Functional testing of computer hardware and

data-transmission channels based on
minimising the magnitude of undetected errors

Prof. N.S. Goel, Ph.D., and Prof. G. Karpovsky, Ph.D., Mem.|.E.E.E.

Indexing terms: Digital computers, Errors and error analysis

Abstract: The paper introduces a criterion for test generation based on minimising the expected magnitude of
undetected errors. This criterion is used to develop a best strategy for testing, using the linear checks
approach. The detailed analysis is carried out for single unidirectional and bidirectional errors and for
multiple unidirectional errors. Specific results concerning the efficiency of the approach are given for basic
arithmetical and logical instructions, This approach may be useful in the field testing of hardware which
carries out data manipulation and in which small numerical errors can be tolerated; it may also be useful for

testing digital transmission channels.

1 Introduction

With the advent of VLSI and the corresponding drastic
increase in the density of gates on a chip, high-level functional
testing is one of the most viable approaches to the testing of
computer hardware, Two well known methods of functional
testing are signature analysis [1] and syndrome check sums
[2] . However, these methods have severe practical limitations,
mainly owing to the considerable testing time and the difficulty
in estimating the fault coverage.

Over the last few years, one of the authors [3—8} has
developed another approach to the problem of high-level
functional testing which, in many cases, gives better error-
detecting andfor errorlocating capability and, in general,
requires less testing time. This approach provides a method for
computing what are called ‘linear check test sets’.

The approach is based on partitioning the set of all 2"
inputs into blocks (test sets), such that under fault-free con-
ditions, the sumn of the outputs for all inputs within a test set
is the same constant C for every test set. The check as to
whether this is indeed the case constitutes the error-detection
method. Using several partitions, one can locate or even
correct errors. These partitions depend, of course, on the
function implemented by the device under the test.

Denote by f(x), the output corresponding to the input
dgnal x =(x,,..., x,) {x;€{0, 1}). For example, f(x} may

be the data stored in a cell with the address x = (x1,...,X).
" Let & be the group of all binary n-vectors with respect to
the operation ® of componentwise addition mod 2. The
method of error detection is then based on verification of a
linear equality check

Y fleer)—C = 0 foreverytei0,1,...,2" —1} (1)
€T

where T is a ‘check’ subgmup'in G, teT={ter|reT}is a
check set and C is a constant {(we are using the same notation
for a binary vector and its decimal equivalent).

For example, for a multiplier f(x)=f(y, z) = y2(y,ze
{ﬂ, L2 — 1; 2r=n}) [4], T = {[}3", {}"1?‘, Irﬂr, llr} (ﬂi=
a. i .a,ae{0, 1)), and we have the following check:

yz+yz+yz+yz = (27— 1)
where 7=y @ 17 is the componentwise negation of a binary
vector y.

Paper 1766E, first received 1st July and in revised form 25th November
1981,

The authors are with the School of Advanced Technology, State
University of New York, Binghamton, NY 13901, USA

IEE PROC., Vol. 129, Pt. E, No. 5, SEPTEMBER 1952

An optimal check set for the given function f(x) is the one
which minimises the cardinality |T| of T. Methods for con-
structing check sets with the minimal cardinality and deter-
mining a constant C for a given function f{x), implemented by
a device under the test, are given in References 3 to 6.

It should be noted that, when T is chosen to be &, the
check (eqn. 1) becomes the well known syndrome sum check
[1].

In the above approach, one can choose any element ¢ of the
set G/T of coset representatives of subgroup T in G for testing
byegn. 1 [3]. If eqn. 1 is satisfied for this ¢, one can randomty
choose another element of G/T and verify eqn. 1 for this new
value of ¢. The process can be stopped when an error is
detected or when one reaches the predetermined number of
test sets. (If R is the number of tests sets, then R|Ti is the

-testing time.)

Instead of choosing the sequence of elements of G/T at
random, one can choose them in a predetermined order, such
that those elements which are chosen first will detect the most
‘harmful’ errors. It is a purpose of this paper to investigate
this possibility.

The ‘harmfulness’ of an error e(x) may be measured by its
magnitude

le(x) = 1 f(x) — f(x)|

where f(x) is the value of the output under fault conditions

and f(x) is the fault-free output.

In this paper, we shall propose a method for optimal order-
ing of test sets which will maximise the expected value of
le(x)| for errors detected by a test when the number R of test
sets {testing time) is given. This method will be useful only in
the case when an output f(x) has intrinsic numerical value, and
errors in different components in a binary representation of
f{x} have different weights. We note that this approach, based
on maximising the expected magnitude of errors detected by a
test, is very similar to mean-square error-detection procedures
widely used in data transmission [9, 10].

We shall give a solution of the problem of optimal ordering
of test sets for the case of single symmetrical bidirectional
errors and single and multiple unidirectional stuck-at errois. It
is well known that many faults that commonly occur in VLS
circuits cause unidirectional errors [11]. Included here are
those faults that affect the address decoders, word lines, power
supply, read/write circults [12—17], and also single stuck-at,
cross-point, or bridging faults in programmable logic arrays

and bursty errors that are due to failures in certain storage -

devices {11}].
The approach described in this paper may be effectively
used for maintenance (field) testing. Its efficiency increases

0143-7062/82/050169 + 13 £01.30/0 169

=0 DL e i P e D S e el L g . e’ STLETRER. |

T T R T R T R T T
"y P -1 I . Tax "» . P L

IO UM TDEI
PR i

[el 1 e L L el [}

i e sl iy - el e iy Il TR I
- T R

[r=r s nif e

EATE & 1 F I L I

PP B8 I Rl Tk ot Pl T S 1 12 | ek W P
EST 2% =i "8 LTl

'R FT I R

T i:'u:.':'.m.'.'.'l.r.'n;.I,.—.I-_T\-:l.-l;wnh.l.r'.-.'-.'.-'.1'.'.| Lk L T

- L T FT =]

= o sk E =TT T
- g |

Hagus Lo P] v i, Pl i)
EER - LA R T . .

P

L

Ti
a

S

T

LR

Eé

e Ll i b T —- EE
N L

with the increase in a number of bits n. (The time taken to
generate the tests is proportional to 2%, but this represents
only a one-itime cost.)

In Section 2, we introduce an objective or ‘utility’ function
W(¢), which defines an expected value for the magnitude of
errors detected by the test set 1@ 7. In the optimal test
strategy, one chooses first 7eG/T for which W(¢) is maximum,
followed by the element of G/fT for which it has the next
highest value, and so on.

In Section 3, we derive explicit expressions for the utility
function W(¢) for single stuck-at errors, We also describe some
analytical properties of the utility function W(z) for single
stuck-at unidirectional errors, and estimate the efficiency of
our approach for testing basic computer instructions, both
arithmetical and logical.

Generalisation of the results of Section 3 to the case of
multiple unidirectional errors is given in Section 4.

Invariant properties of best test sequences and application
of the approach to bridging faults and input errors are discussed
in Section 3.

We conclude the introduction by pointing out the cases and
conditions where the proposed testing approach may be
efficient. The conditions are:

(g) where only input and output signals are available for
testing, such as may be the case when the device is a part of 2
flight control system

(b) where exhaustive tests, verifying every value of f(x),
cannot be implemented in a reasonable time

{c) where a low expected magnitude of undetected errors at
the output of the device can be tolerated, but where it is

desirable to detect errors in and protect the more significant
bits.

Some specific cases which come to mind ar¢ as follows:

(i) Testing of hardware for carrying out data manipu-
lation, where small numerical errors can be tolerated, but
where exhaustive testing is not possible because of time limi-
tations. An example is & navigation system whose very precise
determination of direction at a particular time may not be
crucial. Another example is when the output of the compu-
tation is quantised into a range of intervals, and as long as the
result is within a certain range, the action will be independent
of the exact value.

(i) Testing of complex systems having computer hardware
at the input and at the output connected by a digital trans-

mission channel (f(x} = x).

We must make it clear that the proposed approach does not
apply to one of the most difficult-to-test part of a computer,
the control unit; this can tolerate no errors.

2 Basic: formulation

In this Section we define the utility function alluded te in
Section 1 and describe the test strategy.

