Prae ’Iﬁuéﬁan &u-ﬁuma#w Cm;{t
ppif€-202 54

A Practical Approach to Testing Hi:rnprncessurs*'

M. G. Karpovsky
College of Engineering
Boston University
110 Cummington St.
Boston, MA
USA

R.G. Van Meter
Dept. of Mathematical Scilences
State University College
Oneonta, NY
USA

*This work was supported by the International Business Machines Corporation.

A PRACTICAL APPROACH TO TESTING MICROPROCESSORS *

Abstract. In this paper, we .describe functional testing techniques

for detecting single stuck-at favults in a microprocessor. These tech-
niques are practical in that a relatively small number of machine lan-
guage instructions is needed in the programs which implemeﬁf

them, the number of reference outputs which must be stqfed is emall,
and hardware redundancy for testing purposes is not needed. The efficacy
of use of these functional testing technigues has been demonsirated by

applying them to the testing of a simulated 4-bit microprocessor with

similated single stuck-st faults.

Index terms. Single stuck-at faults, functional testing of a micro-

processor, linear checks, fault coverage, simulation.

1. INTRODUCTION

In testing a microprocessor for single stuck-at faults, we use

functional testing [1], that is, we employ testing techniques which

require only a description of the imstruction set of the microprocessor
(the syntax of each instruction, the result of its execution, the busses
and registers exercised, etc.)} rather than a gate-level description of
the microprocessor.

Because of the ever incrgasing use of microprocessors, microprocessor
testing 15 of obvious importance. With the increasing density of gates in

VLSI devices, gate-level testing is becoming less feasible. In addition,

the gate-level description of a microprocessor is generally unavailable to

the user. The use of random testing [2]-{4] may require prohibitively much

time in order to get reascnable fault coverage. Functional testing seems

* This work was supported by the International Business Machines Corporation

[3]

to be a viable alternative to gate-level testing and random testing.
rThe testing procedure invnl?eﬁ the execu;iun of a program in the
machine language of the microprocessor with certain data. We assume
a tester can enter the instructions of this program and the data at
appropriate times via the input pins of the micrupfnceaaur, monitor
the output pins, and compare observed outputs with expen;eﬂ (or "re-

L

ference”) outputs. Hardware redundancy for testing purposes is not
needed. |

In subsequent sections, we discuss & model of the micro-
processor to be tested, the testing techniques utilized (Linear Checks
Method, Fixed Input Data Method, Parity Circuitry Testing, Subroutine

Testing, and Interrupt Testing), and a Case Study.
2. MICROPROCESSOR MODEL

We assume the microprocessor to be tested has the following com-

ponente:

an n-bit Arithmetic/Logic Unit;

an n-bit bus for internal data flow;

»

+ n-bit general-purpose registers;

« n-bit data-address registers;

- ALU Stetus Letches (CARRY, ZERO, NOT ZERO, etc.);
« an Instruction Register;

. a Memory Data Bus In with & Parity Checker;

+ a Memory Data Bus Out;

- & Program Counter;

*+ 8 Memory Address Register;

+ 8 Memory Address Bus;

- &n I/0 Data Bus In with & Parity Checker;

. an I/0 Datas Bus Out with s Parity Generator;
- an 1/0 Address Bus;

. & Link Register tor saving an address for return from e subroutine

or interrupt;

. Backup Link Registers for saving addresses for returns from
nested subroutines;

an Interrupt Register for saving the contents of the ALU Status

Latches and, possibly, peging bits and other information
during an interrupt;

- 8 control unit;
. an off-chip main memory;

. off-chip general-purpose registers;

off-chip data-address registers.
1f the architecture is different than that assumed, the testing pro-
cedures described below can be used with slight modification.

3. LINEAR CHECKS METEOD

For testing the ALU, the busses and lines leading to and from the
ALU, and the general-purpose and data-address registers, we use the "Linear
Checks Method” [5]-[9] which is a data-compression scheme for reducing the
nunber of reference outputs and, hence, storage requirements.

