Memory testing by linear checks

Prof. M. Karpovsky, Mem. L.E.E.E.

Trdexing terms.

Errors and error analysis, Memory testing

Abstract: 1n this paper we consider methods of error detection, location or correction in ROM or RAM by
systems of orthogonal linear equality and inequality checks and by the Rademacher transform. Implementa-
tions and error detecting, locating, correcting capabilities of these technigues for ROM and RAM tesling ure

also described.

1 introduction

In this paper we shall consider the problems of error detec-
tion, location and correction for read-only memories
(ROM) and for random-access memories (RAM).

It is well known that memory testing is one of the bot-
tlenecks of the computer industry. In this paper we shall
use the functional testing approach [10, 22, 23] for
memory testing.

The errors we shall consider may result from a wrong
masking in ROM, stuck-at and intermittent fauits in cells
and in the address decoder, bridgings between cells and
wrong decoding of an address. Pattern-sensitive and tran-
sient errors will not be discussed in this paper.

To solve these problems, we shall use the techniques
developed in Reference 1-5, 17 and 21. These techniques
are based on error-correcting codes, Walsh transforms and
least-absolute-error polynomial approximations.

Let Z =(Z,..... Z)XZ; e 10, 1}) be an address of the
cell containing the data f{Z). We denote by G the set of all
binary n-vectors, and we shall consider G as a group with
respect to the operation @ of componentwise addition
mod 2.

In References 1-4 the methods of error detection based
on hinear equality checks,

*ETf{Z('BT]- C=0 foreveryZe {0, 1,...,2° — 1}
(1)

were developed.

In eqn, 1, T is a subgroup of G and C 1s a constant (we
use the same letter to denote an integer and its binary
representation). The verification of whether expr. 1 is satis-
fied comstitutes the error-detection method. In the case
T = G, the check of expr. 1 is the well known control-sum
check. In References I and 2 the technique based on
Fourier transforms over finite groups was proposed for the
construction of optimal checks so as to minimise the cardi-
nality of a check set T. Advantages and limitations of the
error-detection method based on the linear checks of expr.
| and their error-detecting capability were also considered
in Reference 1.

The problem of error correction in a program or device
computing f(Z) by a system of linear checks was studied in
References 2 and 3. Decoding methods for the results of
these checks (syndromes), complexity of the decoding,
error-detecting and error-correcting capabilities for a
system of checks of expr. 1 were also considered in Refer-
ences 2 and 3.

In Reference 4 the general properties of the minimal
check set T(f) for the given function f were studied.

P g p——

Paper 3243E {C2) received Ist August 1982

The author is with the Department of Computers, System and Electrical Engineer-
ing, College of Engineering, Boston University, 110 Cummington Street, Boston,
MA 02215, USA

138

Minimal sets T(f) for the important case when f is a poly-
nomial were also described in Reference 4. In particular, it
was shown that if f(Z) is a polynomial of degree d, then
T(f) may be chosen as a linear error-correcting code
which is dual to any code detecting d independent errors.
Methods of error detection based on linear equality checks
or expr. 1 may be effectively used in the case where f(Z) 15
an integer for every Ze {0, 1, ..., 2* — 1}, but very few
noninteger functions have nontrivial checks of this type
{[4. 5]} Reference 5 suggests the use of the following linear
inequality checks for error detection in the case of nomin-
teger computations:

<& foreveryZe {0 1,...,2" -1}

Y flZe1)-C

XN

(2)

where T is a subgroup of G, Cisa constant and e €0 1s a
small constant (the checks of expr. 1 is a special case of
expr. 2 with ¢ =). The general properties of a mimmal
check set T = T(f, ¢) for the given function f and ¢,
methods of construction for these minimal check sets, the
advantages and limitations of inequality checks, and their
error-detecting capability were considered in Reference 5.

In this paper we shall use systems of equahty and
inequality checks for error-detection, location and correc-
tion in a2 ROM and a RAM. In Appendix 9.1, the optimal
equality checks are given for the standard computer
blocks. Optimal inequality checks for analytical functions
in the case n = 23, ¢ = 5 x 1077 are given in Appendix 9.2.
(For the sake of completeness, we include, in Appendixes
9.1 and 9.2, some results from References 2 and 4.)

In Section 2 we shall discuss the application of the
linear equality checks of expr. 1 to the correction of single
and double errors in a ROM. (The definition of the multi-
plicity of an error will be given later.) This technique 1s
efficient in the case where f is an analytical function and
f{Z) 1s an 1nteger for every Z.

