresponding 
Abelian groups: examples are the discrete Fourier transform 
(DFT) in the case of a cyclic group and the Walsh-Hadamard 
transform (WHT) (or simply the Walsh transform) in the case of 
a dyadic group [l], [3], [ll], [15]-[17], [27]. The use of non-Abelian 
groups was discussed in [13], [20]. 
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These transforms exist for any number n, are computed ana- 
lytically by formulas, and possess Kronecker product represen- 
tations (which guarantee speed of computation for nonprime 
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n’s). Also, their statistical performances can be computed by 
formulas, and as will be shown later, in many cases they compare 
favorably with other transforms. The cyclic and dyadic groups 
are not always the best to use [3], [7], and attempts have been 
made to develop a general theory of approximation of systems 
and signals by those over groups. Elements of this theory as 
presented in [13], [14] embrace problems in digital signal 
processing such as filtering, encoding, data compression, etc. 
(e.g., see [3]). 

In the present work we apply methods of this theory to the 
, well studied problem of Wiener filtering. The applications of 

representations of noncommutative as well as Abelian groups are 
the subject of our investigation. The results are compared with 
those in the current literature, and it will be shown (see Sections 
II and III) that the DFT and the WHT are often not the best 
group transforms to use for suboptimal Wiener filtering. Using 
the examples of random sine and first-order Markov processes, 
we shall show that the use of a noncommutative group may be 
more advantageous than the use of a commutative group because 
they yield a better approximation for a given speed (see also [13, 
sec. 51). 

The correspondence comprises three sections. The suboptimal 
Wiener filtering problem is treated in Section II as that of 
constructing the best group Wiener filter approximation to a 
given classical Wiener filter over a given group. The general 
solution of this problem is presented and previously studied cases 
of cyclic and dyadic group filters are deduced. The results of 
computer experiments are given and analyzed in Section III for 
stochastic sine wave and first-order Markov processes. 

II. GENERALIZED WIENER FILTERING OVER GROUPS 

We consider the set 9 = (0, 1, . . . , n - l} of n integers without 
a group structure being imposed on it. Let u, e be random 
functions of signal and noise, respectively, defined on B and 
taking values in the field of complex numbers C; that is, u, e: 9 
-+ a3 with the mean values E( u( t)) = E( e(t)) = 0, t E 3. Let 
w: 9 x 9 + C be a deterministic impulse response function of a 
digital device (a filter) which is processing the corrupted signal 
f = u + e. Then the classical Wiener filter problem of separating 
the signal from noise is to find wept : 9 x 9 -+ C such that 

where E,>(t) = C{G(BW(f, w(S)-0, t E 9; D(c,) = 
c ,,9D(c,(t)); D(c,(t)) = E(c,(t)c,(t))/n is the dispersion 
squared which depends upon the choice of impulse response 
function w( . , .) of the filter; and E represents the expectation 
operator. Using the notation, u = (u(O), u(1); . . , u( n - 1))r and 
e = (e(O), e(1);. ., e( n - 1))’ where T stands for the transpose 
of a row vector, we reformulate the same problem (1) of the 
optimal filtering of the zero-mean n-vector of noise e from the 
corrupted, zero-mean signal f = u + e by means of the (n x n)- 
matrix of the optimal filter IV&, = (Wd,s;‘)), Wd,“;‘) = 
woPt(s, r), s, I = 0,l; . ., n - 1 such that 

m${VnE(IIW- 4)) = l/nE(IIK,ptf- uII>, (1’) 

where 

l/nE( ]]r,,J2) B l/nE(tr(e&)) = c o(e,,,<t>) = O(e,,,). 
ICC4 

Let B,,,, Be,, and B,, be the covariance matrices of the signal 
and noise which may be either stationary or nonstationary. Then 
the least square error e between the signal u and its filtered 
estimate f b u + e occurs in (1) and (1’) when 

Kpt B/, = 4, (2) 
where 

In that case 

Do,, = l/n tr(4, - W,,BfJ. (3) 

The case of uncorrelated signal and noise has been discussed in 
P51, [31, v71. 