This method is based on the following property: for almost all
Arithmetic/Logic instructions, the sum of the results of executing the
{nstruction with the four pairs of n-bit operands (x,y), (x,v), (X, ¥)»
and (%, ¥) (where "x" denotes the componentwise complement of x) is a con-
stant with respect to x and y and depends only on n and the instruction in
the fault-free case.

In the usual n-bit logic, f(x,y) is an n-bit binary vector; however,
for n-bit arithmetic we need at least n+l bits for f(x,y) (at least a CARRY
bit is needed).

If we view the Arithmetic/Logic instructions as functions of two var-
iables over the set of all binary n-vectors with values which are binary
m-vectors, where m > n, then the above property may be stated more formally

as follows (let "AL" denote the set of all Arithmetic/Logic instructions of

the microprocesseor): for almost all £ in AL,

there exists an integer constant Kh £ such that for
&

(3.1; all pairs {x,y} of binary n-vectors,
£(x,7) + £(6,7) + £,7) + £&T) =K

Table 1 gives Kn,f for any positive integer n and for n = 4,8, and

16 for some typical Arithmetic/Logic instructions. The n-bit operands

are viewed as binary representations of positive integers; however, for

convenience, the constants Kn,f are given in decimal notation. The proofs

of the general results in Table 1 hinge on the fact that

x4+ x=]1] -+« 1 = 2“ - ¥,
| - -

e

n

To illustrate, we consider the 4-bit operands (x =) UilUl and (¥ =)
0011, for which the complements &are (x =) 1010 and (v =) 1100. For the
addition instruction (ADD), we have

X = ADD(x,y) + ADD(xz,y) + ADD{(x,y) + ADD(x,y)

% , ADD
x4V + E+HPD +HE+Y + & +Y)
=(5+ 3)+(5+12) + (10 + 3) + (10 + 12)
=8 + 17 + 13 + 22
- 60 (= 4+ (2% - 1))

For the multiplication instruction (MPY), we have

K, wpy = MPY(x,Y) + MPY (x,¥) + MPY(X,y) + MPY(x,y)
«x.y + x5+ Xy + X+
5.3+ 512+ 10-3 + 10+ 12

=15 + 60 + 30 + 120

=225 (= (2% - 1)°).

plym

g3UR]8U0Y) §}IoY) IBRIUTT]

T 2198l

(T-1_ul (4HSd) 3T
8SLTO6Y6TY BLISY 8ET ~1-uz8)T ((A)MHS * (X)WHS) 13Tye Lreurg v1
. ('1HS€) 33°1
gTSE0B6ESE BSSOET - 8Ly (T=yT=yy 002 ((A)THS * (X)'THS) 137ys Kaeurg €T
0618 0f 0 (T, _y2)2 ("o lxeTxege00°0) Covee ey z1
(YTHS) 3397
0%0TET 08% 0 (91-)z (0'0%0fork ¢ ... K “*x) I3TUS IT4-Y 1
0LOTET 0TS of (1-,2)7 (F% ¢ o BT By (urow) 3yBra @3wICH o1
0LOTET 0TS o (1-42)2 (M o« ofx oeG) (110w) 3zeT @IWION 6
YEES9 vs2 bT (T y2)2 (T% ¢ ... T <Tx <) (4HS) IUSFI IFFUS g
g90TET 805 8z (2=42)7 0 % ¢ ... obuetx) (THS) 339T 3IIFUS L
(z3D)
#L0TET %16 vE (1+,2)2 T+ X juameTdmo) €,0M] g
990TET 905 92 (€-,2)7 T-X (403q) Peea1d3(g
YL0TET %18 13 (T+,2)2 T+ X {4DON1) 9s8aadU] 7
0LOTET 0TS 1] (T-4,2)2 X (dKD) 3JuswaTdwo) €
0LOTET 0TS 0f (1422 X (NYL) Ia3eueiy z
0 0 0 0 0 (¥10) 181D T
Iiludddw. Mnmﬁ .HA«M 3 uy (£*%)3 (3) uopionalisul *ON

