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compacted and trace-scheduled code in the shift and divide loops is
readily explained. In each case in the sequential code the conditionat
jump is at the beginning of the loop, with an unconditional jump at
the end back to the beginning. This structure is preserved in the
trace-scheduled code. In the hand-coded version, the conditional
branch is replicated at the end of the loop, thus avoiding the uncon-
ditional branch. We could incorporate such a specialized optimization
into our machine compaction procedure. More ambitiously, we could
develop 2 procedure to unrol (replicate) a loop, schedule the unrolled
loop (possibly moving an operation (rom one iteration to another),
and then reroll the loop (identifying repeating code segments) [4].
Such a procedure should be able 10 perform the optimization just
Cited.

The difference in the initialization segment of the floating add is
" more complex. Al one point this code forks, with one path inter-
changing two registers, the other not doing so. The hand-compacted
code inserts nto the latter path two successive interchanges {(an
identity) and then moves the interchange now shared by both paths
to before the fork. We do not see how this transformation could be
read:ly incorporated 1nto an automatic compacter.

We are encouraged that, except for this last instance, the trace
scheduler performs or can be readily extended (o perform as well as
a skilled microprogrammer. We look forward to more extensive tests
of trace scheduling and i particular to evaluations of the space-saving
procedures suggested by Fisher.
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Denoie by Pr(T, m, k) the fraction of alf devices with a inputs and & owtpets
such that all fawits from » set F are detected by the test T. We say that T is

2 umiversal test detecting 2l faults from Fif lim P(T, m. k}= L

In this corvespondence we consider stuck-at and bridging faults t input of
output bmes. For these faults we construct corresponding umiversal tests, esti-
mate probabilities of fault detection, and present lower and upper bommds for
minimumn nambers of test patieras im amsiversal tests. Asymptotic optimality
of the suggested universal tests is proved. We also present practical examples
of devices and tests which illustrate the wsefulness of the estimates on minimum
rumbers of test patierss.

For the universal tests T proposed it this correspondence, probabilities Pr( T,
m, k) of fault detection converge to 1 very fast. This implies that these tests
may be efficient either as a first step im a testing procedare or in the case when
2 broad spectram of complex YLSI devices kas to be tested.

fndex Terms— Asymptotically optimal tests. fault detection, stuck-at and
bridging faults, universal tests, upper and lower bowmds for mamber of tests.

1. INTRODUCTION

With the advent of VLSI technology, the cost of 1esting computer
hardware is, in many cases, higher than the cost of development and
manufacturmg. It )s well known that even in the case of single stuck-at
fauits, the problem of 1est generation is NP-hard [1], [2].

In this correspondence, we shall explore another approach to test
generation, based on the idea of universaf tests, detecting all faults
from the given class for almost all devices. To define formally uni-
versal tests fet us consider the set of all devices (with or withoud
memory) with » input and & output binary lines. We suppose that
cach one of these devices has the same probability of being selected
for testing. (If a device has a memory, we suppose that at the moment
we apply cach test pattern the device may be in each one of its internal
states with the same probability.}

Let T < {0, 1} and Pe(T, m, k) is a probability of detection of all
faults from the given class F by the test 7. We shall say that T is the
universal test, detecting faults from the class F for almosr afl devices,

iff im Pg(T,m, k) =1 for any {not necessarily going to =) k. For

all universal tests which we shall describe below, Pr(T., m, k) goes
to 1 very fast, and universal tests may be very efficient either as & first
siep in testing procedure or when we have to test a broad spectrum
of devices.

We shall apply, in this correspondence, the universal testing ap-
proach to detection of faults at input/output pins since in many cases
interconnections between chips are less reliable than chips themselfves
[3]-16].