The generalized Wiener filter utilizes a unitary transform which 
is represented by the matrix T in Fig. 1 (see [15], [3]). Do f in (3) 
is independent of T. The direct Wiener filtering (when f- is the 
identity matrix) is fastest as it requires at most n2 multiplications 
and additions. The Karhunen-Loeve transform which uses the T 
that diagonalizes W,,, 
2 n2 + n operations 

is the slowest as it requires on the order of 

T-‘(TWo,,Tp’)Tf, 
to perform the filtering W,,,f = 

eigenvalues of 
where TW&,,T-’ is the diagonal matrix of 

W,,, and multiplications by vectors are being 
performed from the right. 

Fig. 1. Generalized Wiener filter. 

T-lW Tf 
OPf 

However, the mathematically optimal Dopt in (3) is never 
achievable in reality (e.g., because of roundoff). We must there- 
fore accept some degradation in performance. The idea in the 
suboptimal Wiener filter (see [15], [17], [3]) is to allow an accept- 
able performance degradation in filtering while increasing the 
computational performance of the filter. That is achieved by 
using a fast unitary transform for which a procedure exists to 
simplify the matrix TW,,,T-’ by, e.g., making it sparse or 
structured. The statistical performance D(c) must be kept within 
acceptable limits. For example (see [3], [15]-[17]), a family of 
suboptimal Wiener filters has been obtained by setting all the 
off-diagonal entries in TWoptT-’ to zero, where T’s fast compu- 
tational algorithm is based on it having a Kronecker product 
representation (such transforms are classified in [4], [5]). The 
WHT and DFT which have been used in [l], [3], [15]-[17] are 
matrices T of characters of the dyadic group and of the cyclic 
group, respectively. We note that the choice of a dyadic or of a 
cyclic group G is, generally speaking, not optimal (see [3], [7]), 
and moreover, replacement of a dyadic or of a cyclic group by 
some (not necessarily Abelian) group may result in the reduction 
of D(c) (see the next section and [13, 261). Such group trans- 
forms exist for any integer n, can be computed analytically by 
formulas, possess Kronecker product representations [20], [21], 
[23], and as will be shown later, in many cases compare favorably 
with other transforms. Therefore, attempts have been made to 
develop a general approximation theory of systems and signals 
over groups. Elements of this theory are presented in [13], [14] 
and embrace approximation problems in digital signal processing 
such as filtering, encoding, data compression, etc. (see also [l], 
131). 

In what follows, we apply ideas and methods of that theory to 
construct optimal filters over an arbitrary group. Let us introduce 
a group structure in 9= {O,l; . ., n - 1). That is, G stands for 
the group of cardinal&y n defined on the underlying index set 9 
with 0 as group identity and with o as the group operation. Let Q: 
be the field of complex numbers. In the space {f: G -+ @} the 
elements of the nonequivalent unitary irreducible representations 
of G over the field C will be used as an orthogonal basis 
[20]-[23]. That is, the representation o of degree d, over C is a 
unitary (d, X d,)-matrix. The value of representation o at the 
point t E G will be denoted by [w, t], and the functions gener- 
ated by [w, t] when w and t are fixed will be denoted by [w, .] 
and [. , t,l, respectively. 