Let || f(x)|| be the number of 1s in the binary representation
of the ouput f(x) (the Hamming weight of f(x)}. By definition,
n— || f(Oll is the number of Os. In a program or a device, the
presence of errors can corrupt any 1 into a O or vice-versa.
Suppose that, as a result of an error, f{x} is distorted to f(x).
The magnitude of the error in the computation of f{x),

le(x) = |f(x)—f(x)| (2)

will depend on the type of error. For example, an error in the
most significant {leftmost) bit may be more harmful than one
in the least significant (rightmost) bit. Therefore, on¢ may
choose a test strategy which tends to emphasise large |e(x)l.
However, although the impact of an error on f(x) may be
large, its probability may not be very high. Therefore, an
alternative strategy may be to choose those tests which

170

emphasise large expected values £(x) of [e{x}|. That is, if p, 15
the probability of a certain error eeE(E is a set of all possible
errors), and this error results in an error e(x) in the compu-
tation of f(x), one could use

E(x) =) le®)lp. (3)

cel

for constructing the test strategy; i.e. one can choose that
value of x for which £(x) is maximum, followed by the value
of x for which it has the next highest value, and so on.

To clarify the objective function E(x) for choosing a test
strategy, let us take a simple example of non-negative f(x),
which, for a certain value of x, is represented in the binary
formasf(x)=1 0 1 1 1 G

Let us restrict ourselves to unidirectional 1 - 0 single errors
and also assume that the probability of 10 is the same
for all 1s and is equal to p. For this case, the following Table
shows the various type of errors, their probabilities, and

the errors in f(x).

Tabie1l: Errors
Location of fix) letx) Probability of
efrror arror
Bit 1 o o1 1 1 0 2% pl1 —p})?
Bit 3 10 ¢ v 1 0 23 pl1 —pi?
Bit 4 1 ¢ 1 0 1 0 27 plt —p)?
Bit 5 1 01 1 0 O 2! pl1 —p¥?

Therefore, the expected value of [e{x)|, resuiting from single
unidirectional 1 = 0 errots, 1s

E(x) = pQ—p)*(2° +2° + 22 +2%) = p(1 —pPf(x) (4)
In general, for single unidirectional 10 errors, and non-

negative f(x):

P _ AlF)
1__pf(1)(1 p)I e (5)

E(x) =

In the context of error detection based on linear equality
checks (see eqn. 1), instead of choosing E(x) as the objective
function for a testing strategy, one would choose the objective

function W(¢) defined by

W) = Y E(ter) teG/T . (6)

TeT

For the simple case of unidirectional single error 1 =0, for
f(x) = 0, from eqn. 5:

W) = 75 3 feen(—phteen!)

or, in view of eqn. 1,

for small p
(8)

(Here, we have added the subscript 1 to denote the multi-
plicity of the error, by which we mean the number of cor-
rupted values of f(x). This definition of multiplicity is natural
if ervors in f(x) for different xs are independent, for example,
when x is an address and f(x) is the content of the memory
location whose address is x).

W(¢) is the utility function mentioned in the Introduction.
In the best test strategy, one will first choose the check set
¢ ® T for which W(¢) is maximum, followed by a check set for
which W(?) has next to the highest values, and so on.

The basic problem is then as follows: Given the function

IEE PROC., Vol. 129, Pt. E, No. 5, SEPTEMBER. 1982

W@ =t 1C—p T faenlfter

N i
| f
g

2
AE

e e ka4t g, bl b et

VARt NI O Il' h

f(x), the type of error {e.g. multiplicity, unidirectional etc.),
and the number R of tests ¢ @ T(#teGG/T), what is the best
sequence of tests BT =(#], #3...., tr)? The proposed
optimal strategy is to choose BT such that

W(rT) = max W(?) (9)
tels/T

W) = max wiey ((=2,....,R) (10)
te/T-{t%.... .1,

The effectiveness of the proposed strategy will depend upon
the variance in W(t) i.e.

Var W{f) = max W(r) — min W(2). (11)
t t

The greater the variance, the more effective will be the
strategy. This variance, in general, will depend on f(x}, the
number of bits n, in the binary representation of f(x), the
probability p of errors, and the multiplicity of errors.

We also note that the same approach based on maximisation

R

of T W(t;) {t;eG/T) may be used when one is given the
i=1

maximum expected value W of magnitude of undetected

errors, rather than the testing time R|7|. In this case, the

pumber R of tests may be determined from the condition

R
Y WH— L W) < W (12)

teG/T i=1

where £ (i=1,...,R) is defined by eqn. 10. In view of
eqn. 6, the condition (eqn. 12) can be rewitten as

R
Y. YE(ter)— ;1 W)

teG/T reT
R
=) E@)—) WE) < W (13)
e i=1

For exampie, for single unidirectional 1 — 0 errors and f(x) =
x {the case f(x)=x may be important for testing communi-
cation channels and storage), we have from eqn. 3:

P IItII“.R' *
Y t(1 —p) 2, W)

teGl—p i=1

._,._p_ no__ "o _ ayitl H_l_ < *
_l-p(z 1) 3 (1—-p) (!) E;W(fi]

i=(

|

R
@"-DQ—p)"p— LWE) S W (14)

where 7 is the number of bits in the binary representation of

f(x).

3 Single errors

In this Section, we derive the expression for the utility func-
tion for single errors (10 or 0~ 1), using the general
formalism of the preceding Section.

Let p be the probability of a 1 >0 error and g the prob-
ability of a 0= 1 error. These probabilities will be assumed to

be the same for every bit.
For f(x)= 0 for all xeG, the probability of a single 1+ 0
error in the binary representation of f{x) is

p(l __p]llﬂxlll*l(l _q)n-ilf{:}ll (15)

IEE PROC., Vol. 129, Pt. E, No, 5, SEPTEMBER 1982

Here the terms involving p represent the probability of a single
error out of || fix)l ‘1 locations’, and the term involving g
represents the probability of no error at (n—Jlf(x)ll) ‘O
locations’. There are || f(x)|| possible locations for 1 -» 0 errors
and the sum of |e(x)| for these locations is f(x). -

Similarly, the probability of a single 0 = I error is

g1 _q)n—lif{xﬂl—l(l _p)ilf(xill (16}

There are n — |} f{x)ll possible locations for 0 —+ 1 errors and
the sum of |e(x)] is 2" — 1 — f{x). Therefore, for non-negative
functions and single bidirectional errors (either 1 =0 or 0> 1),
the expected value of magnitude of an error in f{x} is

E(x) = p(l _P)Hf{xlll-l(l . q}ﬂ—llf{x}!lf(x)
+g(1 _q)n-ll Flx)|—-1 (1 __p]IIf{x}II{zn_ 1 —f(x}}

p

= (l—q)"(l_ fx)
P
4 _pm - f(x)}) ol TN (17)
1—gq
where
S S (18)
1—q

is an asymmetry of errors parameter. Thus, the utility function
for non-negative functions is

W) = (l—q)"[P S f(r @ 7)alfEe
TeT

1—p

+ .): 2" —1 —f(¢ 31,)}allﬂtmﬂll (19)
1—q rer

One can derive a similiar expression for negative functions,
S <0 for all xeG, where in the error-free case the sign bit
carries the value 1. For the representation of negative and
arbitrary functions (with both positive and negative values) we
use the additional sign bit (the ‘sign and magnitude’ represen-
tation). The probability of a single I - ¢ error is

P(l __p]lIAf{x}II(l __q)ﬂ-IIAf{J:}II (20)
where
Af(x) = [H(x)l (21}

A 1 -0 error at the sign bit location causes le(x)| = 2A4f(x).
For a 1~ 0 error at other locations, and there are ||Af(x)}}
such locations, the sum of |e(x) is equal to Af(x).