In view of this, we consider the following five classes of faults. 1)
Input stuck-af faults. when each of the input lines may be stuck-at-0
or stuck-at-1. 2) Output stuck-at faults, when any number of output
lines may be stuck. and each line may be stuck-at-0 or stuck-at-1. 3)
Input bridgings, whenany two input lines may be bridged. Two types
of bridgings have been considered, namely, the AND-type and the
OR-type. The AND and OR types of bridgings mean that two lines
are short circuited to form AND and OR logical operations [4]. [7].
Since for any given technology only one type of bridgings may appear
in the device, we consider onty AND-1ype bridgings. (Of course, all
results may be easily reformulated also, for the case of OR-type
bridgimgs.} 4) Output bridgings. In this case we consider all bridgings
beiween any number of output hines. 5) Feedback bridgings. These
are bridgings between one imput and one output line. As a result of
these bridgings, a combinational network may behave as a sequential
one; for example, it may oscillate or have an asynchronous behavior
(3], [4]. In this correspondence we are not using oscillation and
asynchronous behavior for detection of feedback bridgings.
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Far each one of these five classes of faults, and for the union of all
five classes, we construct universal tests, estimate probabilities of error
detection, and present lower Ne(m, k) and upper Neim. k) bounds
for mimmal numbers of test patterns. Upper bounds Ng(m, k) are
construciive, and we describe universal tests such that Ne(m, k) =
| T| where | T| is the cardinality of T (a number of test patterns}).

Definition: i} Test T is said to be optimal iff Ne(m, k) = Ne(m,
k). n) Test T is asympiotically optimal iff

lim

= N ~~ N :
o e K) lorNp(m, k)~ Ng(m, k)lorany k. (1)

{(a({m) = b{m) ff hm :f:; = lialm) ~b{mhiff alm) £ b(m)

and b(m)} < a(m).)

All tests developed in this correspondence are optimal or asymptoti-
cally optimal.

It should be noted that sometimes results which are true for almost
all cases have limited applications since in real life we are dealing with
a timy fraction of cases where these results are not valid.

As we shall see below, this is not the case when we are estimating
minimal rumbers of test patterns for almost ali devices. For this case,
we shall present simple examples of devices satisfying these estima-
tions. For any device with m input lines and any test T < {0, 1}* with
N = | T| test patterns, we denote by (T) the {N X m) test matrix with
rows of { T') corresponding to test patterns, and columns corresponding
10 input lines.

Let C be a bimary error-correcting code, containing m codewords,
with the Hammung distance 4. We denote by T the test, such that
columns of { T} are different codewords of C. In this case we shali
say that d(T¢) = d. {We are considering codes without repetition.
1.£.. all columns in 2 generating matrix [8] for C are different.) Tests
T will be used as universal tests for detection of bridging faults. We
shall also use another type of tests which we denote by T%, T, and

o-y where 75 = [07 1071 010m=2 ... Qi=1]10m—i} T = | m,

Oir—t 1012 .. 1101w Ty = Thu T (wherefﬂ m, 0/

= “‘J; 4= 151] Tests T%. T, and Ti_, will be used as the
universal tests for the detection of stuck-at faults and feedback
bridgings.

The following notations will be used throughout this correspon-
dence.

Ne(lm, &) — minimal number of test patterns for detection of
ail faults from the class F in aimost al! devices
with m input and & output lines:

ge{T. k) = probability of not detecting any fault from F by
the tes1 T

Pe(T.m. k) — probability of detecting alt faults from F by the
test T,

€{m) = | ;
log- log> m

J
k = ~
et log- tog- &'
[a] — smaliest integer greater than or equal {0 4.

II. DETECTION OF INPUT STUCK-AT FALLTS

Denote:

Nisim, K = a minimal number of test patierns for de-
tecting single input stuck-at faults;

qis( T, k) — a probability of not detecting any given
input stuck-at fault by the 1est T

af'(T)ay(T))  — aminimal number of zeros (ones) in the jth

column of (T).
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Theorem 1 (Lower Bound): For any k
Nis(m, k,) 2 2 ’“’_EE_"E] {2)

Proof: For a minimal west T with | T| = &, denote
aU{ T} = min (ef"(T), a¥(T)) (=1,-.m). {3)