Section 3 will be devoted to the location of single and
double errors in a ROM containing values of noninteger
functions. In this case we shall use the systems of inequal-
ity checks of expr. 2.

Error-correcting and error-locating techniques devel-
oped in Section 2 and 3 are efficient only in the case where
f{Z) is an analytical function. We shall propose, in Section
4, another approach for error detection/correction in a
ROM containing random data based on the so-called
‘Rademacher transformy’ [7]. This approach will provide us
with a simple method for the correction of single errors
and detection of double and triple errors.

In Section 5, we shall apply the ROM testing techniques
developed in Sections, 2-5 to the testing of a RAM. In
Section 6 we compare these techniques with some well
known techniques [10~14] widely used in RAM testing.

The testing methods proposed in this paper may be

IEE PROCEEDINGS, Vol. 131, Pt. E, No. 5, SEPTEMBER 1954

3

(ii}p If §,(v) # S,(v), S,(v) = 8,{w) (see Fig. 2b), then
Z2 = w, oZ'®) = S,w)=S,(v), and there exists v v
@ T,{v' # v}, such that e(v) + 0 and ZM = v

AoT, 1 y=zM Tw AOT 1Y Tw:I{E} x9T Tv:Zm‘{wﬁm
X + e X— S
+_ ={2) =0
¥ = £ v =L
i 'H"HTZ 1w 'H'Tz LFHTE lwdT, LvdTy ,_'ﬂﬂfz

a) e
Fig.2 Correction of the double error &Z) = 8, ,.dZV) + 8, ,e(Z')

(ile If S,(0) % Sq(6), S,(v) £ S,(w) (see Fig. 2¢), then
ZW = o Z'"y = §,(v), Z* = w, and e(ZV) = §,(w).

The block diagram of the algorithm for the correction
of single and double errors is represented by Fig. 3.

=)
l

e{Z): = Q for all Z¢H

r

find new Xe G/T,,
such that
S1{X) 2 0
find uEHET1 such that
S,(v}#0
there exists
we Xl T, such o
that w #v S, {w) £0 7
single erros
cases (i)af)b
t |
Mo
- 1
casedii) o e(v) = 51(v)
no
case (i)b l
casefif)c T yes elw) : =S, {v)
ef{v): =5,(v)
elv): = 52("-&"}
gl
all Xe G/ Ty)
-

such thal S (X) £0
considered 7

(stop)

Fig. 3 Block diagram of the algorithm for the correction of single and
double errors by two orthogonal equality checks

2.3 Complexity of error correction
We shall now estimate the time for the correction of errors
in a ROM by the number N of read operations.

(1) If there is no error, then

N=Ny=|G| =2 (9)

(i) If there is a single error then

N=N 2"+ ||| €£2x2 (10)
160

(i11) If there is a double error then
N=N,<2"+2|T||T,] €3 x 2" (11)

Denote P; the probability of an error with the multiplicity
i (Po+ P, + P,=1, we suppose that for any i> 2,
P. = 0). Thus, we have for the expected number N of read
operations

N_=PGNG+P1N1+PEN2£ZH
+ || { LGP, + 2P (12)
As a weaker upper bounder for N one can use the formula
N < 2%l + P, + 2P.) (13)

24 Error-correcting capabifity

Let us describe now the error-correcting capability of two
orthogonal linear checks. First, we note that all single
errors are corrected by the algorithm of Fig. 3. All double
errors satisfying expr. 8 are also corrected by this algo-
rithm. Denote by m the number of bits in a memory word.
Then, for the big m, we have, from expr. 8, the following
estimations on the probability P(2) of the correction of
double errors:

Pz 1 — T | 127" (14)

In the case when a double error results in a distortion of
data in two binary cells (bitwise errors) we have to replace
2" by 2m in expr. 14, Expr. 14 illustrates the good error-
correcting capability of two orthogonal checks. It also
follows from expr. 14 that to maximise the error-correcting
capability, we have to choose T, and T, for the given f(Z)
with the minimal | T} | | T3 |. This will also provide with the
minimal complexity of the error-correcting procedure (see
exprs. 9-12). Results of the computer experiments illustrat-
ing a high error correcting capability of this algorithm are
given in Tables 1 and 2. Here, P<({) is the percentage of
errors with multiplicity { corrected by the algorithm. In
these experiments, first we write in the RAM f(Z) (f{(z) 1s
the data written in a cell with the address Z), then random-
ly generate locations and magnitudes of errors, distort cor-

Table 1: Error-correcting capability of two checks
Ped)
Zy+ 2,

Function 2, ~-Z, Z,Z, Z-t Z*-Z-1

!f{Z]=f[E1,E;.}

2 100 100 100 100 100

3 99,90 9990 9700 9993 b5B.O6
4 99.90 9990 8886 9990 2346
5 99.33 99.26 7643 99566 5.36

Results of computer experiments on error-correcting capability of
two orthogona! equality checks {(n =m =8, for every / and every
f (Z) 3000 experiments have been made to estimate Fc(f)).