In the case of bidirectional errors (1 »0 and G- 1) and
negative functions the probability of a single 0 > 1 erroris .

q(l __p)liAﬁx}ﬁi-l (1— q}ﬂ-“.ﬂ.f{x}li-l (22)

and it can occur at any of n — | Af(x)|| locations. The sum of
le(x)] for all these locations is {2" — 1 — Af{(x)}. Therefore,
for negative functions and single errors (gither 1 >0 or 0= 1),
the expected value of magnitude of an error in f(x) is

Ey(x) = p(1 —p)! A1 — gy 1IN Af) + Afx)3
+ q(ll__p)llﬂf{xllllﬂ (1 __q)n—llﬁf{x}ll-l %
{27 — 1 —Af(x);

= (1 —q)" [3pAf(x) + qa{2" — 1 — Af()}Ja! 47!
(23)

171

Ch T L b

T e o eI | o o W e T~ e sy el B LA o

Therefore, the utility function for negative functions is

Wi = (1l—@)" {3p } Af(t © 1) ol AT @)
reT

+qa ¥ 2" —1—Afren))alarceenil Q4
TeT

For an arbitrary function, where the value of f{x} may be both
positive and negative, one can obtain the utility function by
using eqn. 24 and a slightly modified form of eqn. 19. The
modification is required to reflect two extra features: (i) the
number of Os in the binary representation of f(x) is now
n—Rf(x)ll + 1 rather than n — || f(x)||; (ii} an 0~ 1 error at
the sign-bit location causes |e(x)| = 24f(x). The first feature
is incorporated by multiplying the first and second terms in
eqn. 19 by {1 — ¢} and the second feature is incorporated by
adding 2Af(t ® 7} within the bracket in the second term
(causing —f(z ® 1} to become + Af(¢ ®7)). Combining this
modified form of eqn. 19 with eqn. 24, we get the utility
function for arbitrary f(x) as

Wi@) = (1—q)" 2, [pa™'{1 +2sf(re 1)} Af(r 0 7)

TeT
+ g% — 1 + f(z @ 7)}] I ATCEEDIssftEOT)
(25)
where the sign function s is defined by
i) = Q, fixy=0 (26)
1, fix) <0

eqn. 25 can be programmed on a computer for a given f(x), p
and ¢ to calculate the values of the utility function W, (¢) for
various check sets 9 T, and then one could determine the
best R check sets corresponding to the highest R values of the
utitity function.

We will now give some general results showing the limi-
tations and the effectiveness of the basic testing strategy intro-
duced in this paper.

3.1 Symmetrical errors
For such errors, by definition p = ¢, @ =1. From eqn. 15,

Wi(t) = p(1 —p)y* 3 ({1 +2sf(onjAf(toT)

TeT

+ 2" — 1+ f(t & 1)}]

p(1 —p)*{iTI(2" —1) +2 ETA}“(I o7)} (27)

If f(x) = 0 for all x(sf=0) or f(x) <0 for all x(sf = 1), then,
from eqn. 1, we have:

Y Af(to1) = (—1)¥C {28)

Thus, for non-negative (or negative) functions,

Wi() = p(1—p)™{ITI(2" — 1) + 2(—)*C} = const
(29)

and all test sets ¢t ® T are equally good.
172

However, this is not the case for arbifrary functions,
Denote

| = 0
po < [fO T
0 s <o
0 fx) >0
f = 30
D sw <o G0)
Then

) = ff+7(x) Afx) = =) —F()

and, from eqn. 1,

LAf(reny =2 Y ffter)—C (31)
7T

TeT

Thus, we have for the utility function in the case of single
symmetrical errors and arbitrary functions:

W, (@) = p(1—p)(ITIQ" - 1)+4 Y freor)—20)
7eT (32)

Denote

K(t) = ZT fiter) (33)

It follows now, from eqn. 32, in view of eqns. 9 and 10, that
the best test

BT=(r},%,...) may be determined from the conditions

K] max K(z)

tec/T

K@) = max KOG =2,3,..) (38

teGiT-{¢7 .. tf]

Formulas 27 and 32 can provide analytical solutions to the
problem of optimally ordering the tests for single symmetrical
errors. This is illustrated by Table 2, In this Table, check sets
T, utility functions W, and best sequences BT = (77, 13, ...)
(z7 €G/T) of the tests are given for some analytical functions in
the case of single symmetrical errors. The following notations
have been used in this Table:

BT =(ay,...,ax,¥) means that the best test sequence is

a1,..., 8¢, and after @ any sequence of remaining

elements of /T may be chosen in any order

x,v{0,1,... NLN = 2F —1

X X =4 1 » < g

Alx,a) =[s(x—a) = 0 x> a

a x>4a

[a] is the greatest integer less than or equal to g

3.2 Unidirectional errors
For 1 —»errors, ¢ = 0 and eqn. 25 becomes

W@y = p 3, (1—py-areen,

TeTl
{1+ 25f(r @ 1)} Af(t @ 7)(1 — p)lATLEDN (35)

IEE PROC., Vol 129, Pt. E, No. 5, SEPTEMBER 1982

mﬁmmﬂhwmmmw

ey g

=y

L T SN BRL I TN T

3 —TiToirr ﬂbinﬁqﬁt':lﬂ'{rm'mn".—,r Tt
IR I T LA IR

L R N I [i il kO |

e el ey

el S T L e e Vel et | T e et b R O T

-l el e L B0 L I

Ta v wm, wge N g ey e
. M n s i

__”__..___m_:.um_.nﬂ+_?._ﬂw+ .“.FI _|=N) ..—.._Du. .ﬂ____—. u-__._ﬁ—w
{A'(0 0} b =N Z)2 =M x{ b 2L} X{ub ‘u0} (b= AL —x) = (A'x)y &
{"E—NE NS —NE—N) {T—ue' " '2'g {b1-u0 w0}
TE—NE—N'UL—NE—N)IE—NL—NL-N'L—N)} (L+2Z) L +IZ)+ (L— LTI =41 'M x{&—yZ " "'2'0} X{1 ;-0 0 AN gosll —) = (A X 8
#-.-AN-E* .ﬂ—_l.—l.ﬂﬂ.‘.. .__.q—_.cw
TI—AMOT—N L L —N) 1071 —N) (0 VY M—HT+ L — T ="M x{t—u2' "1} {uct "ue0} A—-X=(A'Xx)} L
("' —NE—N'L—N) LHIZHN=0)'M fz2—ut' 20} {t-10°,0} Xy} —) = (¥)4 9
A*.—.IE“u.-.uﬂquu_ﬂ_u
. rgn F v moa dy fog ¥ [’ P J ﬁ_.ﬂn,ﬂ- ﬂ_
{A{L—8) 50 v'z'o {(E—NSZ+N=(1'M f2—uT" "L & T.T:n :n.”_ = (X}
_ e X (L}
g
*.ﬁlhh.-.nhhvlmwh .ﬂlﬂ
i e 27) B F1Y XRL = {J1)s {10}2bx’, nuxn =X
,:,mhu_a_EEEE:.;,.:: R — @+ N={3"'M {1— P ey . el
3 = -ul L0} {ul w0} HZz—ix & =txi
b
] & a ['] r i —:“V_Q-I“va
{A'Ulg,-81 (9, ey ww " Lo} {{[9,.°) '[9, 8]} uw B vZ—NI®+N=0}'M {L— 2" " 'L '0} {ul w0} G+ xe={x)} £
{AIR] “[#]) ww 'L 0 fel‘lepuw v —mz='m {1—,.,2" "1 0} {ut 0} JC>eS0'E— X=X} z
(A‘D) {tnv—wnjz='m {1— 2" L0 {ul 'O} | — X = {x)y }
ig "My _(d— 1) _dG0 /9 4 § tou

(I — € = N} HOLD |EDLMUWAS 8|BnE 104 { 7 Sadusnbet 1te) 158q pue "4 suchauny AMpIn iz egeL

o
=
|

IEE PROC., Vol. 129, 1. E, No. 5, SEPTEMBER 1982

T

o r— —— T TR T T r——T

For O -+ | errors, p = 0 and eqn. 25 becomes

i) =q) 2" —1+ften)}ix
Tel’

(1—gq)" -lAf(t @I -2f(toT) (36)

The equations can be used to analyse the effectiveness of the
test strategy proposed in this paper for the case of unidirec-
tional errors. When the device or a computer program for a
function f(x) is highly reliable, (1 —p)=(1 —g}=1, W() >
const for all the check sets, and the strategy is not very
effective, As p increases, W{¢)s will tend to be widely dispersed
and the effectiveness of the strategy will increase.

