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Abstract. In this paper we present universal tests for detection or identification of single and
multiple stuck-at and bridging faults in combinational and sequential VLSI networks.

Denote by P(T, F,m,k,s) the fracuon of all devices with m inputs, k outputs and s
feedback lines such that all faults from a set F of possible faults are detected (respectively,
tdentified) by test T. We say that T is a universal test detecting (identifying) all faulis from F
iflim,, , P(T,F,m k,5)=1.

In this paper we consider single and multiple stuck-at and bridging faults at input or
output lines. For these faults we construct corresponding universal tests T, estimate probabili-
ties P(T, F, m, k, s) of fault detection or identtfication and present lower and upper bounds
for the minimam number ¥{m, k, 5} of test patterns in universal tests. Asymptotic optimality
of the suggested universal tests is proved for-the important case of single stuck-at and
bridging faults.

We also present practical examples of devices and tests which illustrate the usefulness of
the estimates of minimum numbers N{(m, k, 5) of test patterns,

For the universal tests T proposed in this paper probabilities P(T, F,m, k. 5) of fault
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detection or identification converge to on¢ very fast. This implies that these universal tests
may be quite efficient either as a first step in a testing procedure or in the case when a broad
spectrum of complex VL35I dewvices has to be tested.

Keywords. VLSI networks, detection and 1dentification of stuck-at and bridging faults, faults
at input /output lines, uruversal tests, asymptotically optimal tests,
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1. Introduction

Three approaches have been used for testing of computer hardware, namely
gate-level testing, functional testing and random testing. For gate-level testing,
input data for test generation consist of gate-level description of a device under
test and of a class of possible faults. In the case of functional testing input data
for testing are represented by a functional description of a device and of a class of
faults. For random testing, test patterns are generated randomly. The costs of test
generation for gate-level testing begin to be prohibitively high with the transition
to VLSI technology. We should also mention that in this case the problem of
generation of an optimal test 1s NP-hard [1,2] even for the case of single stuck-at
faults. |

For functional testing the costs of test generation for VLSI devices are still very
high, especially when a broad spectrum of devices has to be tested. On the other

rd
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hand, 1n many cases it is very difficult to estimate a fault coverage in the case of
functional testing [8-12].

For random testing the cost of test generation 1s mintmal but a number of test
patierns (testing time) may be very high for VLSI devices [13-13].

A different approach to testing which may be considered as filling the gap
between functional and random testing has been proposed in [3,4]. This approach
1s based on the i1dea of universal tests which are able to detect (or to identify) all
the faults of a given class in almost all devices of a given complexity (a rigorous
definition of this concept will be given 1n Section 2).

For umversal testing, the input data for test generation consist of parameters of
a device under test {e.g., numbers of input lines, output lines, flip-flops, etc.) and
a description of a class of possible faults (e.g., stuck-at faults of a given
multiplicity).

Unaversal tests can be used for almost all devices, which means that the
fraction of devices such that universal tests are inefficient tends to 0 very fast with
an increase of complexity of a device under test. It will be shown below that if a
universal test cannot be used for a given device and a class of faults, then, with a
probability very close to 1, addition of a few test patterns to the original universal
test will be sufficient to detect all the faults of a given class.

Test generation 15 very simple for universal tests (sometimes 1t 1s even simpler
than for random testing, since it does not require a random number generator)
and on the other hand it is not difficult to estimate fault coverage for almost all
devices of a given complexity. A number of test patterns for universal testing is,
generally speaking, greater than for functional testing but less than for random
testing. For example, for detection of single stuck-at faults at input lines of
combinational adders, subtracters, decoders, shifters, adders-accumulators, etc.
with m input lines universal testing, as well as functional testing, requires only 2
test patterns and random testing requires at least [log,m| test patterns (see
Example 4.3, below); for detection of bridgings between any two input lines for
these devices universal, as well as functional, testing requires [log,m| test
patterns and for random testing at least |2 log,m| test patterns are needed ({ a} is
the smallest integer greater or equal to a).

Since interconnections between VLSI chips are 1n many cases less reliable than
chips themselves [16,17,3,4], we consider in this paper detection and ideniification
of single and multiple stuck-at and bnidging faults at input /output pins in both
combinational networks and networks with memory. (By a bridging with multi-
plicity / we mean a bridging between / lines; results we are going to present are
vahd for both AND- and OR-type bridgings [6,7].) We also note that universal
tests detecting multiple faults at input/output lines will also detect a high
percentage of internal faults in a device under test.

