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Abstract

We consider methods for testing (error detection, correction, and
location}in multiple-valued computations. These methods are based on
systems of linear equality and imequality checks and analysis of the
corresponding syndromes. The error detecting/correcting/locating

capabilities of these checks are described.
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Testing by Equality Checks

Suppose we are given a device or a program computing f(z) where
z and f{z) are represented in the p-ary form,
m-1

(z = L z(i) P , b= 2, z(l) £{0,...,p-1}, the case p = 10
i=0 -

is important from the practical point of view).

Let G be the group of all p-ary m-vectors with respect to component-
wige addition mod P.

An error e(z) is said to be present in a device or a program computing
f(z) if for the latter f(z) + e(2) is computed instead of f£(Z). As in
[1-5], by the multiplicity of an error e(z), we mean the numbers of non-
zero values for the function e(z).

To detect errors, one can compute £{z) for all zEG:{O,l,...,ﬁm—l},

and then verify that Z £(z) is equal to the precomputed constant C{6].
Z2EG

This method is very time-consuming in most cases. The generalization of
this approach,which may result in considerable decrease in testing time,

have been described in [1-5]. In this case linear equality checks

H

3 f(z & 1)

TeT.
i

Ci (i=1,...N) for all zeG (1)

have been used. In (1) T is a subgroup in G, & stands for the componentwise

addition mod p of p-ary vectors z and TeG, and Ci is a precomputed constant.




Methods for the constructing of optimal equality checks (1) have
been described in [1,5]. These methods are based on Fourier transforms

over G. {Chrestenson transforms [5,7]),

Example 1. Let x = (R(O),..., x(“'lll y = (y(O),...,y(nﬂl)) (m=2n)

-

0 ¢h n-1 (1)_(3)
$e{0,...,p-1} and £(x,y) = L , ags Xy (hij £{0,...,p-1}) .
1,17

-

Then [2], the following check can be used for the testing of a device or program

computing the p-ary quadratic form (2)

p-1 .. . . . i 2, .2
z f (x® (i,i,0+.,1)), v & (3,3,-..,3)) = TP » (p-1) A for all x,y
i,j=0 |
n~1
where A = L ai ]
i,j=0 **J
d i - m
In the case of polynomial computations [4,5] f(z)=Qd(z)=E a:2", 2€{0,ees,p -1
i=0

linear checks (1) may be constructed by p-ary error correcting codes. For

polynomial computations the optimal check set T in (1) with the minimal

cardinality |T| is a code vi(m,d+l) which is dual to the maximal p-ary error-

correcting code with the length of codewords m and the Hamming distance d+l.

Error detection or error correction for linear equality checks (1) is

implemented by the analysis ¢of the syndrome

(z) = (Sie) (Z)suue, Sie) (z}) where
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X (f{(z2 8 1T) +e (z® 1)) - Ci = % e(z & T).

TETi TETi

(2)

(3)
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(4)
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(By error correction we mean the computation of an error e using the previously

S(E))_

computed syndrome
(e)

Two methods of error detection/correction by the analysis of the syndrome S

have been_cunsidergd,_qamely memoryless and memory-aided decoding.

For memoryless decoding error detection/correction for any given 2&£G is
implemented by S(E)(z); for memory-aided decoding we first compute S(E)(z)
for all zeG and then detect or c;rrect errors. The following results [2,5]
describe an error—-detecting and an error-correcting capébility of systems of
N orthogonal equality checks. (The checks (1) are orthogonal if TinTj = 0
for i#i)

(i) For memoryless decodimg: all errors with multiplicity at most N are
detected, and all those with multiplicity at most [g] are corrected; there
exist érrors with multiplicity N+l and [g}+1 which are not detected and not
corrected respectively-([g} is the greatest integer less or equal %ﬁ.

(ii) For memory-aided decoding: all errors with multiplicity at most ZN-I
are detected, and all those with multiplicity at most ZH_I-I are corrected;
there exist errors with multiplicity ZH and ZH-l, which are not detected or
corrected respectively.

The previous results illustrate a good error detecting/correcting capability
of equality checks.

Complexities and error detecting/correcting capabilities increase exponentially

on rransition from memoryless to memory-aided decoding.