Then for every je{l,---, m} there exists a stuck-at fault at the jth
input line such that a probability of not detecting this fault by T is
2-aUHTH%_ Hence, Pi1g(T, m, k) < (1 — 2- A where A(T) =

max g)(T). Thus, Pis(T, m, k) — 1 only if A(T) 2 [lﬂ—ﬁfﬂ} Since
4

for every jeil, -, mlaUNT) < 0.5]T|, we have Nyg(m, k) = | T|

logs m|
e Bl
= 2 l |

Lemma 1: Any test T such that every column of (7} contains at

logs m
k

l¢ast a(T) zeros and at least a{T) ones where a(7T} = (1+

€ [m}}] detects all input stuck-at faults in aimost all devices with m

input and k& output lines.
Proof: We have forany & qys( 7T, k) < 2—9UT¥ and since there
are 2m possible input stuck-at faults

lim Pis(T,m, k) = Hm (] — 2-a(Tikyim

L e mM— o

> Iim (] _mw{|+eim}]]2m = 1. {4}
Pyt = oL
Theorem 2:1) Forany k
logs m
k

2 []""g? "’] < Niglm. k) < 2 [

" (+ E(m)}}- {5)

i) The test Th_, with i = I'mng (1+ € {m)}] — 1 is the universal

asymptotically optimal test for mput stuck-at faults.
Proof: 1) The lower bound follows from Theorem ]. i1) Take

T = :j—l- = !{]m‘ 1“"’, - {}:’-]_lﬂm—fi U “m' [”m-]‘

1= 101m=l where | = E%ﬂ (1+ E{m})} — 1. Then every column

logs m loga m

R
k t

(1 + E{m]}] zeros and

of {T§_)) contains {

€ {m}}] ones and, by Lemma 1, Tj_, detects all input stuck-at faults.

Thus, Nys(m. k) < |Tho,| = 2( + 1) = 2 [mg; Z 1+ E(m]]].
Corollary 1 1T k — loga m — =, then Nyg(m, k) = 2 {6)

Proof: Take T = Th_, with i = 0. Then from (4) with g(7T) =
|
lim Pig(T9-\.m. k} 2 lim (1 —2-k)m =, (7)
=t m—= =
We note that, as it follows from (4), P3s{Th-,. m. k) is converging
to | very fast. Forexample,form =4 =32andi =0, wehave T =
To- =102, 1334, |78 [ = 2.a(T} = 1 and Pis(7-,.32,32) 2 1 —
9-26 |
Example I: Let us consider an r bit combinationai adder. For this
case.m=2nk=n+1k—logasm~n—logsn— = and,in ac-
cordance with Corollary 1, T = T3-, = {027, 127} detects all input
stuck-at faults in »# bit combinational adders,
We note also that a similar approach can be used for detection of
input stuck-a1 faults of any given multiplicity /. In this case we have
for the minimal number Nys(m, k) of test patterns




196

{8)

N[S”:'{m. k} bl [LDEE.E]

1Il. DETECTION OF QUTPUT STUCK-AT FAULTS

Denote: Nos{m, k) — a minimal number of test patterns for de-
tection of all output stuck-at faults of any multiphicity; Pos( 7, m,
k y — a probability of detection of all output stuck-at faits by the test

T.
Theorem 3: If k ~= o, then for any m,

[logs kT = Noslm, k) £ [(1 + e(k)) logzk] (9)

and any test T with |T] = [(1 + €(k)) log; k] is asymptotically
optimal for outpu! stuck-at faulis.

Proof: For a given T(| T| = N) denote by (f(T)) the matrix with
elements f{ T); = fi(11), where_,{;(!”f'}, s the signal at the jth output
if an input is tY!. Then, to detect al ouvtput stuck-at faults, it is nec-
essary and sufficient that in every column of {f{r)) there is at least
one "1" and one *0.” Thus,

Pos(T,m k)= (]1—22-N)k for any m. {i0)

Theorem 3 follows from (10) since

_ o I, ifNZT1+ e(k))log: k];
- . Myk =
i‘f‘m (i=2-277) <1 ifN =TJlogs k1.