For each of the above-mentioned problems we present universal tests, estimate
probabilities of fault detection (or identification) and estimate the minimum
numbers of test patterns. Since detection of single faults is for many practical
cases the most important problem, we shall prove the optimality of the corre-
sponding universal tests.
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Section 2 contains description of devices under consideration, definitions and
notations. In Section 3 general results on probabilities of detection (or identifica-
tion} of all faults from a given class are presented. In Section 4 these results are
applied to combinaticnal networks with respect to stuck-at and bridging faults at
input lines. This provides a generalization of corresponding results in [3]. The case
of sequential networks with stuck-at faults at input /output lines 1s considered m
Section 5. In Sections 25 we assume that all 100% of faults from a given class F
are to be detected by universal tests in almost all devices. In Section 6 we consider
a weaker requirement, namely, that only a given fraction of faults in almost all
devices has to be detected by umversal tests. For this case we present estimations
on the probability of detection of a fraction of faults by universal tests and
minimal numbers of test patterns in the corresponding universal tests.

2. Definitions and notations

An arbitrary digital binary network with memory may be represented by a
block-diagram of Fig. 1.

Here m is the number of input lines, & the number of output lines, and s the
number of feedback lines (the number of binary memory cells). Such a device will
be referred to as an (m, k, s)-device, so that an (m, k, 0)-device is a combina-
tional circuit.

primary&' } primary
inputs 3§ *  outputs
¥ m ¥

- L

device under test

Fig. 1. Block-diagram of a network with memory,
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Denote also (sce Fig. 1) the following:

x = (X%,...,%,,), theinput binary vector,
y={yy....: ), the output binary vector,
z={(z,...,z.), the feedback binary vector,
u=1{uy,...,u. ), the memory output binary vector.

For a given device at discrete time 7, we have

YO = (xD u™) (j=1,2,... k), (1)
2=z (x", u'") (r=1,2,...,5), (2)

where y, and z, are Boolean functions of m + s vaniables, which are specified by
the structure of the device and #'™ = 27"V A test T = (¢(#)} is a sequence of
N binary m-dimensional vectors ¢ = (¢{8), .. {8} which are applied to the
input lines of the device, vector ¢'®) being applied at the moment =g (g=
1,...,n). If a fault f occurs, the actual input vector ¢')( ) may be different from
1'8), We say that the input vector is distorted if £8( f) # £(#,

We denote by Y& = (M y(My the sequence of output vectors produced
by application to the device a sequence of test patterns 7™ = (¢D,..., 1",
provided that the memory was cleared before testing,

For a fault-free device Y*¥ is uniquely determined by T¢"™*’, However, if a
fault f occurs in the device, Y* may depend on the fault YN = YUM)( £},
Denote by f, the situation when the device 1s fault-free.

Definition 2.1. It is said that test T'= T (|T| = N) detects a fault f in a given
device, if for this device

YEN(f) YEN(fy). ()

Consider now a set of faults F={ £}, w=0,1,...,|F|— 1, which may occur in
the device.

Definition 2.2. It is said that test T= T detects all the faults from a set F in
the device if for any f € F, w# 0,

YER(1,) = YER(f), (4)

Definition 2.3. It is said that test T= T identifies all faults from a set Fin the
device if for any f,, f,, € F, v # w,

yEM(£) o TEMN(f ), | (5)

Now let us consider the set of all (m, k, s)-devices for given m, k and s.
Suppose that each one of these devices has the same probability of being chosen
for testing; i.e., for an (m, k, s)-device under the test, the probability that the
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combinational part of the device (see Fig. 1) implements any given system of k + s
Boolean functions of m + 5 arguments is 2 (k+2""*

Denote by Py (m, k,s) (Py(m, k,s)) a probability of detection (identifi-
cation) of all faults by the given test in a randomly chosen (m, k, s)-device.

Definition 2.4. A sequence of tests (7= T is called wniversal for detection
(respectively, for identification) of all faults from a set F= F(m, k, ), if

Hm Py (m, k,5)=1 (6)

FH o0

(respectively, if

lim Pld(m:K&S):l) (?)

m=—* o0

(For the sake of simplicity we shall say also ‘universal tests’ instead of
“unrversal sequence of tests’.) The concept of universal sequence of tests is the
central one in this paper. It is seen from Definition 2.4 that a performance of
universal tests becomes the better, the larger are devices under test. This asymp-
totic property of universal tests makes this approach especially relevant for
complex VLSI circuits.

The following notations will be used throughout the paper:

— [/ 1s the multiplicity of faults,

— T'1s the test matrix formed by test patterns of T as rows,

— d.( T) (d (1)) is the minimum Hamming distance [5] between columns (rows)
of T,

a = u:(T, F) =,ﬁ,iiIEIF}1?|{g[ﬁg)(f”) + HH}(fw)}lj (8)

— N, (m, k, 5) (Nd (m, k, 5)) 18 the asymptotic (m — s0) minimum number of
test patterns in universal tests detecting (identifying) faults in (m, k, s)-de-
vices, |

— ¢(m) 15 an arbitrary function, such that &(m) = oo as m — .