6 Il1. Testing by Inequality Checks
| Equality checks considered in Section I may be effectively used in
the case where f(z) is an ianteger for every zE{O,l,...,pm;l} and very
few nnninteger‘functiuns have nontrivial checks of this type,
In this sectiﬁﬁ,'we shéll generalize fhe linear checks methods to
the case of noninteger ﬁwary computations. We shall use for error detection
linear inequality checks
| £ f(z®#71) -C| €€ for all z € G, (5)
T€T
where T is a subgroup in G and € =2 0 is a small constant (Checks (1) is a
special case of (5) with £ = 0).
To construct an optimal inequality check (5) minimizing the testing time
(:;} |T| we shall use the techniques of least-absolute—error polynomial approximation
for £(z) and our previous result on equality checks for polynomials (see Section I).
d

Let Qd (z) = & aizl be a least-absolute-error approximation for £(z),
i=0

f{z) = Qd (z) +-ﬂd(z) and }ﬂd (z)]i ﬂd for all zeG. Using the egquality check

for Qd(z) with T = v* (m,d+]l) (see Section I) we have

| T £(z & T)-¢|=| [T | Qu (z®# T -C+T | b, (z ® T)|=
TEV (m,d+1) TEV (m, d+1) eV (m,d+1)

= |z A, (z® T <A, | V' (mal)| | (6)
TEVi(m,d+l) d d

C
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Thus, we have from (5), (6) that the p-ary code VL (m,d+1), which is
dual to the maximal error-correcting code with the Hamming distance d+1,

is the check set for f(z) if

-

A, | vV o(m,dHl)| s e (7)

We note, that for the great variety of amalytical functions f(z)
A |Hl (m,d+1)| decreases very rapidly with the increase of the degree d

(d £ m) of an approximating polynomial Qd {(z) for all p 2z Z.

The values of |?l (m,d+1} | are well known in the coding theory {9]. 1If

Qd(z) is an interpolating polynomial such that

Q, G 1d = @ 1d ) (1= 0,...,0), then,
d

ﬂd < ((d+ l)!)_l" i] p_n —id_l| max I f(d+1) (p-nz)| S (8)
. 2EG
i=0

where f(d+l) is d+l-th derivative of £,

Example 2 Suppose we have a ternary memory (p = 3) with m = 13 ternary address

13

lines, where in a cell with an address z (z & {0,1,...,37 = 1}) the value

f(z) is stored and

3—13 -0.5

f(z) = { z ) Sin(% (3"13 z)_U'S). (9)

Let us construct an optimal inequality check (5) for this memory with

=5 x 10 -,




—6—-

The function f£(z) can be approximated by the polynomial Q2 (z) of

degree two [ 81]:

P2 (y) =70.07287 y2 - 0.64338- v + 1.37064; (10)
Max | ﬁz (y)] = ﬁz < 14 x 1{J'l_5 where y = 3_133 ’
y .

Choose the perfect ternary (13,10) Hamming code with the distance

319] asV (m,d+l) = V(13,3); then, [vt(13,3)} = 33 and

5, | v (13,3)] =14 x 107 x 30 <€ =5x 107,

( r- Thits, the dual code te the perfect ternmary (13, 10} Hamming code is an

optimal check set T for this memory.

For the constant C in (5) we have in this case

I1TI. Error-Detecting and Error-Locating Capabilities of Tnequality Checks

Using systems of inequality checks

|z f(z & 1) - C, | =€ (1 =1,...,N) | (11)

TET,.
L

we cannot correct errors, but errors can be located in this case.

For an error e{z) by error location we mean the computation of the error

8 locator 2(z)
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Fu= -

(12)
\

°f N orthogonai (Tin Tj = 0 i#4)

inequality checks (11) we shall use the binary Syndrone

S(E) (2) *(Sfe) (z), .oy Séej (z)) where

('E-.) 0, if |z (f (z 8 1) 4 e(z & 1)) - C; | =g
S (z) = TET

i i

(13)
1, Otherwigea » (i = 1 N)

uality checke
(i)  For memoryless decoding .
all errorsg with multlpllelty at most N are detected, ang all those with
multlpllelty at mogr [gj are locatred there exigt errors with multlpllelty
N+1 and Eg] + 1 which are not detected and net leeeted, respectively.
(ii) For memory-aided decoding
all errors with multipllelty at most ZN;I are deteeted, and all thoge with
multlplleity a2t most N are located: there exigt €rrors with multlpllelty
2N and N+1 which are not detected and not located
The errpr-

errer-leeeting Capability of

P .
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\_ two with this transition.
For the important from the practical point of view case of two checks
we have: (i) all single and double errors are detected and all single

errors are located by memoryless decoding; (ii) all single, double, and

triple errors are detected and all single and double errors are located by

memory—-aided decoding.
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