To iHustrate the effectiveness of the strategy, we now
present analytical estimates of the utility functions in the case
of single 1 - 0 errors and basic arithmetic and logical instruc-
tions for selected check sets. These estimations were, in most
part, made for ref0, 2" '—2 2"-i) n-i 2" P41,
2" 4+ 2}(i € n) and are given in Tables 3 to 7. In the estl-
mation procedure, we assume that (1 —p)' =1 but that
(1—p)"=a+#1,

Thus, for a highly reliable device or program, 7 is restricted
to €n, for example, i =log,n. As an example, for a = 1/2,
p=00108 (n =64), fori=log, 64 =6,(1 —p) =094,

Before we discuss these Tables, for pedagogical reasons, we
provide below some details of the estimation:

@)f(x) = x,f(x) = x+1,f(x) = x— 1,xe{0, 1}*
For all of these cases, T={0", 17}, i.e. the check set consists
of x and X = 2" —x — 1 [4]. For f{x) = x, from eqn. 33,
Wi(@) = p{e(1=p)'"N + 2" 1 =51 —p)?" 171}
= ple(i—p) " + 2" — 1= (1 —p)* ")
As an example,
Wi2" 7 —1) = p{2" " = —py*~!
+(2" —2""(1 —p)'}
= pfan=ig+ (2" —n-iy)
=p2"{1+@—1nN2"*}

For f(x)=x, the utility functions for r=2"""—1 and
2"t =2, fori=logyn is about 1/g times moze than those for
=0,2" % 2%+ 1 277 + 2, Thus, the former two should
be chosen in preference to the latter ones for linear check
tests. However, for f(x)=x—1, t =2""" — 1 check set is no
longer desirable. f = 2™~ — 2 is desirable for all three cases.

(B)f(x,y) = x+y,f(x,y) = x—y(x,ye{0,1}")

For both these cases, T'= {0°", 1" };i.e. the check set consists

of x+yand x+y for f{x,y)=x+y,and x—p and x —y

for f(x,y)=x —y [4]. As an example, for f(x,y)=x+y,
W —2,2" 7 —)=p{2" -2+ 2"7 — g
+Q2*—1-2""+24+2" —1 2777 4+ 2)}
2p(2" T+ 2" g+ (2% 2* =20 =2)
~p2" {2+ (@— 1)27 + 277y}

Here again, the ratio of maximum to minimum for the utility
function approaches 1/g when n—e and i=j=log,n. In
Table 4, expressions are given for the utility functions for
x+y.

For f(x,y) = x —y, one can derive an analytical expression
for W,. Recalling that x —y = —(x —y), from eqn. 35, we

174

Table 3: Approximata values of the utility function for Ax) = x, x. x +
1.% + 1, x — 1 and single unidirectional errors {in units of p27), | = 21,
(1—p)P=a,i<n

t fix} = fixy=x+1, Fla)=x—1
flx)=x fix)l=x+1
a 3 1 a
27t 2 1+4{a— 137 1+ {a— 1)/ 1+1la—1H
27— 1+ (a—1)¢ 1 a
2R a+ (1 —alf 1 a
27%°t L a+ {1 —alf g+ {1-—a}f a+{1—alf
n-i ¢ 2 a+{1—alt a+{1—als a+{1—alf
W
§im midx l l _1.
i—+o Winin a a a
i—a{n)
have:

Wit,r) = p{(1 + 2s(t —)}t —r]
+ {1 + 25(t =) s —F[}(1 —p)i AN
— 4p|r—?‘|(1 ___p}IIA(t-T}”

Fort=r=0,W,=0,and forr=0,=2" —1,(|A(t =) =
n, Wy =p2**?gq The best check set is (2® — 1, 0) and the
worst one (0, 0) and the ratio of maximum te minimum for
the utiity function approaches infinity. Thus for f(x,)=
X —y, our testing strategy is very effective.

For f{x, y)=x—y, the utility function for r = 2" is,
within our approximation, the same as for £ = 2"/ — 2. The
same is true for r=2"7F r=2""14+1 and r=2""1+2,

- Therefure in Table 5, we have given utlht}r functions only for

tr=2""1—1 andZ""
() f(x,y) = xey,f(x,%) = xvy,f(x,)

= x Ay;(x,»)e{0, 1}"

(Symbols v and A stand for logical addition and multiplication,

respectively.) For all these logical functions, 7= L 1l L
1"07", 1"} [4]. For example, for f(x, ¥) = x v y, the check
set consists of points x vy, xvy,xv ¥, and X v . For these
functions also, W(2" 7' — 1, r) = W(2" " — 2, r) and W(2"™,
N=WR T+ 1, n=wR" +2,). Therefure in Tables 6
to 8, we have given utility functmns only for ¢, r=2""%—1
and 27~ . However, W(r, r) depends on whether £ 2r. Once
again, the ratio of maximum to minimum for the utility
function approaches 1fa for f(x, y)=xey and x A p, but
approaches only (2/3 + 1/3a) for f(x,y)=xv y.

(d) f(x,y}) = xp;x,ye{0, 1}"

Here, as for logical functions, 7= {0**,0"1", 170", 1°*"} [4].
in this case (Table 9), {f{x, ¥)|| can be as large as 2n, the
expression for the utility function can have a term proportional
to @*, and the ratio of its maximum to its minimum value will
approach 1/a*.

In Table 10, we have summarised the results in terms of the
best tests t*eG/T and the corresponding values of the utility
function W(r*). In this Table, we also give the asymptotic
ratio of maximum W(z) to minimum W(z). For the ‘subtract’
instruction, our approach is most effective, followed by
‘multiply’. Also, its effectiveness increases as » increases or p
decreases.

We conclude this Section by pointing out that another
measure of the effectiveness of the approach could be the ratio
of max W(#) to W(¢) for a randomly selected teG/T (which is

the average value of W(¢)). This ratio will of course be less than-

that of max W(¢) to min W(z). For example, for f(x) =x,

IEE PROC, Vol. 129, Pt. E. No. 5, SEPTEMBER 1982

r'-'-'-'-:-'-:"'-.'-.'.
[hoT e v dmys L e
HA .

A T
=TSl me rermgr e e arTre)
I T A R R BTN

For e =y —
et tane
L R L

V= e e = e amrreemgees = qrean
AT T TS D ey e
L I T I Dy -

PR DL I TN LR ITT N I T TR - A &

Tt

L PR R T

L - sabriler-rirml e b kbl i LrePels | el i o b e e L P S| rilie sl kbl il yranalrerer] . T m— . k] i - - 1= m— - re - T - ' e e
=y T TR N _......._,. n m: bﬁ!iﬂ}!ghlri_‘iiﬁtkiséﬁ%%%%g r o " ' : - &

L - aearﬂ U R Y | 3 2 R R 1 - pryabioms -

__

- % ~wriiral ik Falmire o i et
_..b.-.#...___“.u.._.&._.. h__l_...r__‘._.. %ﬁ.ﬁq%g?a%ﬁ %%Fﬁi%g

s =

u
-
—

i
:nIHH: £z LA EZ e _.._mH L e ".__WH L} #{E—11+92 wie— L) +ez wie—i)+e2 wle—) +ez wie—L}+8T I L+8T T+4,.,C
:THH) ez 2z A e _H L e “H) owle—L+ez wie—i)+8Z WE—L)+87 wiE— L1+ BT g€ e e b+t
s "MH H ez BL o4 T _.w..__” l T ".h.H I} wiE—L)+8Z w{e—L)+BZ W(e— 1)) +5C 8z W{l—8)+Z J{E— b+ &2 1-ut
.____.__.I_ﬂﬂ L) ..___:.I”_WH 3 .:—Iu__“_wH 1)_,_.I_M.H L) £z e "wH by a{#—L)+eZ wle—|)+ 82 ez wli—8y+zZ WwWil—®)+Z 8 11—yl
:Fiﬂ.H N i_!_ﬂ.ﬂ 1} ...:IﬂH L} ...:lﬂh L) ...:H”H L) 82 WiP— 1) +£Z gz All—=+Z A —a+z w{l—e)+2 =8 +Z T—y.ul