.t

81UR)suU0) BjosYy) JIeIUT] (penuTiuo)) T OTQRL

FaT=? T I=F ¥n =T IAT1=T:
s D IO | D5, { +
e y s y y. -
+ %1292 + 0201 +09 (T -, O+ & + X A139D> YITA PPV €7 .
0y1Z92 0TO0T 09 (1 - O £+ X (aav) pev 74
(A=x 3T)EY (£=Xx JIT)E (£=% JT)EY(4 = X 37) J. (£>% I7) J
(dpx 30)zf (Lpx 3ne) (Efx IDTJ(L $ X IT) T (A% 37) 0 (4d0) esasdwop €2
(40X)
0L0TET 0TS 0¢ (T - 0T R 10 IALBNTINY zZ
$09961 $9L <Yy (T - ,2)¢ AN X (40) 20 TZ
GESSY 562 ST T - 4 £V x (aNv) puy 02
0657£66858 0LOTET 178 (T-y,2)2 (x‘4) (HOX3) @Bueyoxy 61
.. (T-, _u? (ydHSE) IUT¥x
0t08%L9ES 0TLL 0 +ﬁwtﬂmﬁvm ((A)HpuHS ¢ (X)%HHS) I3TYSs Ifq-y Lieuyg 8T
. (97~ (yIHSE) 33I9T
0848962858 09€ET 0 T STy, 200 ((L)4THS *(X)HTHS) IITYS I7q-y Aavuly A
(M10yg) 3IYIFL
0657£66858 0LOTET 01§ (T~,,2)2 ((A)d10d ‘(x)uliou) 939303 Aawuyg 97
('110dg) 3II9T
06S%£66858 0LOTET 07S (T, 22 - ((4)1109 ©(%)1L08) 23301 A1BUTY T
| e) r ——
3 91y 3 8y 7y 3 uy (£%)3 (3) uoyaonaisul ‘0N

e

g1Ue}sU0) BXosY) JEIUTT (POnuTjuod) T ST]EL

.ANH £ v -._.N_H -..HM..Mu o H .—.u.—H.m nﬁ.ﬁm J _-___..__—.N __,..H”— 3 .ﬁu ﬂﬁ - & o= .HM _nﬁL._n. -H_U.H nhﬂ.ﬁrﬂ.ﬂ.ﬁ.ﬂﬁﬂmv nﬂﬁpﬂpﬂmmﬁrﬁgm.ﬂ

aog o4} ST X yoruys xoy ‘{6 --- ‘1°0} 2 ﬁxw-ﬁmm ¢ ..o Sy tlyy) 10700a-8 TEWYOEp VY] BT X ‘S4 = U JUNSSE N

A19ap3oadeax (A‘X)3 pus C(A%)3 *(A'%)3 *(A*x)3 JO UOTIENTEAD IY) 210J3q BMOIIOQG SY3 3iw

Yanety g ¢Tg

+A1aaT3vedeaa ﬁm.mmu.ﬁnu Y (A*X)3 .Am.uum ¢ (£°X)3 JO uOFIenivAl B} S10Jaq S8ITIIVD IY] IV eu pue .mu .No .ﬂu

*10199a-u7 KIEUTQ @ BE PaMaTAa ST anTRA 9yl ‘FT-¢T SUOTIINIIBUT 104

10008666 1086 18 (T = g01) X+ X (Xdwaod) ATdyaTew @od 1€

0 0 0 0 I - X (8NSaoH) Idwaqqne (04 0t

9666€ 96¢ 9¢g (T - JO0T)¥ X+ X (QQwaDd) ppe add 6C

GZTIEBYELY $Z059 T4 2 (T = @) £ .x (XdW) ATdFIINH 8T
T, T=Fq_ T Imbg_ T E=Fy_ . =] (2908)

| aw | qw | cw | ” wi § — & - X s0lioq Yirsa JoeIjqng ¥4

0 0 0 0 | £ - x (€nS) 3Iowalqng 92

e ¥ 1] 3 | m— ——

J @Hu— 3 mv._ 3 #v_.. p | nu—. (%) 3 (3) uop3lonajsul ‘ON

For some f in AL (e.g., ADD, ADDC, SUB, SUBB, and those £ which
are actually functions of one variasble (1 - 12 in Table 1)) 1t can be
ahnwﬁ-that

there exists an integer constant C such that for

n,f

{(3.2) - -
pairs (x,y) of binary n-vectors, f(x,y) + f(x,y) = l'J‘:l £ (= Kn f/2}.
" ? r