The universal tests which are used in this paper for detection and identification
of stuck-at faults in combinatorial networks will be constructed as follows. Let
be the maximum number, # < m, such that there exists a binary Hadamard matrix
A, of order n [5]. (It is known that Hadamard matrices exist for all multiples of 4
less than 268, and, very probably, for all multiples of 4.) Consider an (n X m)
matrix 4 where the first # columns are those of A,, and the last m — n columns of
A are the first m — n columns of 4 . Let a'® (4 = 1 2,...,n) be the hth row of the
matrix A. Then the test matrix 7 w1l] consist of the TOWS

Qe Do g®) ) DG o712 1IN, (9)

where N =|T'| < 2n < 2m and 3%’ is the complement (negation) of a'#’.
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Example 2.5, Let m = 11, N = 6, then taking » = 8 and using (9) we obtain

0 00 00 0 0 0 0 0 0
1 111111111 1]
#0000 11 110 0 ¢
11110000 1 1 17
0 0 1 1 0 0 1 1 0 0 1
110 0 1 1 0 0 1 1 0]

It follows from the properties of Hadamard matrices that the minimum
Hamming distance between two distinct test patterns is

d(T)zinzi(m~-3).

We shall restrict ourselves to stuck-at and bridging faults of multiplicity at most /
(I < zm—1). In this case ‘®(f) =+ " (f,) for any £, f, € F, g+ h. For detec-
tion and identification of stuck-at faults in sequential (m, k, s)-devices we will
use universal tests of the following form:

(2D, 1M) = ((0, 0,...,0),(1,1,....1), (1,0,...,0), (0, 1,....1),....

where N = 2i + 2. (10)

The order of the test patterns, defined by (1(), becomes essential for networks
with memory.

3. Estimation of probabilities of fault detection and identification

In this section we present general results on lower bounds for probability
P,.(m, k, s} of detection and probability P, (m, k, 5) of identification of all the
faults from a given set F.

Theorem 3.1. (i} Let F be a set of any inpui stuck-at or bridging faults of multiplicity
at most 1 in combinational {(m, k, O)-circuits. Then, for any test T such that

d(T)y>21+1,
Py(m, ke, 0) > (1 —27 =M )70, (11)

P (m, k, 0)x (1—27M)% (12)

(i1) Let F be a set of single stuck-at faults at input lines of sequential (m, k, s)-de-
vices. Then for a test T, defined by (10},

Po(m, k. s)z 12705270 (1277 )2=%) %" ™" (13)
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and

)u.sﬁ]{“’f‘}

Po(m, k,s) % [1-2703% (2 4 (1~ 275)2* (14)

Proof. (1) Denote by B_ the set of all Boolean functions of m arguments
(|B,,] = 2%*"). Let ¢ € B,,, then we have, for the probability Pr{ y;= @} that the jth
cutput of the device implements ¢,

Pr{y,=¢}=2"%"
Let (@y, ®1,...,9,~_1) be a binary vector. Then
Pr{y(0,...,0, 0)=qp,....3,{1,.. .1, 1) = pyu_, } =277

Thus, for any j=1,....m, { y,(x}|x€ {0,1}7)} [{0, 1}™ is the set of all binary
m-vectors| is a set of independent random binary variables. For any x(), x@® &

{0? l}m!

Pr{ yi{x1) =yj(x':2])} = 0.5.

A fault f € F at input lines of a combinational device results in a distortion of a
test pattern ¢ = ¢(f,) mto 1(f) [d(1(fy), t(f)) < I, d is the Hamming distance].
Since, for our test T, d (T} > 2/ + 1, we have

tBfYFeM(f) foranyt® MeT(g+h)andanyf,,f F. (15)

For any fixed f€ F (f# /) and t=#{f,) €T, if t(f)# (/). then y,(2(f,))
and y.(#( f)) are independent binary variables. Thus,

Pr{y(t(fo)) =y, (s(f)) forallre T} <27,

Since, by definition, random vanables { y;} are independent, we now have, for a
probability A (m, k, 0) of detection of any given fault f€ F {f# f,) by test T,

Naalm, &, 0)=Pr{Ij € (1,....k}, 3 € T: p,(s(fo)) # 2, (1 (F))}
=1—Pr{y,(¢(£)) =y,(t(f)) VteT, j=1,.. k)
> 1 . z—ai‘ﬁc_
In view of (15), events 3;: y,(1(f,)) # y;(¢(f)) are independent for all fE F, thus
Py(m, &, 0) = (Agu(m, k, 0D > (1= 27172,
To prove (12) we fxx f,, f,, € F(f, # f,,). If 1 f,) #1(],), then
PI[Yj(f(fu))?Eyj(f(f:))} =0.3,
and, by (8),

Pr{ y(t(£)) =y, (¢(f,)} forallte T} <27V,
Thus, we have for probability A, (m, k, 0) that any two faults £, and f,, produce
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different outputs (Y &M £ )= YEN)( £ 3y