Table 2: Bitwise errors

P<{f)
Function Z,+Z2, 2,-2, 22 2-1 Z*-2-1
;(zjl:f{zwzz}
2 9993 9983 9913 9983 98.50
3 9970 9953 0493 9948 54.63
4 9943 9913 8496 99.08 20.96
5 9870 9860 71.43 9843 6.26

Results of computer experiments on error-correcting capability
of two orthogonal equatity checks (n=m =8, for every / and
every f(Z) 3000 experiments have been made to estimate
Pc(f))

IEE PROCEEDINGS, Vol. 131, Pt. E, No. 5, SEPTEMBER 1984

ey

Table 3: Error-locating capabilities of two orthogonal inequality

checks

Function F(y)

m m—tog|T,|

PH(Z) PM3) PH4) PUS)

—log, | T,

1 _(:rr f_) 12 9 999 996 993 990
—=sinl = /¥
"\.'"IIF 2

(n) 12 4 o700 840 T25 BHO
cos{— /¥

4

15 3 844 BRG8 423 220

(g—sln“ V)..H -y

Results of computer experiments on emror-locating capabilitias of two
orthogonal inequality checks {an error with multiplicity / distorts data in /
mamory cells; pn=m; y=2""Z, Ze{0. 1, ..., 27— 1}) for every ! and
every f (¥} 3000 experiments have been made to estimate P*{{})

Experimental estimations on probabilities p*({} of loca-
tion for errors with multiplicity { by the algorithm of Fig. 4
are given in Table 3.

In this Table, y=2Z2"" n=m Ze{0,1, ..., 2" -1}
and 3 x 10° experiments with randomly generated loca-
tions and magnitudes of errors have been made to
compute pH{l) for every | = 2, 3,4, 5 and every f(Z).

4 Correction of single errors and detaction of
multiple errors in ROM by the Rademacher
transform

4.1 Rademacher transform
The techniques described in Sections 2 and 3 are efficient
in the case when the function stored in the ROM is ana-
lytical. We shall describe, in this Section, another approach
which can be used for a ROM containing random data. It
will provide us with the simple method for the correction
of all single errors and the simuitaneous detection of all
double and triple errors. This will require, for a ROM with
n address bits, n + | additional memory cells and 2" read
operations.

We shall define the Rademacher transform (¥,, F;, ...,
F) for the function f(ZXZ = (Z,,..., Z,), Z; € {0, 1}) as

2n—1

Fo= Y f(DR(Z) i=0,...n (20)
£=1

where Ry(Z) = 1, R{(Z) = (—1)“ are the Rademacher func-
tions which are the subset of the Walsh functions [7]. (The
Rademacher-Walsh functions are widely used in logical
design, error-correcting codes and fault-tolerant comput-

ing [1, 4, 5, 7-9, 16).)

4.2 Error correcting capability

We shall use the Rademacher transform (expr. 20} for the
correction of single errors and detection of multiple errors.
As a result of the error e(Z), our function f(Z) is replaced
by f(Z) = f(Z) + e(Z); in this case, by the syndrome § =
{Sq,...,8,) of an error &(Z), we mean

2n—1

§; = EZHU(Z) + el Z)RYZ) — F,
- zile{Z}Rl{Z} i=0,..,n (21)
Z=0

By error correction we mean the computation of an error
function e(Z) by the syndrome S = (S,,..., 5,}-

We note that for the single error
8z z€(ZMNZW =(Z',..., Z"), Z; € {0, 1})

E[Z] =

So = AZM), §; = ZMR(ZM) = dZN -1 (22)

162

Thus, any two single errors have different syndromes, and
all single errors may be correcied by the analysis of the
syndrome vector S = (S, ..., §,). For the compatation of
a syndrome we have to compute the Rademacher trans-
form (expr. 20) of a function f{Z} + ¢(Z) stered in the
ROM. It is easy to check that by the Rademacher trans-
form all single, double and triple errors can be detected,
and there exist errors with multiplicity equal to four which
cannot be detected. For example, for the error

e{Z} - 53‘ 0O + &3_ Ogu—212 7 53, gr—11 (ig_ Da—230
00
(n> 3)(0* = ﬂ——H)

!

we have (S,, ..., S.)=1(0, ..., 0), and this error cannot be
detected.