A pregram for implementing the Linear Checks Methed ‘contains in-
sgructinns enabling the microprocessor to calculate for each instruction
f for which (3.1) (or (3.2)) holds the sum in (3.1) (or (3.2)) for some
pair (x,y) of n-bit operands. These sums must be compared with the re-
ference sums, Kh,f (or Cn,f) from Table 1. In addition, for some instructions
it is desirable to uvse multiple pajirs of operands; for example, in the case
n=4, we usellll with 0001, 0010, 0100, and 1000 in order to verify that in
each bit position a carry can be both generated and propogated. Similarly,
for subtraction we use 0000 with 0001, 0010, 0100, and 1000 in order to test
borrow generation and propogation. Finally, we use every general -purpose and
data-address register as a source register.{(for the operands x and y) and as
& destination register (for f(x,y)) and select pairsv(x,y) of operands 80 as
to make all flip-flop outputs in these registers both 0 and 1 and to put 0
and 1 on all lines of the busses exercilsed.

This program tests the ALU, the general-purpose and data-address registers,
the decoding of operation codes, the decoding of register adhresses, and the
decoding of register addressing modes (we assume, that either operand may
come from a general-purpose register or a register which contains a portion
of a memory address).

For instructions £ for which (3.2) hnlds, about 15 instructions

are required to calculate the linear checks sum. In case (3.1) holds but

(3.2} does not hold, about 30 instructions ere required to calculate

the linear checks sum. (The number of instructions will depend on the
instruction set of the microprocessor.} If there are N instruetions in
AL for which either (3.2) or (3.1) holds and we do not use multiple pairs

of operands, then the number of insiructions, I in the above-cited

LC’
program (approximately) satisfies

'(3-3) 15N I, < 30N.

If n pairs of operands are used for the instructions ADDC, SUBB, AND, OR

and XOR (see Table 1), then I. . is inereased by 120(n - 1} (= 2-15.(n - 1)

LC
+ 3.30+(n - 1)); however, it is possible to incorporate use of multiple

peirs of operands in the program for testing the Parity Checker on the
Memory Data Bus In (see Section 5).

The number of reference outpute to be stored, RLC , 18 given by

(3.4) R = 2N

if multiple pairs of operands are not used; otherwise, BI,C = 2[N + 5-(n - 1)].
The n-bit output of the ALU - which can be deiected at output pins ~ and the
content of the CARRY Latch - which can be detected indirectly (via the Memory
Address Bus output pins) by use of a BRANCE ON CARRY instruction - account
for the two reference outputs for each f in AL.

The addition of a +1 unconditional branch instructions to this program
or any of the subsequent programs, where a is the number of bits in the

Program Counter, allows testing of incrementation by the Program Counter,

nemely, branches to the following addresses:

0000 .-+ OU00
0000 --- 0001
0000 --- 0011
0000 -+ 0111

-10-

In [5]-[g], methods for comstructing optimal linear checks and

and estimates of their error-detecting capabilities are given.

4. FIXED INPUT DATA METHOD

For testing for faults which have as manifestations the replacement
of one Arithmetic/Logic instruction by another instruction, no instruction,

multiple instructions, or an invalid instruction, we use-the "Fixed Input

Data Method." Such faults are one of the important classes of faults in

mi croprocessors [1l].

This method is based on the following property: there exists (in
the fault-free case) at least one pair (x,y) of binary a-vectors such
that different instructions im AL generally yield different results.