Na(m, k, 0)=Pr{3j, ey (t(f)) # p,(1(f 1)} 21— 27,
and, 1n a view of (15),

Pa(m, k, 0) = (Ayy(m, k, 0))7 > (1 - 27«¥)(%,

(11) For sequential networks with single fault f at input lines (see Fig. 1) and test
sequence T = (', +@ 1™} we have

PN =3 () (1)) =1 k)

2001 = 2(£0(), () ) = 2
\ (T=1,...,N,r=1,...,x),

—y

where, for any ¢,,...,p, € B, . and any {,... b €B__ |

_ 2_k2m+5

Pr{y =o.....0. = ¢}
and

Pr{z, =ty,....2, =4} =27"""".
We also note that, foranyje{1,...,k} and re {1,...,s]

{yj(x, u)|xe{0,1}", ue {0, 1}2}

3

and
(2.(x, u) |x€ (0,1)", ue {0,1))

are sets of independent random binary variables.

For input stuck-at faults and test sequence 7= (¢, @, .., ™)), defined by
(10), for any two single input faults f,, f, either @5~ D(f)£¢%2~1(f ) or
tCO(fy# 1P (f Y forallg=1,2,...,3N. Let ¢ (£} =+ (£ ). Then

Pr{ y(f,) =y"(f,) forallj=1,... .k } =27 (16)
and
Pr{ y"*V(f,) =y 0(f, ) forallj=1,.. .k} <
< Pe{ 2V f,) =28 0(f, ) forallr =1,...,5}
+27 51 =Pr{3re{1,...,5): 2MD(£) # 24D(£,)))
= Pr{u®(f,) =u®(£,)} + 271~ Pr{w® () # uP(£,)))
=27+ 27%(1 - 279). (17)

From (16) and (17) we have, for the probability of not detecting a fault f by two
test patterns ¢, (At

Pr{y™(fo) =y (), y 2 f) =y V() for all j=1,....k } <
<2752+ 2751 —-277)).
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Thus, we have for the probability A, (m, k, s) of detection of any single input
fault by the test sequence (¢,..., ™)), defined by (10),

Age(m, k,s) 21 —2703NK(g=s 4 2=K(] 2_5))0.5{

and, for the probability P, (m, k, s} of detection of all single input stuck-at
faults,

P (m, k, s)> (1 _ 2—[1.5Nk(2—s +27k(1 = 2_3)){}.5;;]1”1'

Similarly, we have from (16) and (17) for the probability A,,(m, k, s) that any
two different faults £, and f, produce different outputs:

Aag(m, k,5)=
=1 - Pr{y(£) =3 (£.,), 370 £,) =y (1,0, ¥ =1,... .k )
>1—(27%(2 " +27%(1 -2 )",

and for the probability P, ,(m, k, s} of identification of all input single stuck-at
faults tn sequential networks

Pid(m: k,s)= (hid(mﬁ k, 5))(1%“}

o (1 — 305Nk (2—5 + 2—#:(1 - 2_5))015.?\-’)(3"?1)- 0

4. Detection and identification of faults in combinational circuits

Consider now problems of detection and identification of stuck-at and bridging
faults at inputs of combinational circuits with m input and & output lines.

Theorem 4.1. If F is the set of all input stuck-at faults of multiplicity at most |
(f ﬁr@;j) in combinational (m, k, O)-devices, then tests T=T'™", defined by
(9), form a universal sequence of tests for detection, if

/
N=2ng12 2*(”:]+E(m)]/k|, (18)
i=1
and for identification, if
/
N=2[(2 IDQEZZE(T)‘FE(H’I))/I{}, (19)
i=0

for any e(m) such that e(m) > oo when m — 0.

Proof. For mput stuck-at faults and universal tests T=7""") a =05, d.(T) >
21+ 1 and |F|=ZX!_o2/(7). If N is defined by (18) (or by (19)), then the
right-hand side of (11) (or (12)) converges to one as m — oo, for any k. Theorem
4.1 now immediately follows from Theorem 3.1. OO
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Corollary 4.2 (1) The asympiotical upper bounds on the minimum numbers of test
patterns in universal sequences of tests for detection and identification of all the faults
from F are, respectively,

N, (m,k, 0)52[(1{}g1i ZF(T))/k], (20)
N (m, k,0) < z[(z mgli f(’?))/k|i (21)

(1) For detection of all single input stuck-at faults
Nyu(m, k, 0) ~ 2[{log,m) /k]. (22)

(We denote a(m) < b(m), 1if im
a{m) < b(m) and a(m) z b(m)).

a(m)/b(m)y<1, and a(m)~ b(m), f

m—

Proof. Formulas (20) and (21) follow from {18), (19) with m — <. The lower
bound

Naa(m, k, 0) > 2{(log,m) /k|

for the case of single faults has been proven in [3]. Formula (22) now follows from
(20) with /=1. O

it follows from (20) that

2[(1/k) log,m] if b=0,
Naalm, k. 0) < 2[(m/K)(b+ H(b))] ifb>0, (23)

where b=1im__, __ {/m, and H(b)= —blog,b~ (1 — b) log,(1 — b) 1s the binary
entropy function.