Bz e ”MH L) e HMH b &g:.I_ﬂH L} .._.:.I_”w..__.. Vo orle—Ly+82 rie—Ly+eZ rif—1)+ 8L ez fil—8) +& €L 0
F)

l—ul =@l T—pul—ul d—pul—ul pul—ul Lt pul—ul T+ r-ul b+ pul f-uC b—f-ul Z—-ul o 2 m

uxeftir+ =N r—1=1r= -Z 1=, 2 ‘B =, (d — L) ‘540018 BUDILIGLIPIUN a|buIs 10} { Z O J0 N ul) A + X = (A "X} 10} UOIUD} Aunn sys o senjea aewixosddy (p ejgeL

IEE PROC., Vol. 129, Pt. E, No. 5, SEPTEMBER 1982

Table 5: Approximate values of the utility function for flx, y} =x —y
{in units of p2™*?} for single unidiractional errors; {1 —pl)" =a, L =
I—JM=1+ i j4<n

\ n zn-j._-l ZH-J" 211__1 2.11:___211"1' Eﬂ____zﬂ-j_ul
r -

0 0 at J a {1 —.J}
on-i__1 af |Li iLlea (1= 11—
gr-i { |Lla Ll (1—Ne (1—M)

(1 —J)a
{(1— M}a
{1 —Ma

Table 6: Approximate values of the utility function for flx, v} = x &y lin units of p 27+ 7] for single unidirectionat errors; (1—p¥i=a, L=f—J,
M=+ Jifn

t 0 277 — 1 2n-d
’ P<j i=] P> i< i=i P>
O 8 1+ {a—1)J 14+ (a—1)J 1+ (a—1W a+{1—alJ a+{1—alJ a+ (1 —ah/
on-i . 1+ {2 —1)/ g+ {1-3all a+{1—alL a—{1—allL 1+ {a—1IL 1+ {a— 1M 1+ (a— 1M
an-1 a+ {1—all 1+ ta—1}M 1+{z— 1M 1+ {1 —alL a+ (1—alM a+(1—allL a+ {(1—alM

ppeoxi ili i = in uni i idiracti ; (1—-pY*=a, 27 =1,
7. A mate values of the utility function for f{x, ¥y} =x V y lin units of p2™) for single unidirectional errors; {
Table ' 2= L=1—JM=t+ i j4n

t O 271 h-J

r i< i=j P> i< i=j P>

0 33 [t + 2a} {1+ 2a) {1 + 2a) 3a + {1 —all 3a+ 1 —all 3a + {1 —al!
+ {a—1)t + la—1)J + la—14J

' 1+ 2a)
n-i_ 4 1 + 2al {1 + 2a) (1 + 2a) (1 + 2a) (1 + 2a) {1 + 2a) (

? { + {a— 1)1 + [a—1}1J + {a —1)J + {a — 1)/ + {a—"1)L + la — 1)1 + [a— 1M

271 3a+ {1 —a})! (1 + 2a) {1 + 2a} {1 + 2a}) 33+ (1—a)M 3a + (1 —all 33+ {1 —3M
+ {a— 1M + la— 11/ —fa—1}L

Table B: Appr-u:inuta valuas of the utility function for flx, y}=x Ay lin units of p2") for single unidirectional erross;

2i=)L=1—J M=I+Lij<n

1—pii=g 278=1,

t 0 2n-i 1 on-f
r i< i=j P> i< j i=j P>
0 a 1+ {a—1)J 1+ {a— 1] 1+ {a—1)f a+i1—a)d a+ {1 —ald a+{1—alt
2R 1 1+ {a—1H i +ia—13 14 (a—1)J 1+ a—1){ 1+ (a— 114 1+ 1{a—H1)/ 1+ (a—1IM
gh-i a+ (1 —alf 1+{z—1M 1+ {a—1}4 1+ {a— 1 1+ {1 —alM a+{1—al/ a+(1—alM
Table 9: Approximate wlua;s of the utility function for flx, ¥} = xy lin units of p2°"} for single unidirectional errors; {1—p)t=ag,2'=127=J;
i, f%n
t 0 2n-i—2 2n-F 1 2n-f an-Jj 4 1 an-i 4 2
r
0 a a a a a a
i — 2 - *+ai1—alt
2h-i -2 3 1+ {8 — 1) 1+ (a— 1M a* +afl—all a® +all—al a
+ (gt —1)J + {a* — 14 + {1 —a*)J +{1—2a%)t + (1 —a" 1S
+{1+a—2a* Wt +{1—a*u —{1—-a* — O N —C. N
-1 — - — —a)t a+(1—a)d
21 — 1 a 1+ la— 14 1+ (a—1H a+a— 1 a+(1—a)
+{at — 1)/ +la— 10 + {1 —ald —C, M —C N
+{1—a*l s + {1—all + {a— 1}
qtr-i a g +all-—ald a+ {la—1)J a+i1—-allJ a+{1—allJ a+{(1—alls
+ {1 —3%)} + {1 —al!
— {1 —a*} 1t + la— 1S
n-iy g a at +al1 —alt a+ (1—a)d a+ {1 —aliJ a+ {1 —allt a+ (1 —alit
+ {1 —&°)J —
—C M
2"-i 4 2 a g +afl—a)l 2+ {1—alJ s + {1 —allJ a+ (1—alld g+ {1—2alld
+ 1 —a*)J -l
—CL
1—a%,ji>i+ 1 ,1_'&1‘.}; 1—a,j>i§ 1—a,f>i—1
c‘:"l- = o ; c‘l = ! C3 = 2 : Cﬂ = 2 s
1 +a— 2a%, otherwise 1 +a — 2a*, otherwise k1 — a*, otherwise 1 —a*, otherwise
1—a?,i>j+1 (1-a%,i>j (1 —a,i>f fr—aii—1
c; — -) ! J' C.;_ — C; — 2 - E4 e 2 .
1 +a— 2a, otherwise 1 + a — 2a* , otherwise 1 —a*, otherwise 1 —a?, otherwise
176 IEE PROC, Vol. 129, Pt. E, No. 5, SEPTEMEBER 1982

| S

- =" LR
- e LN

VAT T T T T

LI T L O . - . .

o L e R e b Dk o k| i 1 gt B e ik e S e P, a5 kT T e AN s e s G v e vl o wr

= T T T TR

TPy s M AN LEL Bt T T G e el | T el o e e e R e oy L s P Py R e R e 0 Rt] B St Y, e g R P

Lol T, el M-Sy

o . e 1 LLE

B LGk TR R O -

T] [Pl LA ke

R T

oy

u-..:'lrﬁmu_'mmu-n

B I T Lol T T

mmmnnﬂﬂémh-mﬁm.ﬂim.-mrmwmmnmuvwm AR, e At b T e Ay T e H i e i T, i,

e T T I e, et | RS Rl O o gt TR LR B | o B

Jrp—_— R TR P r - -

— C e oar me s Nt otm orm s wn semmanaen g = ge g sees seeles

H I 1T e i e i e Py [l T e e P = T PR A L o e A U S N | T ek Y A ey T I e * ol et A O et e e e L R T) S e B Ty o R e

:

I
E
[
2
£
¥
:
¥

e B e e e e B il ot § L Pt L TP Tl dele

Aoyl g

. i LT
POt At v pr 4
L

from eqn. 14, the average value of W(z) is

L n- —1
p(—1) Zl(l—p}f(_)=2'*(1~p12)”"p

A i
Therefore, for f{x) = x,

max W(t) 1+ {1 —p)" —1jflog:n
average W(t) (1—piH™~"

(37)

For p =0.0108, n = 64, this is equal to 1.38 as compared to

For negative functions, recalling that in the fault-free case
the sign bit has the value I, the probability of r(0<r<1)
errors is p' (1 — pylAT@I=r+1 When the sign bit is correct,

the number of possible locations of such errors is ("Af(x}"),
r
and the sum of |e{x)} in these locations is (;!Af{x}lll 1) Af(x).
r —

However, when the sign bit is corrupted, the number of
possible combinations for the remaining r—1 errors is

(Eif(x]ll —1

r—1

)f(x)

Therefore, the expected value of {e{x)| is

LGl — 1§ ’
o= (1 T o

(1 —p @ <IN (38)

Thus, the utility function for non-negative functions for
unidirectional 7 ~ ¢ errors of multiplicity I is

W) = ¥ faer)(d —p7¢e 7«

7T

I r

G o
y—

For l=n (mﬂdirecﬁnnal errors of arbiirary unlimited multi-
plicity), W,{) =p Z f(t ® 1) = pC, and all test seis are equally
TeT

good.