For most microprocessors, we can choose x and y as follows:

x = 1000 ++- Q101
R

(4.1) D4

y = 1000 .-+ QOOl1
L wt

"

n - 4

More formally,
there existe at least one pair (x,y) of binary n-vectors
(4.2) guch that for almost all pairs (f,g), where f and g are
in AL and £ ¢ g, f(x,y) ¥ g(x,¥).
Prior to add with carry (ADDC), we must initialize CARRY to 1 so that
ADDC(x,y) ¥ ADD(x,y).
Simitarly, to distinguish between subtract (SUB) and subtract with borrow
(SUBB), we must initialize borrow in to l.
1f testability is considered in designing microprocessors, for those
few pairs (£f,g) of instructions for which f(x,y) = g(x,y), with (x,y) as

in (4.1), the operation codes can be chosen in such a way that a single

stuck-at fault can not make these operation codes identical.

In Table 2, we give the value of f(x,y) for some typical Arithmetic/
Logic inmstructions f and the pair (x,y) defined by (4.1) with n = 4, 8 and 16.
*h.pragram for implementing the Fixed Inpﬁt Data Method containe in-
structions enabling the microprocessor to calculate f(x,y) for each f in the
subset of AL consisting of those f satisfying (4.2) and (x, v} as in (4.1).
This program, as well as that for implementing the Linear Checks

H;thnd, tests the ALU, the general-purpose and data-address registers,
and the decoding of operating codes, register addresses, and register
addressing modes.

If there are M instructions in AL, which yield distinct values at

the pair (x,y) in (4.1), the number of Mnstructioms, IFID’ in the
above-cited program is given by
Pt
(4.3) IFID 4M,
The number cof reference nutputs,_RFID, is given by

(4.56) Reip = M.

5. PARITY CIRCUITRY TESTING

The circuitry for checking parity and generating parity may constitute
a considerable portion of the total hardware of a microprocesser. In the
worst case, an n-bit parity checker or generator requires a circuit size
proportional to n-2" and a test set for detection of all single stuck-at
faults which consists of all 2" distinct binary n-vectors [9]1-[10].
Since we have assumed no knowledge of the gate~level implementstion
of the logic, we must test for this worst case. TFortunately, it ies likely
that there is a parity bit for each byte of data; thus, 256 (-28) appropriately
chosen binary n-vectors suffices to detect all single stuck-at faults in a

parity checker or generator.

| POY3SN B3BQ 4ndul paxtd U3 J0J mp=n¢wo avuazajsy ¢ oTasl

‘T OTQB]L UT USATI a4% BOTUOWLUW 2A0QE8 3Y} 0} Surpuodssraod SUOTIINILSUT Yl

geeches gecOe 0 yIHSH A
L6960Y122E LGB6Y 69T WL0dE 97
momomm _ £282 99T 110¥E ST
182688L 40T 19691 €€ dHSq Va1
99£ 669 996 99T THSd A
gv0e 8 0 YHHS A |
08 08 0 ' THS 11
149 GY Y61 0T H10Y 0T
1T Tt 0T TLOY 6
98£91 99 4 dHs 8
0T : OT i THS L
£9L2E | AAl 11 ZdRD 9
CLLCE CET Y ¥oia S
Y/AXAS YT 9 HONI Y
goLeE A 01 dHD €
__ CLLTE CET S N Z
0 0 | 0 410 1

(TLiee e MJ)3 1 (3) uoTlonajsuj *ON

(91 u)

F] r LR .
. - H ERNERIE T [EEICI - [- Tr L] [= Wy E]
= pumr dbuest o 0 e s kel P -t 3 i e L -k T s e w - ek gy u. bbb ow bl B e

=
»

poyzal ©3sq Indul paxyd 2yl o3 einding souaiagay (panUFIUCd) 7 ITQBL

——rrr————. e i .