Let G = {w} denote the set of all nonequivalent ,un’tary 
representations of G, indexed so that w is of degree d,. G is the 
dual object for G. In the important case of Abelian groups, G 
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may be represented as a direct product of its cyclic subgroups: 
G  = HI x  ... xH,, 

t E G, t= (fl;..,tr), t,E {O,l;..,n,- l}, 

n, is a power of a prime number, the group operation is compo- 
nentwise addition mod n,, 11 1,,2,. . . , r. In this case d, = 1 for 
all w E G, 8 = ri, x . . . x H,, G is the multiplicative group of 
characters which is isomorphic to G  and H, is isomorphic to H,, 
i.e., o = (wi;.., w,.), w, E {O,l;.., n, - l} and we have 

[a, tl = ,jjexp(2niw,/n,), w,t E {O,l;..,n - l}, 

~,,t,E{O,l;..,n,-1}, i=J-1, n=fin,. (4) 
I=1 

If n, = n2 = ... = n,, then [o, t] is known as the Chrestenson 
function and.for n, = n2 = ... = n, = 2 it is known as the 
Walsh function [13], [23], [27]. 

Let f: G  + C. It follows by the orthogonality relations for the 
n functions {[w, .](“3’)} (s, t = 1,2;. ., d:) (see, e.g., [22], [23], 
[13]) that the Fourier transform F,: f -+ f on the group G  may 
be defined as 

f(a) p d,/n c f(t)[o, t-l], 0 E 6. (5) 
tee 

Computation of Fourier F, and inverse Fourier F;’ transforms 
can be done using fast algorithms, and it is based on the 
following representation of elements of G  by the Kronecker 
product of matrices. Let G  be a group, isomorphic to a direct 
product of some groups H,, I = 1,2; . ., r, G = n;=, H,. Then 
(see WI) 

[w,t] = 03 [q,t,l, (6) 
I=1 

where w, E &, t, E Hc It was proved in [20], [21] that the 
computation of f or f requires n XFzln, multiplications and 
additions and n memory locations. 

Properties of Fourier transform FG such as linearity, transla- 
tion of argument,s, group convolution, Wiener-Khinchine, 
Plancherel, and Poisson theorems are valid (see [13]). 

We will now treat the signal and noise u, e as centralized 
random functions defined on the group G, i.e., u, e: G  + C and 
E( u( t)) = E( e( t)) = 0, t E G. The action of the group filter can 
now be described by group convolution: 

CA(l) = c qr-‘ot)f(l) - u(t), (7) 
IEG 

where f = u + e and h: G  + C is the impulse response function 
of the group filter. Then hopt : G  + C of the optimal group filter 
will be obtained by minimizing the dispersion 

h:$nc {Dtfd) = Do. (8) 

We note that the same results can be obtained by computing the 
optimal Wiener filter (2) and then choosing the group G  of the 
given order n and constructing the best Hilbert-Schmidt ap- 
proximation to W,,,. That is, the optimal group is the unique 
solution of the following minimization problem 

H$&ll%pt - HII = IIK,, - %,,Il (9) 

where cir (G) is the set of all impulse response matrices of group 
filters defined as follows 

cir(G) = {HIH=(h({plot)), h:G+C}. (10) 

The solution of that problem is considered in [13, 141. Such 
optimal group filters (which are suboptimal models of classical 
Wiener filter (2)) have been considered for the cases of dyadic 
and cyclic groups G  (see, e.g., [l], [3], [15]-[17]). By using other 

Abelian and noncommutative groups we maintain about 
same speed of computation (see [13], [20], [21], [23]) and 
approximation error may be decreased (see the next section). 

Using the definition (5), the convolution theorem, and 

the 
the 

the 
linearity of the Fourier transform over G, we have from (7) that 

Zh( 0) = n/d,h( w)f^( w) - ii(w), 0 E G. (11) 

Hence, using the Plancherel theorem, for the Fourier transform 
over G  we obtain from (11) 

D( zh) = l/nE( llEhl12) = l/n c n/d,E(tr 2,,( w)Z,*( w)) 
OEC 

= c l/d, tr(n’/d~?r(ti)B~~(ti)~*(w) + B,,(w) 
WCC 

- n/d,(i(w)Bft(a) + B,~(o)^h*(w))) 

where 

B&d $ Etft4f*<4> 

(12) 