IEE PROC., Vol. 129, P1. E, No. 5, SEPTEMBER 1982

| max i . Aflx
the value 2 for W()}{ min W(?) (" r}E l)ll) and the sum of }e(x)| in these locations is
Table 10: Best tests; effectiveness of the testing strategy for various algebraic and logic functions a = (1 —pin, 1= 2-%. For best tests, J = log. R,
I =1/n
Instruction Function Best test Asymptotic value of
. max Withmin Wit)
t Pl W) :
Transfer x X on-{ _ o 1+ {la—11f t/a
Increase x x + 1 y L 1+tla—1H 1/a
Decrease X x— 1 2n-i_ g 1+ {a—1H 1/a
Logical multiplication xAy (271 —2,0) 1+ {a— 1M 1/
{AND)
Logical addition (OR) XV {2t —2,0) 1+23+la—1H 2{3 + 1/3a
 Exclusive OR Xay (2%-1—2 0) 1+ (a—1)4 1/a
Addition Xx+y (2" _2,0) 2+ ta—14 t/a
Subtraction Xx—y {27 — 27) 1—1 o
Multiplication xy {an-f_ 2, 2"-i _q) A+ (@a+a*t+(1—a*))2" 1/a*
4 Multiple errors |4f{x) A — 1
P _ (+ Af(x) (@=<IIAfx)N+1)
The formalism developed in the preceding Sections can be r—1 r—1 (40)
generalised for the case of unidirectional errors of multiplicity
l. The expected value of |e(x)| is therefore
i —
4.1 Unidirectional 1 = Q errors (g = 0) E(x) =) IAf(x)I] +3 A -1)
For f(x) 2 0, for all xeG, the probability of r(0 <r <) errors i = 1 r—1
in the binary representation of f(x) is p’(1 — p)eI =" The
. x| r
number of possible combinations of such errors is ("fi)) (4))Af(x)(l — pATEII+L o
1—p
and the sum of {e{x)| in these combinations is
(1=I<lAf(N+1) (41)

Thus, the utility function for negative functions for unidirec-
tional I = 0 errors of mudtiplicity 1 is

W (6 = 2 Af(zeny(1—p)ylA7aenil iz l("flf(f$’r}tl)
TeT r=1

r—1

+2("Af(1$1'}"_1)] (p)" @)
r—1 l—p

One can combine eqns, 39 and 42 to get the utility function
for grbitrary f(x) as

W) = Y Af(ren)(l —p)arttenli+siitern)
TeT

A — 1
z‘: (l+sf(mf))(" f(ro)l)
r=1 r—1
Hf(rw(;w{mﬂu)] (») “
r— 1 1—p

where the sign function s is defined by eqn. 26.

L e e L B ki = L] L N LS

B R e Tetaste T wiwtais Ll 1 Lo

. .. .
gty ol e by s B 1 e e A) ety LT LY Pl | Lpshong oy e T e g T g R L it . D
R ="y iy Yu wlell eyl R T T e e 1

,__
b " gy m&mﬂiﬁ#%ﬂmm’&ﬁ%?&mﬂ%k-

T T T R

et P e ——— | e

b Degcdet ol AU
R L% 1L

o 1 gl R

B Y IRTR T L

caEaren
Pl W bl d Wl TV

qEmp g

s r—— s =T T
aaw

Fotg W LT [D W T BT FIS AT :tll;lh-_-a-\.i.- =
I

T T - e gt

dnmtben
e b B e e g % gl B e e 0 o] e PR e o Y T

Ul g e

llff.h:'mﬂ?mﬁﬁn&ir:lgw_

by —————

. — =

-y e e e e,
Lt ol N R Pl S bt R B B Y T D DT LT L T N TS
e B o iy B | LAy o] gl e Tl Rl gy o B e | e By eyl B

T, R p = = P T [S—

T SO e e e g TO S Ao ey et e 1;».-.-.-'.-41.}.-:-.-5'-.".1

— g

| e e et o S o 5P TSl i i -

For unidirectional 1 = 0 errors of arbitrary unlimited muiti-
plicity, 1<n+ 1, (recalling that the maximum number of
1 - 0 errors, including at the sign bit is n + 1, when f{x) has
positive and negative values), we have:

W, () =p Y {1+2(1 —p)sfiteniAfzer) (44

TET

and all tests are not equally good.

4.2 Unidirectional 0 = 1 errors {p = 0)
This case can be analysed in a manner similar to that of

Section 4.1. For non-negative functions, the expression for the
utility function can be obtained by replacing p by ¢, ([f(t e)
by n—If{t ® 7)ll and f(t® r) by {2" —1 —f(¢ @ 7)}. That i,
for non-negative functions,

W) = 2 2" —1—flenil—gr e
T€T

i (u—ﬂf(m)u-—l)(_i_)r
r=l r—1 1—¢q

(45)

Table 11: Utility functions when f{x]) is non-negative {¥ = 2" — 1)

_—

no. Type of error Utility function Wit}
1 Single unidirectional 1 — 0 P E fFlt o 71 {1 — pyIFLE @7l
1—P rer
2 Single unidirectional 0 — 1 1—q— z {nM—Flt e T} —gyn-lfrend
—9 TeT
3 Single bidirectionzl (p # g) (1—g)? p Z Fite ol BTH | 1 9 Z {N—Fiter)}alifteD
V=P rer — 9 jer
4 Single symmetrical (p = q) gil —g}"ITIN + 2C)
! r
NFlt el o)
5 Multiple unidirectionat 1 — 0 Y flraniil— pifczenl Yy _
TeT r=1i r—1 1 — R
raeny s {rIfEei=N g Y
6 Multiple unidirectional 0 - 1 Z {N—flter) H1 — g}k 87) Z 1 g
=1 r— -

TeT

Tahla 12: Utility functions when values of #{x} may be both positive and nagative {f|x] is representad in the sign and magnitude form; N =27 — 1}

ho. Type of error LUtitity function W {t)
i Single unidirectional 1 =0 2 Z {1+ 2sf(te r)}AFIte 7)1 —plAf(E el + sf(t @7}
T—8 or
2 Single unidirectional 0 — 1 g 3 N+ Ftenitt —gyr-ifdeni-si(ter)
TeT i
3 Single bidirectional {p # g} (1 — g} Z E{‘I + Esﬂtﬁf]}Af{tar} +q[N+f[tmﬂ}a"f”aﬂ“*sﬂrmﬂ
Tl &
4 Single symmetrical {p = g} p{1 —pl"{N]TI + 2 Z Af{t e T}}
T7eT
{
- NAF{t ® v} -1
5 Multiple unidirectional 1~ 0 Y Afiten(1 —ptafieenlsritern)3 {{1 +sfite —.-l}()
TeT F=1 r—1
LAF(¢ & 7) 1
+sf[r$ﬂ()}(—p—)
r—1 1—p
i
n— |AF(t @ 7}
6 Muitiple unidirectionat 0 — 1 z (1 —gyn-Af(t@T)||+1 -sF(L27T) Z 2{1 —sflt Ef}}(Af(t o)
TeT r=1 r—1
n—[Afltaril—1 n—Af{tes)|—1 v
+[(")—{1—51‘(1‘@1*1}(')]{N—Af{tﬁﬂ}] (__f'_)
r—1 r—2 1—4
7 unlimited unidirectional 1 = 0 fo Z {1 +201 —pisfite) }AFit @ 1)
reT
8 unlimited unidirectional 0 — 1 g MTI— Z {1—2sfit o r}}Af{t @1}
rel
178 IEE PROC., Vol. 129, Pt. E, No. 5, SEPTEMBER 1982

T Tt p b T

ol ol b
TRl T e T T ol Y T

ol Y
- el 1T e LT

T : Tr
T ALy

CaRadeT b

o

Loy Hib
L LA R R - TS i) 4 1 A T

For errors of arbitrary multiplicity, this reduces to

W) =q 2 2" —1—f(ter) = q{2" — DITI—C}
TeTl (46)

and all tests are equally good.