¢T0790%9 1447 GT AdHQOE 1€
Z . 2 Z gnsaong o€
g009T 89T g aqvaod 62
£86£007L0T £TYLT ST AdH 87
1 T T g4ns Lz
Z Z Z a0s 9T
¢¥6S9 4474 6 2aav 4
77649 Y92 8 aqav 74
0 0 0 udo €7
9 9 9 YOX &4
GLLZE CET L ¥O 12
69L2E 6c1 T any 0z
620CTLLYTR 699€¢ €S HOXd 61
OLLOETEYET 9602 0 YRS 81
(TLL2E‘CLLSE) (TETEET)T (¢ ‘S)3 (3)uogionzisu] *ON
(9T=u) (g=u) (r=1)

~14-

We assumed in Section 2 that the microprocessor to be tested has
a d-bit I/0 Data Bus In (=DBI) with & Parity Checker (=PC) and a d-bit
1/¢ ﬁﬁta Bus Out (=DB0) with a Parity Generntﬁr (=PG) for communication
between the CPU chip and external I/0 devices. We also assumed it has
#ip-bit Memory Data Bus In (=MDBI) with a Parity Checker.

A program for testing the PC on the DBl (respectively, PG on the

DEO) calls for the inputting (respectively, outputting) of the following

28 distinct binary d-vectors {(d = gy, for some integer v)

0000 0000 0000 0000 --- 0000 0000
0000 0001 00600 0001 -+- 0000 0001

(5.1) 0000 0010 0000 0010 --- 0000 0010

] L L]
L]] L]
*] -

1111 1113 1111 1111 --- 1111 1111

G ‘w—'—"——"—_"
d

This program also puts all Zb distinct binary b-vectors on the b-bit I/0 Address
Bus for addressing the external 1/0 devices. We assume that parity on the
DBI results in some latch (say, CARRY) being set: thus, before each Input
instruction, this latch must be reset by using an appropriate instruction.
Faulty parity on the DBO is detected at aﬁ oustput pin.

The program for testing the PC on the MDBI calls for putting 23 distinct
binary m-vectors on the MDBI; these m-vectors are given by (5.1) with "d"

replaced by "m", where m = 8w for some integer w. Included among these m-veciors

may be imstiructions of all types (arithmetic / logie, branch, load, store, ete.);

thus, this program presents opportunities for detecting single stuck-st faults in

the circuitry involved in the execution of such instructions. Some of the 23 binery

-]5-

m-vectors may be invalid instructions. We assume that faulty parity on
theiQPEI ie indicated by & value of 1 at an output pin. -
The program for testing the PC on the DB& requires one inﬁtructinn to
reset CARRY, one instruction to imput one of the d-vectors in (5.1), and one
instruction (a BRANCH ON CARRY) to determine indirectly the value of CARRY;
thus, three instructions are needed for each of the 256 d-vectors in (5.1).
We assume that data to be output must be put in two on-chip or off-chip
general-purpose registe}s (via, say, transter instructions); thus, the program

for testing the PG on the DBO requires three instructions - two to load

the registers and one to output - for each of the 256 d-vectors in (5.1).
1f “IIDPAR# denotes the number of imstructions in these two programs, then
8
(5.2) IIOPAR 1536 (=6.27).

If there is an instructiom which both inputs and outputs the same d-vector
of data, then IIOPAR_= 768.

The number of reference outputs, RIOPAR’ is given by

(5.3) - 512 (=2°2%)

. Rroear
The number of instructions, IHDBIPARF in the program for testing the

PC on the MDBI is given by

.28y -
(5.4) L oan = 512 (=2°20)

and the number of reference outputs, RHBBIPAR' is given by

(5.5) RynBIPAR < 12

(For 11 the valid instructions among the 256 m-triples in {(5.1) - with
"3" replaced by "m"™ - we are interested in the outputs at certain set
of the output pins and for some instructions, we may need to determine

indirectly - by branch instructions - the content of one or more of

the ALU status latches.)

. —————— -

-16-

6. SUBROUTINE TESTING

We have sssumed that the mieroprocessor to be tested has
a Link Register (LINK) and p Backup Link Registers (BU,, BUz, rer BUP)
which are used to save memory addresses and, possibly, oiher information

such as memory paging bits when branches to subroutines are executed.

For testing these registers, we proceed as follows:

- repeat p+ 1

(a) Use an unconditional branch to manipulate the content of the
Program Counter and other instructions to control any other

information which is saved.