We note also that for any multiplicity ! == 4 of errors, we
have, for the probability p%(l) of error-detection by the
Rademacher transform,

piyz1—-2"-1)7" (23)

where m is the number of bits in a memory word.

4.3 Correction and detection of errors

The software implementation of the correction of single
errors and the detection of multiple errors by the Radema-
cher transform is illustrated by the block diagram of Fig. 5.
This algorithm requires 2° read operations and n + 1
redundant memory cells A,, A,, ..., A,. (All errors 1n

(start)
!

2:20;1(:=1; 4;:=20€=0,.,n)

\

o es

1%

ﬂﬂizﬂ

A~ I' . - \
Az A+ 21 =it |Z:=Z W]
F
_ Yes
<N
no
1:=0

no

Ai-F=Ain-Ra

{

there exisis a
multipie error
in the ROM

[{I]:=E 7 ZH}{AG'—FD}
2" = (sign (AFF), -, sign(AF,)

Fig. 5 Block diagram of the algorithm for the correction of single errors
and the detection of muitiple errors by the Rademacher transform; (f(z) =

T2y + eiz)}

0,X=0

sign X =
£ {].}E’{ﬂ

[EE PROCEEDINGS, Vol. 131, Pt. E, No. 5, SEPTEMBER 1984

—_r—re—r—g— = = =

The algorithm for computation of the Rademacher trans-
form based on exprs. 24 and 25 requires 3(2" —1)—n
additions and subtractions, This algorithm is very similar
to the fast Walsh transform algorithm [7].

We note again that the computation of the Rademacher
transform has to be executed only once for the given func-
tion f(Z), and these computations may be considered as a
part of the test-generation procedure.

5 Detection and location of errors in a RAM

5.1 Testing of a RAM

All three previous techniques based on linear equality
checks, inequality checks and the Rademacher transform
can be used for error detection, location or correction in a
RAM.

To implement this, we first have to choose the function
£(Z) which we shall write in the RAM. Since the expected
testing time N for linear equality or inequality checks
increases linearly with the increase of | T, || T; | (see exprs.
12, 13 or 19), it is expedient for these checks to choose f(Z)
in such a way that | T,||T;] will be minimal. This will
provide also the maximal error-correcting (locating) capa-
bility of checks (see expr. 14).

After choosing f(Z), in a case of equality or inequality
checks, we have to construct the corresponding checks for
this /(Z) using the techniques from References -4 or 5.

Next, for any Z =20, 1, ..., 2" — 1 {n is the number of
bits in an address), we write in a cell with an address Z the
value f(Z). After this we scan out the memory and
compute a syndrome (see exprs. 4, 17 or 21). Then we
detect. locate or correct errors by the analysis of & com-
puted syndrome using the algorithms described in previous
Sections. If the implementation of a decoding algorithm
analysing a computed syndrome requires N read oper-
ations, then the total number of read and write operations
for a testing of a RAM is N + 2.

52 Compiexity and error detecting capability
Comparing the decoding algorithms represented in Figs.
3-5, we can see that all three algorithms have about the
same running time, but the linear-equality-checks algo-
rithm (Fig. 3) have the maximal error-correcting capability.
Thus, it is expedient to use orthogonal linear equality
checks for RAM testing.

The best choice of f{Z) to minimise | T} | | T, | for equal-
ity checks is f(Z) = C, where C is a constant for all Z € G,
but in this case we cannot detect, locate or correct €rrors
in the address decoder or bridgings between cells.

The next best choice to provide error correction for
decoding errors is to choose f(Z) as a linear function, for
example,

12 =2 =251 - 2)
where m is the number of bits in a memory word, m = n. In
this case, we minimise |7;]|7;}; thus, minimising the
number of read operations (see exprs. 10 and 12} and maxi-
mising the error-correcting capability of equality checks
(see expr. 14).