Thus, the minimum numbers of iest patterns increase at most linearly with the
number of input lines and decrease inversely proportionally with the number of
output lines. If k/m > b+ H(b), then, for large m, two test patterns ) = (0, ... ,0)
and (@ =(1,...,1) detect all stuck-at faults of multiplicities / < bm in almost all

devices.

Example 4.3. Consider detection and identification of input stuck-at faults in an
m-input decoder. In this case k=27, and all faults are detected and 1dentified by
unjversal tests 72, consisting of two test patterns = (0,...,0) and =
(1,...,1) only, which agrees with Corollary 4.2.

We note that universal tests 7™ can also be used for detection of single
stuck-at faults in adders, subtractors, shifters, comparators, parity checkers, etc, If
we use a random test for detection of single input stuck-at faults, then we have,
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for the probability Pr(m, N) that in every column of 7 there exist at least one ‘1’
and at least one ‘0,

Pr(m, N}={(1—-2x2"%)", (24)

and im,, _,  Pr(m, N)=1 only if N = log,m. (We suppose that for random tests
every input vector may be taken as a test pattern with probability 277.) Thus, for
all these devices, detection of single stuck-at faults by universal tests requires two
test patterns and by random tests at least log,m test patterns.

A lower bound on the fault detection probability for input stuck-at faults can
be easily obtained from Theorem 3.1, taking into account that for the test defined
by (9) we have « = 0.5. One can see that this probability converges to 1 very fast
with the increase of the number of test patterns N (see Fig. 2).

Now we shall turn to the detection of bridgings in combinational circuits.
Denote by n(m, d) the length of a shortest binary error-correcting code V with
the Hamming distance dist V= 4 such that V contains at least m codewords, and
all columns of a generating matrix of V are different. Upper and lower bounds for
n(m, d) are well known [3].

Theorem 4.4, If F is the set of all input bridgings with multiplicity at most I, where
< 2llogam| =2 ypay
(i) any sequence of test T = T"") such that

dc(f)k—lugz-i (T) - o0 (ardc(f)k— 2 log, i(ﬂf) — m)

=2 i=2

when m — <o, (25)

Page (Pa140)
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Fig. 2. The probability of detection of singile input stuck-at faults in combinational {m 1, 0)-devices
as a function of a number of test patterns.
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is the universal sequence of tests detecting (or identifying)} all these bridgings,
(i1} for detection and identification of inpur bridgings with multiplicity at most |

N (m k 0)< ﬂ(m, [% log, éﬁ(?)])

and

Ny (m,k,0) f:_n(m l— lnglé‘, ( )D (26)

(iii) if I/k — 0, then
Ny (m,k,0)~ Ny(m,k, 0)~log,m. (27)

(| a| is the greatest integer less or equal to a).

Theorem 4.4 is a generahzation of results presented in [3.4] on detection of
bridgings between two input hnes.

Proof. (i) For bridgings between input lines, columns of a matrix T are different
codewords of a code V with |V|z=m, dist V=4 (T) and aN=«|T|=d A7)
Since in this case |F|=1+ X' _,(7) and d (Ty=2!+1, we have, from (11) and
(23),

lim P, (m,k,0)> lim (1—24@#y=200 1

M — 00 m = o

Similarly, we have from (12) and (23)
lim Pg,(m,k,0)=1.

0

(1) Condition (25) is satisfied iff

log, ¥ 7 +s(m)]/k]

j=2

dist V=d_(T)}>

(or iff

1+ }i (T) +£(m))/k ).

j=2

dist V=d_(T) » (mg2

Asymptotical upper bounds (26) now follow from the defimition of #(m, d).
(ii1) To prove the lower bound 1t 1s sufficient to note that for detection of input
bridgings all columns of T have to be different. Thus,

Ny(m, k,0) = Ny, (m, k, 0) = [log,m].

To prove the upper bound we note that, for I/k — oo and m — oo,

m

-zlﬂgl(l _|_Zj_=2( j )) +e(m) 13
k
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.lcgz,g1 Z;E(T) +:—:(m)
’ k

~ log,m. O

Example 4.5. Consider detection of bridging faults in an m-bit decoder (k = 2).
In this case //k — 0 with m — o0, and any test with distance

d.(T)= [(l/k) Iﬂgz_éz(r?” =1

between columns of T detects all input bridgings. We can take, for example, the
test matrix which columns are binary representations of the numbers 0, 1,.. .,
m — 1. Then, obviously, N =[log,m].

The same universal test with N ={log,m] can be used for detection of all
bridgings between two input lines for adders, subtractors, multipliers, ete. If we
use a random test, then we have, for the probability Pr(m, N) that all columns of
T are different,

m—1]

Pr(m,N)= 1:[EL (1—i27")", (28)

and lim,,_ Pr(m, N)=1 only if N > |2 log,m|. Thus, for these devices, detec-
tion of input bridgings by universal tests requires [log,m] test patterns and for
random tests at least |2 log,m| test patterns.