(b) Use the instruction for branching to a subroutine, say, BRANCH
AND LINK (BAL) to shift "down" the contents of LINK and BU,, ---

BUp and put new information into LINK.

*+ repeat p + 1 times

Use the instruction for returning from a subroutine, say,
RETURN (RTN) to shift "up" the contents of LINK and BUyy v
BUP' thereby restoring addresses and other information.

In Figure 1, we illustrate this testing procedure In case there

are (p =) 3 Backup Link Registers.
The npumber of instructions, ISUB’ in the program for implementing the

above-described testing procedure is given by

(6.1) ISUB = 24 + ‘Bt,

where t is the number of paging end other flip-flops for which the contents

are saved during the execution of subroutines. The number of reference

outputs, HSUB’ is given by

(6.2) — 2(p + 1).

-17-

1111 1311 ~--- 3111

0000 0000 =+- 0000
) 1111 3311 --- 1111
0000 0000 ++- DOOC

R

0000 0000 --+ D000
1111 1111 --- 1111

0000 0000 --+ 0000

1111 1111 --- 1111
0000 0000 --+ Q000

]

0000 0000 --- 0000

.

HINs

(1) Use four BALs to load the indicated binary k-vectors into the
registers; then use four RTNs to unicad these registers. . Check

the restored binary k-vectors.

(2) Repeat (1) with the complements of the indicated k-vectors.

Figure 1 Link and Backup Link Register Testing for p = 3

¥

~18-

7. INTERRUPT TESTING

Wé gssume thet when an interrupt occurs, ﬁh& contents of certsin registiers
and fiip-flops (Program Counter, ALU Status Latches, paging flip-flops, ete.)
are saved in the k-bit Link Register (LINK) and the i-bit Interrupt Register
(INT) so that et the end of the execution of the interrupt ;ﬂutine restoration
of *the contents of these registers and flip-flupé 1s possible.

For testing the circuitry involved in the handling of interrupts, we

proceed as follows:

.- Use an uncondiiional branch, srithmetic instructions, and instructions
for manipulating the paging bits, etc. followed by a call for en inter-
rupt to put some binary (k + i)-vector in LINK and INT. i

« Call for a return from the interrupt routine.

. Check for proper resioration of the contents of the registers and flip-
flope - the content of the Program Counter and the paging flip-flops
can be detected by observing output pins (Memory Address Bus for the
content of the Program Counter) and the contents of the ALU Status
Latches can be detected indirectly by using conditional branch instrue-
tions (BRANCH ON CARRY, BRANCH ON ZERO, etc.) and observing output pins
(Memory Address Bus).

. Repeat the sbove with the complementary binary (k + i)-vector.

If there are u paging and other flip-flops, in addition to the & ALU
Status Latehes, for which the contents ere saved during interrupts, then the
number of Instructions, IINT’ in the program for implementing the above-

described testing procedure is given by

(7.1) IINT = 20 + 48 + 4u

and the number of reference outputs, RIHT’ is given by

(7.2) Riyr = 2 + 2s.

19—

8. CASE STUDY

To evaluate the effectiveness of the above-described funetional testing

techniques, we have applied them to the tesiing of a 4-bit microprocessor.

Programs of the types described in Sections 3-7, along with appropriate data,

have been run on a simulated microprocessor for the faultﬁf}ee case and with
each of approximately 6800 possible single stuck-at faults simulated.

With the omission of single stuck-at faulis associated with the clock
system and direct memory access, about which the User's Manual does not give

enough information for rationsl analysis, and the test mode circultry,

the fault coverage for single stuck-at faults was approximately 93.1 percent.

For this microprocessor, the mmber of imstructions, I, in the test

program is given by
(8.1) 1= 1530

(of which over 1200 were primarily for testing the parity circuitry) and the

number of reference outputs, R, is given by
(8.2) R = 892

{of which 811 but 80 were primarily due to the parity circuitry).

This 4-bit microprocessor was designed to be used as a microcontroller
and has relatively few Arithmeiic/Logic instructions. We have reason to
believe that for & microprocessor with s larger set of Arithmetic/Logic
{nstructions and larger operands (say, 16-bit rather than 4-bit) the fault

coverage would be higher.