To correct all single stuck-at errors in memory cells we
have also to repeat our procedure for

() =fiZ)y=2"—1— 2"'—"(2"; t_)

(for any Z the binary representation of f5(Z) is the com-
ponentwise negation of the corresponding representation

164

for f,(£)). For
m—n 2“ _ 1
. JilZ) =2 (5 Z)

it is expedient to use the following orthogonal equality
checks:

1---1
n
({2 +HZ @ 10172 + fZ @ 011" [

+ f(Z@®110" %) =0

For f5(Z) = 2™ — 1 — f,(Z), we can use the same T, and T,
as for f,(Z), and we have the following two checks:

fAZY + fAlZ @ 17 = 202" — 1)
fAZ) + f:(Z @ 101" %) + f5(Z @ 011" %)
+ fZ @ 11072 = 42" 1)

For the expected number N of read and write operations
for the correction of single and double errors in a8 RAM,
we have, from exprs. 12, 26 and 27,

N <22+ + §(Py + 2P)) ~ 2'+2 (28)

D)+ f(Z&1M=0 1"=
(26)

S

(27)

and, for the probability P9(2) of the correction of double
errors, we have, from expr. 14,

Fyz1—-2"nm+ (29)

if we are interested only in the error detection, but not the
error correction, we again can use the same two orthog-
onal checks for fi{Z) and f5(Z). In this case we have to
check whether S,(Z)# 0 for at least one Z e G/T; or
$,(Z) # 0 for at least one Z € G/T;. This will require
N = 2"+2 read and write operations. By doing this we
shall detect all single and double errors, and for a prob-
ability PU(l) of the detection of an error with the multiplic-
ity { = 3, we have

Ph=1-2"—1)? (30)

For bitwise errors, all single and double errors are detected
and for | = 3, we have

Phz1—02m—1)"" 31)

We note that many stuck-at faults in cells of a RAM and
at the outputs of the address decoder and bridgings
between output lines of the address decoder may result in
unidirectional errors [18] such that &(Z) = 0 for all Z (or
e(Z) < 0 for all Z). For example, all and (or “or’) bridgings
between rows in a RAM address decoders and fauits that
affect power supply or read/write circuits result m uni-
directional errors [18, 20]. (Each row in a RAM corre-
sponds to a cell storing a value of f(Z).) All unidirectional
errors with any multiplicity will be detected. Since any
bridgings between two rows results in a distortion of at
most two values of f(Z), it follows from expr. 29 that
almost all these bridgings will be corrected. We note also
that many errors in the address decoder may be detected
and/or corrected by two orthogonal checks. We shall say
that there exists an error with the multiplicity I in the
address decoder if there exists ZW, ..., Z®W e {0, 1}" such
that the output of the RAM is f(Y?) for the address Z,
Y® £ Z9G = 1, ..., D). In this case,

!
oZ) = 38, 20l f(Y) — Z) (32)

JEE PROCEEDINGS, Vol. 131, Pt. E, No. 5, SEPTEMBER 1984

— -

9 Appendixes

9.1 Optimal equality checks for some basic hardware componenis

N Device Function f implemented T C
by a device
1 And gate AZ,.....Z)=1]1Z. fg, 131 1
i=1
2 Or gaie fiZ,....2)=V Z, 10, 1} pL— |
i=1
3 Parity checker AZ,,....2,)= &2, on, 0ty 1
i=1
4 Majonty voter 0, |Z}F <05n—-1) 1or, 17} 1

5 Voter with the threshold

equal 1o 2
r=2"-1)

6 PLA (product tertns are
erthogonal; AND gates
have at most d inputs)

7 Autonomous linear
feedback register

[19] with initial
state (Z,, ..., Z,)

g n-bit shifter

9 m-hit counter

10 m-bit up and down
counter

11 #n by 1 multiplexer

12 Adder
13 Subtractor

14 Multiplier

ﬂ‘Zn--qE,]={
(n=25+ 1, L Z} =);zf)

0. 421 =1
Z . L EZy=4.
11z,] {L*.IZII‘:'I

Az, Z,)

= ‘I'—" fAZ,, ..., Z). where

fiZ,,.... Z)is a product
of at most d literals, and
forany Z=1(2,,..., Z),
HAZf{Z) =10

Z,
01 O 0 1)
0O 0 i 0)
A= --coririiiiain
0 0 0 1 {
0O 0 0 0 1
ay, 4 a3 ' 4,y a4,

a e {0 1}; A 15anh

degree of A; all computations

are in GF(2)
.ﬁ:ch Cr" zl? P ZI!I'] =

f(So. Spsaees Sur Zpy e Z,)
= Z.iff

-1

Y§FEV i=iin=2"
j=0

X, 1=X+7Y
X, Yefo 1}

X, N=X—7Y
X, Y e{0,1}°

fIX, V)= XY: X, Y e{0,1}°

2*—1,2"—-p—1) 2*—o—2
Hamming code

Vim, d + 1) Y AZ)x
£

| Viin, d + 1)|7°

Vi d + 1) is

a dual code to

a maximal code
with the Hamming
distance d + 1.