For example, if X = 32, then for any m and any 7 with |T| = 16
Pos{T,m, 32y =1 =210

1¥V. DETECTION OF INPUT BRIDGINGS

Denote: Nipi(m, k) — a minimal number of test patterns for de-
tection of input bridgings: ¢ip(7, K} — a probability of not detecting
any given input bridging by the test T, Pyg{ T, m, k) — a probability
of detecting all input bridgings by the test T, d{7) — a minimal
Hamming distance between columns of (T). Let #({S. 4) be a length
of the shortest binary code without repetition with S codewords and
distance 4. (The upper and lower bounds for n(S, &) are well known
[8, ch. 17, §5].)

Lemma 2: 1T d(TYk = 2 logy m — =, (11)
then 7 detects all input bridgings and
Niplm, k) < n{m, d(T)). (12)

Proof- Since there are (?) different input bridgings we have
irom(11)

(13)

hm Pig(T.m. k)< lIim (1 ~ 2=k F = ],
fH—=m

To estimate n{m, d{ T}) we can use the Yarshamov-0ilbert bound
[8]. Thus, Vig(m. k} is asymptotically iess or equal than the minimal

M —

N such that NV [1 - H» [Efvﬁ]) z loga m
fnrﬂ;l < 0.5 where Hy{a) = =alog:a — (1 — a) loga (1 — a).
(14)
Theorem 4: If kK — =, then N\p{m, k) ~ log, m. (15)

Proof: 1) If T detects all input bridgings, then all columns of (T)
are different

and

Nm{m, k) b rlﬂgz m'l

(16)
i) Take d(T) = t:z + e(n) '“g; 2} Then (11) is satisfied, and

with length N ~ logy; m and |C| = m since in

there exists a code
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this case 22 — 0 for k — . 8]. Then by Lemma 2, T = Tc

N
detects all input bridgings and Nig(m, k) < | T| ~ logz m.

Thus, for input bridgings as & — = any Tsuchthatd(7) 2 |(Z +

&(m)) iﬂgim
take T = T¢ where C is a code meeting the Yarshamov-Gilbert
bound [8]. If X = €(m1) log> m, then we can choose as Ca BCH code
[8] correcting [log; log; m] errors. In this case (T -}k — 2-log-m
> {2logslogzm+ 1)e(m)logsm — Hogym = €(m)logy m =+ o,
and (!1) is satisfied.

Coroflary 2: If k 2 (2 + €(m)) logy m, then Nygim, k) = [log,
m1, and the test T, such that all columns of {T,) are different, is
optimal.

Proof: For the test T, we have |T,| = [log- m]. d(T|) = 1.
diT Yk — 2:loga m 2 €{m) log> m — =, and Coroliary 2 foliows
from Lemma 2 and (16).

Example 2: For an n bit multiplier we have m = & = 2n and, by
Corotlary 2, T, detects all input bridgings. The minimal number of
test patterns to detect input bridgings in n bit multipliers is [log, mt]
=1+ [lng; H'].

If m, k, and the lower bound Pyg for Pig{m, k) (“fault coverage™)
are given, then to construct the best test 7g, we first compute a
minimal & such that

and | T| ~ log; m is asymptotically optimal. We can

(1 =279K)@) 2 Pyp, (17)

then construct the shortest C such that [C| 2 m and the distance of
Cisat least 4. For Tg. columns of ( Tg) are different codewords of
C. We note also, that Mg = | Tig| increases when m increases or &
decreases for any given Pp.

Y. DETECTION OF QUTPUT BRIDGINGS

Denote: Nogim, k) — a minimal number of test patterns for the
detection of all output bridgings: Pog({T. m, k) — a probability of
detection of all output bridgings by the test T,

Theorem 5: Fork — o andanym [2log: k) £ Nog{m, k) = [(2
+ e{k)) logs k. (18)

and any test T such that |T| = [{2 + €(k)) log> k] 1is asymptotically
optimal {or the detection of output bridgings.