——

9. SUMMARY

In Sections 3-7, we have given functional testing techniques for 'bea'l:.iné
a microprocessor for single stuck-at faults. The testing procedure involves
the execution of a machine language program with certain data. We assume &
tester can enter the instructions in this program and the ﬂ;ta at appropriate
timts via the input pins of the microprocessor, monitor the output pins, and
compare observed outputs with expected {or "reference") outputis. .

The number of instructions, I, in the program for implementing these

testing techniques may be estimated by by the following approximate inequality:
(9.1) 1324 + 15N + M + 8t + 48 + 4u < T < 2092 + 30N + JM + Bt + 4s + 4u,

where N is the number of Arithmetic/Logic instructions for which {3.1) {or
(3.2)) holds, M is the number of instructions in the subset of the Arithmetic/
Logic instructions which :riel'd distinct wvalues for the pair of operands given
by (4.1), t is the number of paging flip-flops &nd other flip-fiops for which
the contents are saved during the execution of subroutines, s is the number
of ALU Status lLatches, and u is the number of paging flip-flops and other
f1ip-flops for which the contents are saved during interrupts.

The number of reference outputs, R, is given by

(9.2) R < 1024 + 2N+ 20 + 2p + 25,

The major contributor to both I and R is the parity circuitry testing
(gee (5.2)=(5.5)). If the nature of the parity circultry is known, it may
be possible to substantially reduce both I and R.

The Case Study of Section 8 demonstrates the efficacy of use of the

functional testing techniques given in Sectioms 3-7.

10. ACKNOWLEDGEMENTS

We wish to ecknowledge the assistance of Prof. Akfred X. Susskind of

Lehigh University and Joel leininger, Bill Sebesta, and Pat Pignatelli of

the International Business Machine Corporation.

(1]

[2]

(3]

[4]

{5]

[6]

[7]

REFERENCES

5. M. Thatte and J. A. Abreham, "Test generation for microprocessors,"”
IEEE Trans. on Computers, Vol. C-29, No. 6, June 1980, DPp. 429 - 441.

J. C. Rault, "A graph theoretic and probabilistic epproach to fault
detection of digital ecireuits,” International Symposium on Fault-
Tolerant Computing, March 1971, pp. 16 - 29.

R. David and P. Thevenad-Fosse, "Minimal detecting transition sequences:
application to random testing.” IEEE Trans. on Computers, Vel. £-29,
No. 6, June 19280, pp. 514 - 518.

T. Savir, G. Ditlow, and P. H. Bardell, "HRandom patiern testability,"
International Symposium on Fault-Tolerant Computing, June 1983.

M. G. Karpovsky, "Error detection in digital devices and computer
programs with the aid of linesr recurrent equations over finite commu-
tative groups," IEFE Trans. on Computers, Vol. C-26, No. 3, March 1977,
pp. 208 - 219,

M. G. Karpovsky and E. A. Trachtenberg, "linear checking equetions and

error-correcting capability for computation channels,” Proc. IFIP Con-
gress 1977, North-Holland, pp. 619 -624.

M. G. Karpovsky, "Ain epproach for fsult-detection and fault-correction
in distributed systems computing numerical functions, " JEEE Trans. on
Computers, Vol. C-30, No. 12, 1981, pp. 947 - 924.

—r -

[B] M. G. Karpovsky and E. A. Trachtenherg,‘ "Fourier transforms-over finite

[{9]

(10]

groups for error detection end error correction in computetion chamnels,”
Informstion and Control, Vol. 40, No. 3, 1979, pp. 335 - 358B.

D. C. Bossen, D. L. Ostapko and A. M. Patel, "Optimum test patterns for
parity networks," Proc. Fall Joint Computer Conference, 1970.

S. J. Hong end D. L. Ostepko, "A simple procedure to generate cptimal
test patterns for parity logic networks," IEEE Trans. on Computers,
V'Dl- 0-30; HD- 5,‘ 1981, Pp- 356-358-