For negative functions, since no corruption of the sign bit is
allowed, the expression for the utility function will be the
same as for the non-negative function, i.e. eqn, 46, except that
f(zr @ 1) is to be replaced by Af(t & 7).

For an arbitrary function, when the value of the (fault-free)
function is positive, the O in the sign-bit position could be
corrupted. One can analyse this possibility similarly to the case
of Section 4.1, and the resulting expression is

W;(f} — z (1 __,q}n—ﬂﬂf{tﬂ T+t ~sFit = T) ¥

el

! —Af(t e

3 {Z(I—sf(rer)}(" f(l ")Af(rer)

r=1 r—

A T
o

(n —hafc el - 1)] (2" — 1 — Af(r 1)} x
r—2
47

For errors of an arbitrary unlimited multiplicity, it simplifies
1o

g ¥ 2" —1+{1—2sf(ter)}Af(ter)
TeT

Wn+1(f)

I

4 [(z" —DITI— ¥, {1 —2sf(cen)iAf(ter)

Tel
(48)

and all tests are not equal.

For the convenience of the reader, we have assembled the
expressions for the utility functions for various types of errors
in Tables 11 and 12.

We note that the case of unidirectional 1 -+0 or 01
errors of an arbitrary unlimited multiplicity is important from
the practical point of view (see e.g. Reference 11). Comparing
the utility function for symmetric single errors (eqn. 27) with
those for unidirectional unlimited errors (eqns. 44 and 48), we
can see that the method of constructing the best test based on
eqns. 31 to 34 can also be used for unidirectional errors, and
best tests (¢1....,fr) for symmetric single errors and
unlimited uvnidirectional errors coincide. For example, all best
tests (BT) represented in Table 1 are also best tests for
unfimited unidirectional (1 =+ 0 or 0 = 1} errors.

L+) Properties of best tﬂﬁ, conclusions

In general, the best test sequence depends on the function
implemented by the fault-free device, and for certain functions
there is no best test sequence; that is to say, all tests detect
the same expected magnitude of errors. We have already
presented some results in the preceding Sections for various
types of errors and various functicns. In the following text, we
shall discuss some invariant properties of best test sequences.

[EE PROC., Vol. 129, Pt. E, No. 5, SEPTEMBER 1982

First we note that, for non-negative functions, it follows
from eqns. 7, 8, 39 and 45 that if ||f{x)|| = const, then for
single unidirectional and bidirectional errors and for multiple
unidirectional errors, W(f} = const and so all tests are equal.

We note also that, if f(x) is a Boolean function (f(x)e{0,
1}), then Z fren o ® M = T af(r@r)=0aC for any

reT

TeT
a, ¢ and 7, and for single vmnidirectional and bidirectional
errors, egns. 6 and 19 again show W(¢) to be a constant, and
all tests are equal.

For an arbitrary function (which has both positive and
negative values), if b # 0 is a constant, then, from eqns. 27, 44
and 48, for single symmetrical errors and unidirectional errors
of an unlimited multiplicity, the best tests for f(x) and 5f(x)
coincide (BT(f) = BT (bf)). This is not true, however, for non-
negative functions, since §f(x)| # Hbf(x)Il. We note also that,
for b#0, BT(f)# BT(b + f). For example, for single sym-
metrical errors, if f(x)=x-—1, then from Table 2 max

f
W (t) = W (D) and W (0) > W, (¢) for all ¢+ 0", 17, but for
f(x)=x, W(t) = const for all ¢,

The previous remarks show that there is no simple relation-
ship between best tests for f{x)} and its linear transform
af(x) + b(a, b are constants), but this is not true in the case of .
the linear {affine) transform of arguments over GF{2). 1n this
case, we shall introduce the following notations. Let o be an
(n x n)-binary matrix, nonsingular over GF(2), ox be a
product over GF(2) of ¢ and a binary ¢olumn vector x, ‘g’ be
some binary column vector and

¢(x) = flox @ a) (49)

Then, for any function f and any type of errors, if (17, . . ., #g)
is the best test for f, then (07! (i1 ®24),..., o '(tg @a)) is
the best test for ¢ or

BT(¢) = ¢ "(BT(f)®a)

Here ¢~ ! represents the inverse of ¢ over GF(2)). To prove
eqn. 50, we denote check sets for fand ¢ as Ty and T; uvtility
functions for f and ¢ we denote as Wy and W;. Then

We(f) = 2 E{f(ze1), 141t ® DI}

TETf

(30)

(51)

where £ is some function which depends on the type of the
errors (see Tables 11 and 12}, and

Y Efp(teq) || Aoz @ g)ll}

EET,,;;;

We(t) =

I

Y Elf(e(teq)ealllAffctoq)ea)ll} (52)

qeTy

Denote og =7, ot ®g=r. Since [7] Tr=0 'T,, we have,
from eqns. 49 to 52,

2 E{fren,lAftrenl} = W)

We(£) .
TEQ T¢

= W,{(ot ©4) (53)

Formula 50 follows now immediately from eqn. 33.

In the preceding sections, we have considered stuct-at
errors. However, the approach can easily be generalised to
other types of errors. For example, in the case of memory
testing, let f(x) represent the data in a memeory location (row),
whose address is x. Then, for OR bridging between corre-
sponding cells in the rows whose addresses are x and y, the
expected value of the resulting error in the computation of

179

P P PR ircw m——
| e T B e e e b L B L

T T |ﬂrmmhﬁw1

m] prhal) .. e 4 T ral Ll Hr
e B e g e e e

eldlltd

e

PR N BT IR Y . N ST LCE L

e almtn e

g AR e = M =

f(x)is

E(x) = ¥ HAx)vANI—Ax)p(x,») (54)
yels

where p(x, y) is the probability of bridging occurring, and v
stands for componentwise logical addition.
The corresponding utility function is, as before,

W)= 3 E¢tery =3 Y I(fiten)vi(y)
ez el veF
—fGenlpier,y) (55)

When bridging can occur only between corresponding cells in
neighbouring rows, 1..

p(x,y) =0 fory#Fxtl (56)
the utility function is
W) =p ;(I [feen)vfiten)+)} —frer)
+ilftenviiten— 13l —faGenl) (57)

where p is the probability of bridgings between any neighbour-
ing rows. For a given function f(x), this expression can be
analysed to determine best iest sequences.

Similiar expressions can be derived for column bridgings in
memory and for cross-talk errors.

For input errors (e.g. wrong decoding of memory addresses),
instead of errors occurring directly in f(x), they occur in the
value of x, leading to an erroneous cutput f(x). The utility
function is given by

wie) =Y ¥ prlfien—f(Ter)l

el

(58)

where 7 is the corrupted value of the variable 7 and p, 7 is the
probability of this corruption taking place. For single bidirec-
tional symmetrical input errors, the corruption can occur in
any of the bits with equal probability, ie. p, =1 when
differs from ¢ in only one bit position; = 0 otherwise,

n »
Forthiscase, W()=p T X |f¢ter)—f(te0" 10" e
TeT i=1

)i, and for functions such as x, x+ 1, x—1,x+y,x—y,
xy, XAy, xvy, xeyW(t) is a constant, and all tests are
equally good.

In conclusion, in this paper we have introduced a criterion
for test generation based on minimising the expected magni-
tude of undetected errors. This should be contrasted with the
usual criteria, where the probability of undetected error is
minimised. This criterion has been used to develop a best test
strategy using the linear checks approach. The tests applied
represent functional tests, in that they are independent of the
internal structure of the device under the test. The expressions
for the utility function are easy to program, and for networks
of a practical size (where n may be in the region of 16 to 24),
the best test strategy can be determined in a reasonable
amount of computer time. The approach becomes more
efficient as n increases.

We note that the approach can also be used for testing the
software for computing numerical functions. In the case of
noninteger computations (f(x) is 2 real (noninteger) number
for some x), the linear equality checks represented by eqn. 1
have to be replaced by the inequality checks

fter)—Ci<e for every ref0,1,...,2" — 1}

(39
180

where, as in egn. 1, T is a check subgroup in &, 1 ® T is a check
set, C is a constant and € 2> (0 is a small constant. (The check
eqn. 1 is a special case of eqn. 59 with € =0; methods for
constructing optimal inequality checks and complexity esti-
mations for these checks are given in References 18 and 19.)
For the linear inequality checks in eqn. 59 one can use the
same¢ approach for ordering the test sets as was used for the
equality checks in eqn. 1.