= B,;( co) + B,,(w) + B,;(a) + B,,(o), 

Bci( w) A E( ii( w)j*( w)) = B&( co) = B,,( 0) + B,,(w), 

and 

and where B,, is the covariance matrix of u. 
Analogously, we have 

B,,(w) = d:/n2 c BL’f%‘)[w,{-lot], &lE& (14) 
5,t=c 

and 

Bip(o) = dL/n’ c B~~~t)[o,{-‘ot], w E 6. (15) 
s, tcG 

It follows that the minimal dispersion in (12) is achieved when 

k,,(~)B~~(w) = d,/nB~~(~), Cd E 6. (16) 
Assuming Bff ( y) to be invertible for every w E 6, we have the 
following equation for the optimal group filter 

i,,,(w) = d,/nB;i(w)Bfi’(w>, w E 6. (17) 
It follows from (17), (12) that the dispersion squared that is 

achieved by utilizing the optimal group filter (17) is computed by 

Do = c l/d, tr(B,,(w) - B~~(w)B~‘(w)B~~(w)). (18) 
WEt3 

The dispersion Do depends upon the choice of the group G, i.e., 
Do = D$. We formulate the problem of selecting the optimal 
group (among all the groups of a given order n) minimizing Dz. 
This problem is difficult in the general case, and we shall restrict 
ourselves to special cases of the first-order Markov process and 
of the random sine wave corrupted by white noise. For these 
cases, different group filters will be investigated in the next 
section using computer experiments. All the computations in 
optimal group filters (17), (18) have been done using the corre- 
sponding algorithms of fast Fourier transforms [20], [21], [23]. 

III. COMPUTEREXPERIMENTS 

In this section, we compare different group filters (17) (18) in 
the problem of filtering the first-order Markov process and the 
random sine wave corrupted by white noise. These group filters 
will be compared with known results [3], [15]-[17], [lo], [6], [25] 
for filters based on the Karhunen-Loeve transform (KLT) which 
is known to be statistically optimal, that is, its matrix consists of 
eigenvectors of W,,, defined by (2). Other known transforms 
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considered here are the DCT which is asymptotically equivalent 
to the KLT for the first-order Markov process [24] and the DFT 
which is represented by the matrix of characters of the cyclic 
group G = C,, of integers 0, 1, . . . , n - 1. We shall consider two 
nonAbelian groups, namely, S, (the symmetric group of the third 
order) and Q2 ,(the quatemion group of the eighth order, 
and C,, (the cyclic group). Their duals is, Q, , ?n are given in [22], 
[23]. We shall use the direct products S, X C,, C, X S,, Q2 x 

C,,, C,, x Q2, S3 X Q2, Q2 x S,, S3 X &, Q2 X Q2. The corre- 
sponding duals are computed by (6kusing the Kronecker product 
property of group representations. The computation of dispersion 
squared Dz in (18) is done using the fast Fourier transform 
algorithm over the group G (see [20], [21], [23]). The number n 
Cicln, of operations needed to compute the Fourier transform 
(5) (see Section II) is the upper bound on the computational 
complexity. The actual number of operation: depends upon the 
number of zeros in the elements of the dual G for a given group 
G. For example, for G = S, four zeros are among the elements of 
w = 2. Therefore, to compute (5) for S, X C, we need not 
12(6 + 2) = 96 computer operations but only 12 . 8 - 2 . 4 = 88 
operation?. Analogously, 16 zeros are among the elements of 
o = 4 E Q2. Hence, e.g., to compute (5) for Q2 x Q, we need 
64 . 16 - 8 * 16 - 8 . 16 = 3 . 2’ = 768 computer operations. 

It was pointed out in the discussion of Fig. 1 in Section II (see 
also [15], [l], [3]) that when using a transform i”, the filter 
T-‘(TWT-‘)Tf is performed in the following three steps, which 
determine the overall amount of computer operations: 

1) Tf, 
2) (TWT-‘)(Tf ), 
3) T-‘((TWT-‘)(Tf)). 