Proof: Todetect all output bridgings it is necessary and sufficient
that all columns in (f{T)) are different (f(T);; = f;(+1")). Thus. | T}
= N 2 [log: k1 and for any m

Pos(T.m. k)= T] (I = r2=M). (19)
r=0

k=1
Theorem 5 follows now from (19) since lim J] (1 — r2-%) =

, INZQ+e(k)logak: T
<1, ifN<[2log k).
For example. for m = k = 32 and NV = 20 we have from (19) for any
T with {T| = 20

., .
PoplT.32,32) = h (] —r2=30) 21 =211

r=(} .

Corollary 3: For k — = and any m
Nog{m, k)~ 2logs k.

Froof: Corollary 3 fellows immediately from Theorem 5.

(20)

VI. DETECTION OF FEEDBACK BRIDGINGS

The AND-bridging between input x; and output y; is detected by
a t:ﬁlpﬂ“.ﬂl'nf = {rl'l MY P 'rm} ifff; = ﬂﬂnd}}'(’h T T If-hﬁt
Ii—+h‘ Ty rm] = 1-

Denote: Npp{m, k) — a minimal number of test patterns for de-
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tecting feedback bridgings; grp(7T, k) — a probability that any given
feedback bridging 1s not detected by the test T Pep(T. m. k) — 2
probability of detecting allf feedback bridgings by T; ao{ T) and a(T)
— minimal numbers of zeros and ones in columns of (7).

Theorem 6 (Lower Bound): Foranymand k — =

Neg(m, k) 2 [logs k). (21)

Proof: If fi(t) = 1;, then the bridging between x; and y; is not

detected by 1. If T is a minimal test with |T| = N, then for any &
gea(T. k) 2 2~ and for any m

Lm Ppp(T, m, k) < hm (1 — 2-N), (22)

ko

Thus, Pre(T,m, k)= 1 only if N = Npplm, k) > log> k.
Theorem7:Hm 2 [(1 + (k) log; k1and &k — =, then (23)
[logz k] £ Neg(m, k) < [(1 4+ e(k}) loga k]. (24)

Proof: Take T = Ty withi = [{1 + €(k)) loga k] — 1. Then
every coiumn and row of (Ty) contains at most one 1. If there exists
t, 7€ Tysuch that f;{¢) = f;(7} = 1, then feedback bridgings between
any input and y; are detected by T;,. The probability of this is at least
I —(N+ 1)27¥ Thus, Pea(Th. m, k) = (1 —~ (N + 1)2-N)* and

k—

z Elm (1 =(14+ e(k)) (logs k + Nk~U+elOhk = |

It follows from Theorem 7, that fork — @ and m = [(I + €{k))
logs k] the test Thwith i = (1 + €(k)) log; k] — 1 is asymptotically
optimal.

Let us estimate the probabihlity of detection of feedback bridgings
form =k = 32.Take T = T2, then ¥ = 21 and from (25) Ppp( T3
32,3221 =21,

We note that Theorems 6 and 7 remain valid also for OR-type
bridgings. To prove this we only have to replace Th by T4

khm Pep{Th m. k) 2 Hm () — (N+ 1)2-N)4
(25)

VII. DETECTION OF ALL INPUT/OUTPUT STUCK-AT AND
BRIDGING FAULTS

In this section we estimate mimmal numbers N(m, k) of test pat-
terns for the detection of all input/output, stuck-at, and bridging
faults and construct universal tests for these faults. As before we
suppose that £k — = and (23) 15 satisfied.