It is also easy to generalise this approach if the distribution
of errors in the bits of f(x) is known a priori andfor the cost
function for errors in different bits is given by the user.
Finally, we note again that this approach is useful for field-
testing systems in which small errors may be tolerated, and the
weights of errors in different components are different.

6 Acknowledgment

This research was, in part, supported by the Division of Mathe-
matical and Computer Sciences of the National Science Foun-
dation under Grant MCS-8008339

7 References

1 SMITH, 1.E.: 'Measures of the effectiveness of fault signature analy-
sis’, IEEE Trans., 1980, C-29, pp. 510-514

2 SAVIR, J.: ‘Test generation for microprocessors’, ibid., 1980, C-29,
pp. 442—451

3 KARPOVSKY, M.G.: ‘Ertor detection in digital devices and com-
puter programs with the aid of linear recurrent equations over finite
commmutative groups’, ibid., 1977, C-26, pp. 208-218

4 KARPOSVKY, M.G., and TRACHTENBERG, E.A.: ‘Linear check-
ing equations and error correcting capability for computation
channels’, in Proceedings of the IFIP congress, 1977 (North-Holland
Publ. Co.}

5 KARPOSVKY, M.G., and TRACHTENBERG, E.A.: ‘Fourier trans-
form over finite groups for error detection and error correction in
computation channels’, Jnf. and Control, 1979, 40, pp. 335-338

& KARPOVSKY, M.G.: ‘Error detection for polynomial compu-
tations®, IEE. J. Comput. & Digital Tech., 1979, 2, (1), pp. 49-56

7.KARPOVSKY, M.G.: ‘Testing for numerical computations’, TEE
Proc. E, Comput. & Digital Tech., 1980, 127, (2), pp. 69-76

8 KARPOVSKY, M.G.: ‘Detection and location of errors by linear
inequality checks’, fbid. (in the press)

9 WOLF, G.A., and REDINBO, G.R.: ‘The optimum mean-square
estimate for decoding binary block codes JEEE Trans., 1974, IT-20,
pp. 344-351

10 REDINBOQ, G.R. and WOLF, G.A.: 'On minimum mean-square error
linear block codes when the data have g-adic weighting’, Inf. Con-
trol, 1974, 26, pp. 154177

11 PRADHAN, D.K.: ‘A new class of error-correcting/detecting codes.
for fauli-tolerant computer applications’, JEEE Trans., 1980, C-29,
pp- 471-481

i2 COCK, RW., SISSON, W.H.,, STOREY, T.F., and TOY, W.W.:
‘Design of a selfchecking microprogram control’, ibid., 1973, C-22,
pp. 255262

13 PARHAMI, B., and AVIZIENIS, A.: ‘Detection of storage in mass
memories using low-cost arithmetic error codes’, ibid,, 1978, C-27,
pp- 302-308

i4 WAKERLY, J.F.: ‘Detection of unidirectional multiple errors using
low cost arithmetic codes’, ibid., 1975, C-24, pp. 210-211

15 SAHANI, R.M.: ‘Reliability of integrated circuits’. Proceedings of
IEEE International computer group conference, Washington, DC,
June 1970, pp. 213-219

16 DIAZ, M., and MOREIRA DE S0UZA, I.: ‘Design of self-checking
microprogrammed controls’. Digest of papers. Fifth annual inier-
national symposium on fault-tolerant computing, Paris, June 1973,
. 137142

17 PRADHAN, DK., and STIFFLER, J.J.: “Error correcting codes
and self-checking circuits in fault-tolerant computers’, IFEE Com-
puter (special issue on fault-tolegant computing), March 1980, pp.
27-37

18 KARPOVSKY, M.G.: *Testing for numerical computations’, JEE

Proc., E, Comput. & Digital Tech., 1980, 127, (2), pp. 69-76

IEE PROC., Vol 129, P1. E, No. 5, SEPTEMBER 1982

) Narendra S. Goel has been a professor at
™, - the School of Advanced Technology,
State University of New York, since
t January, 1976, and Director of the Tech-
B nical Vitality programme of the school,
I'- . until September, 1981. He is an associate
'+ of the LaJolla Institute. Before joining
" Binghamton, he was a principal scientist
A% Wl and manager at the Xerox Corporation,
B @ Wcbster, New York for four years, where
he led a team working on xerographic
processes. He has been on the faculty of the Departments of
Physics, Chemistry, Biomathematics, and Radiation Biology
and Biophysics at the University of Rochester and the
Tnstitute for Fluid Dynamics and Applied Mathematics at the
University of Maryland. He is a consultant to JBM Corporation,
Institute for Defense Analysis, Center for Theoretical Biology
at the State University of New York at Buffalo, Physical
Dvnamics and Worcester Polytechnic Institute. He is Vice-
President and Secretary of the Center for Theoretical Biology.
His major interests are in the modelling of complex systems
with emphasis on biological and engincering systems, and the
continuing education of scientists and engineers. He is on the
editorial board of the Journal of Theoretical Biology, and the
advisory board of the Journal of Mathematical Biology, and
is an associate editor of the Builetin of Mathematical Biology.
Dr. Goel received his early education in India. He was
awarded an M.Sc. in physics from Delhi University in 1959, an
M.S. in mathematics from Poona University in 1962 and the
Ph.D degree in physics from the University of Maryland in

1965.

Mark Karpovsky was born in Leningrad,

"< 1JSSR, in 1940. He received the B.S.

spectively,

. M.S. and Ph.D. degrees in computers
from the Leningrad Electrotechnical
Institute in 1961, 1963 and 1967, re-

He is currenily an associate professor
at the Computer Science Department at
 the State University of New York at
Binghamton and consultant to IBM
 (orporation. His interests include fault-

tolerant computing, test generation, reliable software, error-

correcting codes, logic and system design,

Contents of Software & Microsystems

The contents are given below of the August 1982 issue of Software & Microsystems.

Justification of formal methods for system specification
B. Cohen

A control kernel to support Ada intertask communication on a
distributed multiprocessor computer system
G.C. Shoja, F. Halsall and Prof. R.L. Grimsdale

Considerations in setting up supporting facilities for micro-
processor applications work and teaching
D.A. Pucknell, M.J. Liebelt, M.L.J. Raymond and N.
Wotton

University micros
Undergraduate microcomputer projects in computer studies
at the University of East Anglia

IEE PROC., Vol. 129, Pt. E, No. 5, SEPTEMBER 1982

181

m..-_n.wr'.'.l.-.-.-\. E o,

-

R

[T, -
T T EREF T AT RPAr st T3 no ol

7 rhy
TGS L e W = Ly Tl = s g

LA

ety pcachinis Bl

v
] i T T e T L] Iy P R Tyl B T, Bt £ S - 1

e e B -

[T O TR ey Try ey -]

DT of o i T (TN -] A, et Al e e e A By

AT L . T N NN N e e B b = o e AT HE T e e i)

e At s mmrrs o r s, w = e spmmages e+ wae wes R e T ..

"-l"'l?"'h'-'l"-'ﬂl'ﬁ."'\-'""F"rlwlmfﬂﬂw.fWWW&WW:ﬁHmWWHM%WQﬂWMhﬂ-:rrr.l;lmf-l'.-nﬁ'-.nﬂhrdn.-“.- ;

T T TR T RPN S R ST S Y

D el I

- T T T JE T TN I T LT

A A N e T e T ol L S e i o i e e e AT = L el o] T S b P, e S et e L I‘rf‘:\-.‘.".d-'if"-‘l’.-"_-‘-'::. .3."'&\-'.!‘“"'."'ﬁrm-‘|!

" I Rt L) il el et i Tt Sttt St s el

b ekl

PN i A e
I, " P T, e Sy | e e et e o L A e B W T O e PR T T L e L N —d | O] W

m==m-wmmmurwﬂihﬂﬂ“ﬂﬂwMMMW_:WWﬁrﬁmww.ﬁmm-wme;.me-m e
P s ,

- il
T el
Ity

Py