The numbers of computer operations required to perform gener- 
alized filtering in the cases of identity, Karhunen-Loeve, and 
DFT’s are n2 (step 2 only), 2n2 f n (n2 operations at steps 1, 3, 
and n operations to multiply a diagonal matrix TWT-’ by a 
vector Tf ), nz + 2n log, n, n = 2’( n log, n at steps 1 and 3 and 
n2 operations at step 2), respectively. 

The suboptimal filtering results in reducing the number of 
operations at step 2 to the order of n at the expense of setting all 
the off-diagonal entries in TWT-’ to zero (as in the case of 
DFT, WHT, or any Abelian group based transform T) or by 
structuring TWT-’ to a canonical block diagonal form, uniquely 
determined by the group G (as in the case of a noncommutative 
group, see [13]). 

Based on these considerations, the results of comparing differ- 
ent transforms (see [3], [9] for DFT and DCT) in suboptimal 
filtering from the point of view of the number of operations 
required are given in Table I. Various transforms are compared 
by their statistical performance in what follows. 

TABLE I 
NUMBEROF OPERATIONSREQUIRED FORVARIOUS 

SUBOPTIMALFILTERS 

Transform 
II KLT DCT et VT) Cx, Qz x Q2 

8 136 92 56 104 
16 528 252 144 212 
32 2080 652 352 736 
64 X256 1612 832 2048 1600 

We consider the following signals: 

1) the first-order Markov process with the covariance matrix 

B,,, = (p”-‘I), s,I=O,l;..,n- 1, (19) 

where 0 <p < 1; 
2) the random sine wave process x(t) = sin (At + a) with 

phase a distributed uniformly on the segment [0,27r], which 

has covariance matrix 
B,, = (cosX(s - I)), s,I=O,l;..;n-1. (20) 

The noise e is assumed to be white with identity covariance 
’ matrix and the signal and noise are assumed to be uncorrelated. 

The KLT is computed for the first-order Markov process in 
[15]. In the case of the random sine wave, the matrix of eigenvec- 
tors of the corresponding Wept in (2) (the KL’I) was computed 
for each n. The DCT is asymptotically equivalent to the KLT of 
the Markov process (see [24]) and is defined in [6], [25]. 

The computer experiments for the first-order Markov process 
are summarized in Tables II and III. Their purpose is to compare 
statistical performance of suboptimal group filters (see Table II) 
as well as to compare the known results for the DFT with other 
(not necessarily Abelian) groups. It follows (see Tables II, III) 
that as p increases, the use of various nonAbelian groups results 
in improved statistical performance as compared with the DFT. 
That is, however, compensated for by the increased number of 
computations. 

It follows also that D$ increases as p decreases, e.g., for 
G = S, x C, see Table III. That happens because B,, ap- 
proaches the identity matrix as p decreases. It follows that as p 
increases, various noncommutative groups compare favorably 
with C,,. We note that the order of the groups G, and G, in their 
direct product affects the dispersion without affecting the compu- 
tational speed; i.e., the number of operations required to com- 
pute the dispersion is the same. In the general case it is a difficult 
problem to select the optimal group among all the groups of a 
given order [13]. However, this problem can be solved numeri- 
cally for moderate values of n. 