Theorem 8.

max(flogz m]. [2log; k) 5 Nim, k) £ [(1 + €(k)) logz &]
lﬂgz ’"]] [og, k) + 1. (26)

Proof: The lower bound follows from {16) and (20). Let C be

log; m
k

least [logz kTand |C] = m + 2. Then C contains at most one vector

+ max{n(m + 2, [2 {1+ €(m))

a linear code with the distance d = [2{1 + e{m)) ] » length at

v with a number of zeros less than ({1 + €{m)) Iug; m]. Let columns

of (T¢) be codewords of C which are not all zeros and ¢. Then

|Tc] = max(n{m + 2, [2{1 + e(m)) log; ml ,
[iog: k'l). and d{Te)=d. (27)

Take T = ToTe where § = [{1 + €(k)) logs k], then ao{7) 2

k K

by Lemma 1, 7 detects all input stuck-at faults. Since |T| > i = [(1
+ €(k)) log; 41, by Theorem 3, T also detects all output stuck-at

[’”53 o+ etm):adm 2 dTo) 2 ['“3”" (1+ E(m})l and,
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TABLE 1
MiINIMAL NUMBERS OF TEST PATTERNS FOR DETECTION OF ALL
INPUT/OUTPUT STUCK-AT AND BRIDGING FAULTS WITH A
PROBABILITY AT LEAST | — 2710 {FOR COMPUTATIONS IN TABLE |
THE TABLES OF THE BEST CODES FROM [8B, APPENDIX A, §1] HAVE

BEEN USED.)

k\ m 30 62 126 254 510
1 54 58 65 73 T4

2 37 42 43 50 52

4 30 32 33 37 I8

3 28 29 30 31 32
b6 26 27 28 29 30
32 26 27 28 29 30
64 27 28 29 30 31
128 29 30 31 32 33
256 30 31 32 33 4
512 3 32 33 34 35

faults. Since d( T )k — 2log; m — o |T| — 2log, k — « and ao{ T)
2 [(1 + €(k)) loga k7, all input, output, and feedback bridgings are
also detected by T. From (27) we have Nim, k)Y = {T]| = |Tc| +i

log: "‘] [log; ﬂ] FT0 +

4+ 1 = max (n{m + 2, IZ[! + c(m))

e(k)) logs k1+ 1.

Corollary 4:
log ifr_ii;_b 0
k) ~{ S
Nim. k) lz log: k, otherwise. (28)

Proof: Corollary 4 follows from Theorem 8 in view of [8]
n (m + 2, [2(1 + e{m)) lggf_m]} ~ logs m

Thus, T=Th v T withi = [(1 + €{k)) logs k] is asymptotically
optimal for the detection of all input /output stuck-at and bridging

faults. In the case lim -:—l = 0, we can use the following result.
m—xz

Corollary 5: 1Tk 2 (2 + e(m)) logym].then T = T u T\, where
i =[(}+ €(k))logs k1, all columns of (T} are different and not
equal to 0, is asymptotically optimal for the detection of all input/
output stuck-at and bridging faults. For this test | T} = [(1 + e(k)})
logo k1 + [loga{m + D]+ 1.

Proof: We can use the same proof as the proof of Theorem 8,
taking into account thatinthiscase (T 2 d(T))=landa;(T) =
Lao(D) 2§ =[(1 + €{k)) loga 1.

We note that for such important (from a practical point of view)
devices as shifters, counters with the parallel load, adders, subtractors,
multipliers, etc., we have & = rm (0.5 £ 7 £ 1), and minimal numbers
of test patterns for the detection of input /output stuck-at and bridging
faults are between log; k and 2 logs &k [3]. [4], which illustrate the
practical usefulness of Theorem 8 and Corollaries 4 and 5.

Numbers of test patterns for detection of input /output faults with
a probability at least  — 2710 are given in Tabie 1.
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Good Controllability and Observability Do Not Guarantee Good
Testability

JACOB SAVIR

Abstract—In this paper we show that good controfiability and observability
do not guarantee good testability. In fact, one can easily find examples of faults
that are difficult or impossible to detect, aithowgh both the controllability and
observability Nigures are good.

Index Terms—Controllability, determimistic testing, observability. randoms
testing, testabitity.