(0, 417 »

(47" is an
INVErse over
GF(2) of
Al

$0007, 001%, §x 2271 — 4

1007, 101"
0107, 011,
1107, 1517

ior, 17} n

{o, 17} 0

(0707, 071"} 1

{UI", lln‘]*r 2{25 — 1]

{ﬂln=]211} 0
(0%, 0r17, 10, 124} (27 = 1Y

166

IEE PROCEEDINGS, Vol. 131, Pt. E, No. 5, SEPTEMBER 1984

31

9.3 Orthogonal checks for some numerical functions (| T, < |T,1)

N Name Function T, C, T, c, Commenis
I Multipli- fIX.Y)=XY o, 172 2" — 1) {07, 101772, 01172, 4(2" — 1)? A% = {a,a,}
cation X, Yef{01,.., 2" =1} = {0%", 0P1", 1107~ %} a,a, €A}
lnnn, lln}
2 Conversion fiZy=Zdshs Z o, 1010, 2" -1 {07, 10101 ..., 22" — 1)
from the shr Z=(0,bZ,,.... Z,_,) 0101, ..., 10"~}
bmary to L=(Z, Z)
the inverted Z.e {0, 1}
code [15]
m=t
3 Conversion fiZ)y= &dshr' Z for, 1001} »—1 for, 111073, 242" — 1)
from the =0 010" 2, 101=~*}
inverted shr® Z = Z, shr' Z =shr'™! Z)
to the Z=(Z,...2) 2, {0, 1}
binary code
[15]
4 Conversion flZy.. 0 Z)= [or, 17 105 1 [or, 14041 "%, A10° - 1)
from the - PR
2421 BCD E' _ _+_ZZ e + g -8 ¥
ﬂﬂdﬂ to I'=E.|](r=4i it —dhi— 1 150" }
the binary _
code [15] H4Z, 42+ 22, 4, I
n=48,Z. |0, 1}
5> 2
5 Conversion flZy ... Z)= for, 17 105 — 1 07, 1%0% 173, 210° - 1)
3BCD S 2y 4 22 ir + e
code to the S Y e 150"~
birary code
[15] 47 i+ 8Z i — N
n=48 5 =2
6 Linear flZy=az+b (o, 17 a2 —+2b (010172 2a(2"— 1)+ b
function Zef01,...,2"-1} 011" 2, 110"~}
7 Scalar product f(XY7, ..., X" ¥ ¥Ry o, 1) mi2® — 1) [0Pm L {10172 4mi2" — 1Y A" =lay, ..., a,]
_ % yryi TR0 a; € A
— E:IX Y o {11gr-2)m12
8 Rademacher HZy=(-1)%" o0 0 fon, 10721001} 0
function Z=(Z,....2)
(see Section
4.1)
9 Walsh function f, ;.. ifZ) (L L L for, 021072} 0
(7] =2, + L, + 2,
(-1, 1s85<n
5
10 Odd polynomial f{Z)= Y af0.5(2" — 1) — Z)* ' {0, 1] 0 linear span 0 Lisyis(d +1) x
f= of rows of (d + 1) identity
e H={l,, :Ja_\ matrix;
Zeidl .., 21} where 4 = 25 — 1 Jogoris{d + 1) x
(n — d - I} magrix
of all ones
d
11 Polynomial Z)= Yy a,Z Viln, d + 1) 2"y fiZ) x Vi, d + 1} Y flZ) x Vi(n, d + 1) and
of degree =g z z
d(d < n)

Zelo1,....2"— 1}

|[Vin, d+ B!

| V3in, d + 1}

Viin, d + 1) are

dual to

codes Vi(n, d + i) and
Fis(n, d + 1) with
distances at

least d + 1

Viin, d + 1)

B, d+ 1) =0"

168

IEE PROCEEDINGS, Vol. 131, Pt. E, No. 5, SEPTEMBER 1984