The computer experiments for the random sine wave process 
are summarized in Table IV. It follows (see Tables I, IV) that as 
X decreases, the use of various nonAbelian groups results in 
improved statistical performance as compared with the DFT. For 
example, for n = 64 and X = 0.01 (or X = 0.05) the statistical 
gain in 17.59 percent (or 20.95 percent) for Q2 X Q2 as com- 
pared with C,, That is, however, compensated for by an increase 
in speed of nearly 100’percent in the DFT as compared with the 
group Q2 x Q2 (see Table I). It follows also that the dispersion 
D$ increases as h increases. This happens because B,,, ap- 
proaches the matrix all of whose entries are ones as X decreases, 
i.e., correlation between u-components increases and the disper- 
sion decreases. Alternatively, as X increases, B,,, approaches the 
identity matrix and the dispersion increases. It follows that for 
small X various noncommutative groups compare favorably stat- 
istically with the cyclic group C,. We note that as X increases, the 
group transforms compare favorably with the DCT; that is, the 
cyclic group C,, provides a better approximation to the KLT than 
does the DCT. It can be expected that the more a stochastic 
process differs from the first-order Markov (in the behavior of its 
covariance matrix), the worse the results of employing the DCT 
will be because DCT is equivalent to the KLT of the first-order 
Markov process [24]. At the same time, a great variety of fast 
group transforms can always be used to choose the best from 
using (17) and (18). Therefore, group filters might find their use 
in practical situations in which we do not know computationally 
good approximating transforms for the KLT for a given process. 

Iv. SUMMARY 

Different group transforms have been compared among them- 
selves and with the DFT in the problem of constructing a 
suboptimal Wiener filter. Computational and statistical perfor- 
mance of various filters was considered as well as the problem of 
trade-off between the two. 

The best group model is constructed for a given group which 
performs the filtering using a fast group transform algorithm. 
The problem of choosing an optimal group among all the groups 
of the given order has been discussed. Its solution is very difficult 
in the general case, but for small n (up to 64) it can be solved 
numerically for given statistics of the signal and noise. 
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TABLE II 
GROUP WITH THE OPTIMAL STATISTICAL PERFORMANCE 

FOR THE FIRST-ORDER MARROV PROCESS 

n 

P 6 8 12 16 18 24 30 32 36 40 42 48 54 56 60 64 

‘.9 S, Q2 G  X s3 CM Cl, C C C '36 G O  C 
1.99 s, Q, C, x  S, C, x  Q2 C, x  S, C, TQ, C, ?:es, C, TQ, s3 X S, Q , X c5 s3 k 

c c54 c56 
s, x""Q, S, x  C, Q2  x C, S, ?C,, Q22Q; 

TABLE III 
DISPERSION FOR THE GROUP FILTER WITH G = S, X C, 

P 0.5 0.6 0.7 0.8 0.9 0.92 0.94 0.96 0.99 

Ds3xc2 0.4545 0.4294 0.3944 0.3437 0.2628 0.2398 0.2128 0.1800 0.111 

TABLE IV 
GROUP WITH THE OPTIMAL STATISTICAL PERFORMANCE FOR THE RANDOM SINE WAVE 

X 6 8 12 16 18 24 30 32 3: 40 42 48 54 56 60 64 

1.01 c, c, c,, cl6 S, x ~3 S3 x C, S3 x C, Q2 x C, S3 X G Q2 X G s, x c, S, x C, S, x C, Q2 x C, 

1.05 2 ;: 22 “, 2 z;x”,‘: 

s3 x Cl0 ep2 ; g3 

s, x c, s, x c, s, x c, Q2 x C, S, x S, Q2 x C, S3 x C, S3 X Q2 S, x C, Q2 x G  S3 x Go Q: x Q: 
s3 

1.1 S3 Q2 C2 x S, G  x Q2 S, X C, S, X c4 s3 X c5 c, X Q2 c, X s3 c, x Q2 c, x s3 c,, G4 c56 C 60 C 64 
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Maximum Likelihood Estimation for Multivariate 
Mixture Observations of Markov Chains 

B. H. JUANG, STEPHEN E. LEVINSON, SENIOR MEMBER, IEEE, 
AND M. M. SONDHI 

Abstract-To use probabilistic functions of a Markov chain to model 
certain parameterizations of the speech signal, we extend an estimation 
technique of Liporace to the cases of multivariate mixtures, such as 
Gaussian sums, and products of mixtures. We also show how these 
problems relate to Liporace’s original framework. 
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