As one can see from Theorems 4.1 and 4.4, identification of stuck-at faults in
combinational circuits requires twice as many test patterns as their detection,
while 1dentification of bndgings for //k — 0 requires asymptotically the same
number of test patterns as detection.

5. Detection and identification of stuck-at faults in circuits with memory

This section is devoted to the problem of detection and identification of single
stuck-at faults at primary inputs for a device with a block-diagram represented by
Fig. 1.

Note that introduction of memory tn a device may result only in a decrease of a

number of test patterns required for detection (or identification} of input stuck-at
faults. Indeed, some input faults which distort test patterns but not distort

primary output vectors at time g may distort information in memory, and this
may result in distortions of primary output vectors at time g+ I, g+ 2, etc. In
fact, as 1s shown below,

Ndﬂ(m, k, *T) - Ndet(m: k, D) = ZNdet(mw k:' *5')
and (29)
Nglm, k,s)sNy(m, k, 0y < 2N, (m, k, 5},
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where the lower bounds are achieved for small s and the upper bounds for large s.
For detection of input stuck-at faults, test sequences, defined by (10), will be
used. In contrast with the previous case, the order of test patterns is essentiai for
devices with memory. We start with a lower bound for the minimum number of
test patterns for detection of single input stuck-at faults.

Suppose that for a single stuck-at fault f at a primary input and for a sequence
of test patterns (18, ((8*D __ y8*7) test pattern ¢# is distorted by f(#8(f) #
'8y and 18+ D, #E*) are not distorted (+(f)=¢©, i=g+1,...,g+ 7). For
this case denote by ¢(, k, 5) the probability that the test sequence (£(2’, ... 1% 7))
does not detect f. By definition ¢(0, k, s)=1 for any k, s.

Lemma 5.1. For any 7 = 0,
g(7,k,s)=27(1—y") /(1 —vy) +7", (30)

where

y=2"%(1-277). (31)

Proof. If, for 1+ 1 .. #(8*7)_ fault f does not distort test patterns, it can only be
detected as a result of distortion of data coming into the memory (see Fig. 1). If,
for a test pattern :$** (h=1,...,7), data coming into the memory are not
distorted, then the same is true for any #**7) for £ < r < 7. Let us denote by vy the
probability that, if a memory output vector is distorted, then, at the same moment
7, a primary output vector is not distorted and a memory input vector is distorted
(i.e., distortion of data in memory is ‘masked’ at primary outputs). Then,

Y = Pr{y{'ﬂ(f) =y["|"}'1| E(T}(f) =+ E{T] I H{T](f) = H{T]} e z_k(l — 2_5)1
where (7 = (p{7,. . p7), 'V = ({7, L ul?) and 20 = (2{7,...,2¢7) (see Sec-
tion 2).

Denote by g, the probability that fault £ is not detected if all memory inputs
at the moments g, g+ 1,...,g+h—1 are distorted (z¥"I{f)# 28D =0, 1,

...,h—1) and a memory input vecior at moment g+ . is not distorted
(&A= D(fy= et~y Then g, =y*~1275 (h=1,...,7), and, by definition of
g, and g( 7, k, 5), we have

g(7.k,s}= 2 qu+y =27(1-77)/(1—y)+¥".
h=1

We note that g( 7, k, s) is monotonically decreasing with the increase of 7, i.¢.,

g0, k,s)=1, q(1,k,s)=2""+2"%1-279),
lim g(7, k,5)=27*{1/1-27%(1-2"%)). O

T —* o)

(32)

Theorem 3.2. If F is the set of all single input stuck-at faults, then
Ny (m,k, 5)= 2[{1032111 +&(m)}/{k—log,(27*+27%(1 - 2“5))}] :
(33)
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Proof. For a mmimal test T denote by a, ; (4, ;) a number of zeros (ones) in the
jth column of 7. We shall suppose, without loss of generality that a Sy
(a, s 3IT|=3N).

Let us EDI'ISIdEI‘ the stuck-at-1 fault at the jth input line. Denote by ¢~
(r=1,...,a, ;) test patterns from 7= (..., #*)) which are distorted by this
fault and r'[‘ A (h=1,...,7,r=1,...,4, ;) test patterns which are not distorted
(. < N —aqy ;). Then we have, fﬂr the probability A (k, s) that this fault is
detected by T,

n!l.':l'._.r'

A (K, 5)= (1 — 2%, T g(x. k,s)). (34)

re=1]

It follows from (30) and (31) that

ﬁq( k,s);(q(w_aﬂ“"l,k,s)) B (35)

{"'1 ----- u,”} r= aﬂ,j
Thus, we have, from (34) and (35),

N-—a,, we
A (k, s) < (1—2—“0-:(;;” *v’l, k,s)] (36)

o ;

Since the right-hand side in (36) is monotonically increasing with the increase of
ap; and ag ;< 3N, we have from (36), (34) and (32), for the probability
Py.(m, k, s) that all single stuck-at faults are detected,

Py (m, k,5)< l_[ Atk s)<{1—2705%¥(4(1, k, s))ﬂ‘SN]m

S=1
= (1= 270N = 112 K(1 — 275))" )" (37)
The right-hand side of (37) converges to one only if (33) is satisfied. O

Let us now construct upper bounds for minimal numbers of test patterns for
detection and identification of single input stuck-at faults.