INTRODUCTION

The problem of analyzing the testability of a digital circuit has long
been recognized to be an important one. With the levels of integration
existing today, the cost of testing and diagnosis have become so large.,
that they are a significant part of the cost of the produci. In order 1o
reduce this cost it is crucial to have highly testable circuits. Since test
generation and fault simulation consume a lot of computer time in
present day densities, it is worthwhile 1o be able to predict whether
or not the testing task 1s going to be casy.

A few testability measures and programs that implement them
have been reported to datc F11-[5]. The limitations of these measures
are:

1} The c:antrnllablht}', observability, and testability measures are
not an accurate measure to the “‘ease of testing.”

2} They fail 10 report testability problems in the presence of rec-
cnverging fanout.

3} The testability measures are defined such that “*good control-
lability and observability figures usually imply good testability,”
which is not true in many cases.

4) Because the measures are not a true reflection of the ease of
testing, they may guide the test designer to introduce hardware real
estate {to enhance testability) in the wrong place.

In this paper we elaborate on these issues. The paper should not
be regarded as a “new testability measure,” but rather as an atiempt
to point out the limitations of the existing methods, and the kind of
emphasis necessary from the future ones to come.

The discussion is restricted to combinational circuits and stuck-
at-faults.

I. DEFINITIONS AND PROPERTIES

Let C be a combinational circuit with » inputs, x1, x2," -, x,, and
moutputs, £, Fa,- - Fp. Let X = (x). X3," -, Xp). Let g(x) be a
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hine in the circuit, We denote by ¢g/0 (g/1) the fault g stuck-at-zero
{g stuck-at-one).

The controllabihty of a line in the circuit is a measure of how easy
it is to set the line to a given value. Similarly, the observability of a
line 1s a measure of how easy it is to observe its value. We define the
controllability and observability of a fault in the fulluwing way.

Definition 1. The controllability of a fault gfi, i € {0, 1} is the
fraction of input vectors that will set the value of that line to 2. In other
words, the controllability of a fault g/ is the probability that an input
picked at random will set the value of line g to ..

Definition 2: The observability of a fault gfi, i € 10, 1}, is the
fraction of input vectors that will propagate the effect of this fault
to a primary output. In other words, the observability of a fault is the
probability that an input picked at random will propapate the effect
of this fault to a primary output.

The input vectors that detect the fault g/0 can be obtained by
solving the Boolean equation

(%) 3 -é-i = {,
J=1

and the mput vectors that detect the fauh g/1 can be obtained by
solving the equation

(1)

__{ _=

g{x} J§1 ag !

where the summation symbol means the Boolean sum (OR operation).

Thus, according to definitions } and 2, the controllability of the fault

£/0, e{g/0), 18 the fraction of input combinations that yield g(x) =

1, and the controllability of the fault g/1, c{g/1). is the fraction of

input vectors that yield g{x) = 1. Similarly, the observability ¢ of

either fault (g/0, or g/1) is the fraction of the input vectors that
yield

(2)

o OF,

.EI dg

[t is worth while to note that the notion of the syndrome [6] of a

function F, denoted by S(F), is exactly the fraction of the input

vectors that yield F = 1. Thus, we can take advantage of syndrome

relations to compute controllability and observability figures. In
particular, the following relations hold:

(3)

c(g/0) = 5(g(x)). {4}
clg/l) = S{g(x)). {3)

and
o{g/0) = olg/t) = Lz: ﬂr-'-) ®)

Definition 3: The testability of a fault g/i, i € {0, 1}1is the fraction
of the input vectors that detecl the fault.

In other words, the testability of a fault 1s the probabihty that an
input picked at random will detect the fault.

According to Defmition 3 and the notion of the syndrome, we can
relate the testabilities 1(g/0) and r{g/1) of the faults g/0 and g/1
to the following syndrome relations:

- & oF;

1(g/0) S[ g—-’-ag] (7)
1) = 9

He/!) = S[g) & ag] (8)

The definitions listed above, and the properties of the syndrome,
further imply the following relations between controllability, obser-
vability, and testability of a fault:

Property 1.

0= clghi),olg/iy= 1, fori el0, 1) (9)
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