Theorem 3.3. If F is the set of single input stuck-at faulis, then the tests T = T("N)

defined by (10), form a universal sequence of tests for detection, if

N =2|{log,m + e(m)} /[ k —log,(27* +(1 - 27)27%)1],
and for identification, if (38)
N =2[{21og,m + e(m)} /{k —log, (27 + (1 — 275275} }].

Proof. For single input stuck-at faults in sequential networks and universal tests
T =T defined by (10), we bave a = 0.5 and d_(7) > 2/ + 1. If N is defined
by (38), then the lower bound (13) (or (14)) for a probability of fault detection
(identification) converges to one as m — oo. Theorem 5.3 now immediately
follows from Theorem 3.1. O

. [
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Corollary 5.4. For detection and identification of single input stuck-at faults, we have
N (m, k)~ 2(logom) /(K —log, (27 +(1—2727%)}],  (39)
Ng(m, k,5)52[(2log,m)/{k—log,{27* +(1—27*)27%}}]. (40)

Prooi. Formulas (39) and (40) follow from Theorems 5.2 and 5.3 withm — 0. O

One can see from (39) and (40) that the minimum number of test patterns
depends on ratio of £ and 5. In particular,

2[(log,m) /k| if 2/k = 0,
2[(log,m)/(2k)| otherwise.

Comparing (20) and (21) for /=1 with (39) and (40), one can see that, for a small
number of memory cells, numbers of test patterns for combmational and sequen-

tial circuits are asymptotically equal, but if s > &, then the size of the test can be
reduced by half.

Noa(m, k. s}~ (41)

Example 5.5. Consider detection of input stuck-at faults in an adder-accumulator
with m input lines. In this case k =5 > m, and the test 7™ with test patterns
fW=(0,...,0), ¥ =(1,...,1) detects all faults, which agrees with Theorem 5.2.

A lower bound on the probability of detection of single input stuck-at faults is
given by (13). One can see that this probability converges to 1 very fast with the
increase of the number N of test patterns (see also Fig. 3).

Let us now briefly consider the problem of detection of faults at output lines.
This problem was solved in [3] for combinational neiworks. It was shown, in
particular, that for detection of all output stuck-at faults (of any multiplicity)

P (m, k,0)=(1-2"""1" for anym. (42)

Moreover, any sequence of tests with N =log, kA + (k) 1s a umversal one for
k — oo, and

N (m, k,0)~ log, k. (43)
Similarly, for output bnidgings of any multiplicity,
k—1
Pa(m, k,0) = [T (1=27%) (for any m). (44)
i=0
It follows from (44) that, when k — oo, any sequence (T ™) of tests such that
N=[2log,k + e(k)] (45)
1s a umiversal one, and
Ny (m, k,0)~2log,k. (46)

It can be easily verified that expressions (42)—(46) remain valid for networks with
memory as well. Moreover, since the primary outputs are the observation points,
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Fig. 3. The probability of detection of single output stuck-at faults in sequential (m, 1, 1)-devices as
a function of a number of test patterns.

any test which detects output faults will also identify them. (For the reader’s
convenience we have summarized all results from Sections 4 and 5 in Table 1.)

6. Detection of a fraction of faults from a given class by universal tests

In previous sections we supposed that in almost all devices 100% of faults from

a given class F are to be detected by universal tests. In this section we shall ]
consider a weaker requirement that in almost all devices only at least (1 — )| F| o
faults are to be detected, where 0 <8 < 0.5 and |F| is the cardinality of F |
(|£]|— o0). In this case we shall use the same universal tests as in the previous
sections. As we shall see below, for any constant 8 > (0 the minimal number of
test patterns N{2)(m, k,s) is not increasing with an increase of m. Let
P{(m, k, 5) be a probability of detection of (1 — B)|F| faults from the set F by
the given test T in a randomly chosen (m, &, 5)-device.

" I

Theorem 6.1. (i) Let F be a set of any input stuck-at or bridging faults with
multiplicity at most 1 (I < ym — 1) in combinational (m, k, 0)-devices. Then for any




229

M. Karpovsky, L. Levitin / Detection of faults in VLSI neiworks by universal tests

Tewmdo Ajesnewoidwise s1e 51591 Fuipuodsonod o],

((+_T—1)y_ T+, T)"BOl—

» ¥F80[ T e ¥301 T

« o “B0] o X80

Aﬁ.ﬂlm - : qIN + ._.,INV mmn;l ¥

wigory ¢ ’ i £ 303 ¢
¢ 4805 7 L HEBoI 7
e 3 <8O . ¥¢30]
e 80| » W4 30
Y
r :qu f ¢ r [=f ¢
A. v.a { *Ro1¢ ?W.ﬁ_ﬁ "{ “801
e ! i I ; |
¥ ¥

*EHwEN.N H*Emma_gm

Aporpd
-Tn Aue 1Yis
sBuidpig inding

Avioeyd
-nrhur AUE Y3rm
ye-yomis nding

Je-3onjs
3[8urs ndu]

Ko d
-y N Ade s
sBurgpiq inding

Ayond
-[[NUT AUE 1M
1e-yonms inding

(00 =2/1)1
150101 e A1

-fidnnu Qs
saurdpriq ndug

(I—wi>y)
} 150U1 1B A1)
-[dnmw g
re-yonys induy

1e-yon1s
afgurs induj

(0 < 5) Atowsw
It $HI0MIBN

{0=1)
JEUOIBUIQ LU )

UonENJNIUIP] UON912(]

suraned 1597 jo raquinu whununu-snoldurise o) punoq raddn

SINBJ JO o SB[

yIomiau Jo adA |

S1[MEy JO UOHBA U PUE Uonoeap JoJ swianed 1593 jo (5 *y ‘w) Py sequinu [pwirunu lof spunog 1addpn

| SLAS



230 M. Karpovsky, L. Levitin / Detection of fauits in VLST netwarks by universal tests

test T such that d (T)z 21+ 1,

BIF]
P (m, k,0)> Y (*‘?')(1 — 2Nk FI=T g —aNki, (47)
- =0
For input stuck-at faults in combinational networks, we have
N (m, k, 0) < 2(1 — (log, B) /) (48)
and, for input bridging in combinational networks, we have
Na(m, ke, 0) < n(m, {1~ (log,B)/k|) (49)

(n(m, d) has been defined in Section 4).
(n) Let F be a set of single input stuck-at faults in sequential (m, k. s)-devices.
Then for a test T, defined by (10),

BIF) |F)
P& (m. k.s)> X |

i=0

£~

)[1 — 2_.':"5""'“&'{2_i +(1 - g—s)z—k)-ﬂ-ﬁﬁ]

+

I

X 27Ok =5 4 (1 — 27o)2 )P (50)
and

NB(m, k,s)< 2[1 —(lﬂgzﬁ)/{k —log,{27°+(1 - 2‘“"‘)2““)}]. (51)

Proof. Denote by A = A{m, k, s) the probability of detection of any given fault
f € F by test T. Then, by definition,

BIF|

Péf(m, k,s)= Z
=)

F

i

RSV (52)

For input stuck-at or bridging faults in ‘combinational devices we have, from
Theorem 3.1,

A=A{m,k,0)=1—-2"*" for any m. (53)

For single mput stuck-at faults in sequential (m, &, s)-devices it follows from
Theorem 3.1 that

A=A(m, k,s)21—2703%k( s 4 (1 —27s)27% (54)

Formulas (45) and (50) now immediately follow from (52) and (53), (54). It
follows from (52) that P{#)(m, k, s)— 1 iff B> i— A for [F|— oo.
Thus, in view of (33), if for a combinational device
aN > —(1/k) log, B, , (55)

then 8>1—A and P#(m, k,s) =1 as |F|—= co. Formulas (48) and (49) now
immediately follow from (55).
For sequential devices, if

N> =2(log,B)/{k —log, {277+ (1 ~279)27%)}, (56)
then, in view of (54), 8>1—A and PB(m, k,5) > 1 as |F| > o0. O

)ﬂ-ﬁ-N
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We note that, if we are applying universal tests 70" where N = N{&(m, k, ),

det
then the probability A of detection of any fault from F does not converge to one

as m— oo, but we have A>1-— 8. (In previous sections we always had
lim,, , A(m, k, s)=1) As we can see from Theorem 6.1, minimum numbers of
test patterns detecting any given fraction 1 — 8 (0 < 8 < 0.5) of faults in almost
al devices do not depend on multiplicity / of faults and for stuck-at faults do not
depend on numbers of input lines m. (As we have seen in previous sections, for
8 =0 minimum numbers of test patterns for detection of input stuck-at faults
depend on m and 1)

Example 6.2. Let us estimate a minimum number of test patterns detecting 99% of
input stuck-at faults in almost all devices. From (48) with 8 = 0.01 we have that at
most 14 test patterns are sufficient for combinational networks (if £ = 7, then two
test patterns are sufficient). For sequential networks at most 12 test patterns will
be sufficient (if k —log,(27 5+ (1 —27")27%)» 7, then two test patterns are
sufficient).
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