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Abstract: Problems of emror detection and error location in programs or specialised devices computing values
of real functions are considered. Systems of linear inequality checks are used for error detection and error
location, Theorems are given for solving the problem of the error-detecting and locating capabilities of
memaoryless and memory-eided decoding procedures based on linear-inequality checks.

1 Introduction

We shall consider the problems of error detection and error
location in programs or devices for computing real functions.
By errors, we mean errors in the text of the programs or
catastrophic structural failures in digital devices. As in Ref-
erences 1—5, we shall use the additive way of describing the
influence of errors; namely, by the error e in a program or a
device computing f(x), we mean the function e(x) such that,
as a result of the error, our program or device computes
f(x) + e(x). .

By the multiplicity lel of the error e, we mean the number
of nonzero values of the function e(x). (This definition of the
multiplicity of errors is natural if errors for different xs are
independent. This may be the case, for example, when f(x) is
the word stored in a memory cell whose address is x. In this
case, the multiplicity lell of an error is the number of faulty
cells in our memory.)

For error detection andfor location we shall use an approach
based on the analysis of the resuits of some linear checks. This
approach was developed in References 1-5 and it was based
on the very powerful techniques of Fourier transforms over
finite groups, comesponding fast Fourier transforms, least-
absolute-error polynomial approximations and linear error-
correcting codes.

We note ailso that techniques based on Fourier (Walsh)
transforms over finite groups were widely used for the prob-
lems of logic design [5—11], for the design of linear systems
over the groups [12,13], and in fault-tolerant computing
[16].

Let x=(xy,...,x,)eG, x;€{0, 1}, so that G is the group
of binary n-vectors with respect to the operation ® of com-
ponentwise addition mod 2.,

In References {1-4], the methods of error detection in a
device or program computing f(x) based on linear equality
checks, namely

Y fxer)—C =0 (1)

tET

were investigated. In eqn. 1, 7 is a ‘check’ subgroup of G, and
C is a constant. In a program or device computing f(x), the
problem of error correction by a system of linear equality
checks was considered in References 2 and 3. It was shown in
‘References 1—4 that linear equality checks have very good
error-detecting and/or error-correcting capabilities and may be
easily implemented. Very sitnple equality checks were con-
structed in Reference 2. for many standard computer blocks
and in Reference 4 for programs which evaluate polynomials.
It was shown [1-—-4] that equality checks may be effectively
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used in the case where f(x) is an integer for every x, and very
few noninteger functions have nontrivial equality checks.

The generalisation of linear check methods to the case of
noninteger computations was given in Reference 5. It was
proposed that linear inequality checks

Y fixer)—C <e (2)

TeT

{where ¢ is a given small constant) should be useﬁ for error

detection in numerical computations (checks (eqn. 1) are a

special case of (eqn. 2) with e = 0). The method of constructing
optimal inequality so as to minimise the cardinality |T| of a
check set 7' (and therefore the testing time) was proposed, and
optimal checks for such important noninteger computations as
exponential, logarithmic and trigonometric computations were
given.

We shall describe, in this paper, methods or error detection
andfor error location by systems of linear inequality checks.
We shall introduce two methods of error detection and location

by the analysis of results of the checks, namely memoryless

and memory-aided decoding. Finally, we shall describe the
error-detecting and error-locating capabilities of both methods
of decoding.

The detection andfor location of errors by systems of
linear inequality checks may be effectively used foracceptance-
testing of programs in the course of development, or of devices
in the course of manufacture. For example, this approach can
be used for testing a read only memory (ROM) containing the
value f(x) in a cell whose address is x*. In the case of testing a
random access memory (RAM) we first have to choose f(x),
and then write in every cell the value f(x) corresponding to its
address x. After this we scan out the memory, verify the
checks (egn. 2) and by analysing the results of these checks we
can detect or locate errors. .

This approach is applicable to stuck-at faults in cells of a
ROM or RAM, stuck-at faults at the ouiputs of an address
decoder, bridging faults between output lines of the decoder
and faults that affect power supply or read/write circuits,
The testing time in this case is less than for such widely used
procedures as SHIFTED DIAGONAL, GALLOPING
COLUMNS, WALKPAT, GALWERC and GALPAT {19-21].

We note also that the well known syndrome testing tech-
nique [18] is a special case of the inequality checks (eqn. 2)
withe=0and T=0G.

The inequality-check approach is a high-level functionai
testing technique which does not depend on the implemen-
tation of a program or device computing the given function
f(x). The constructed checks for many practical cases are

‘very simple (see Reference 5 and Karpovsky {(op. cit.,

*KARPOVSKY, M.G.: ‘Memory testing by linear checks’ (IEEE, under
¢onsideration)

IEE PROC., Vol 129, Pt. E, No. 3, MAY 1982




Tahle 1: Upper bou for check complexity log, 17| for functions

Fly) with ETI}W (¥ <1 for every s<n, y=2""Z, ZE10,
ye[oa
1,...,2"—1}
—log,, €
n i 2 3 4 b 6
3 2 3 3 3 3 3
4 3 3 4 4 a a4
5 3 4 4 5 5 5
5] 3 4 5 5 3] 6
7 3 4 6 6 6 7
8 4 4 7 7 7 8
9 5 7 7 8 8 9
10 Z 7 8 9 9 9
11 5 7 8 9 10 10
12 5 8 8 10 10 11
13 5 9 10 11 12 12
14 5 9 10 11 12 13
15 b g 10 11 13 13
16 B 9 11 11 14 14
17 6 9 11 12 14 15
18 3] Q 11 12 15 15
19 & 10 11 12 16 16
20 G 10 11 12 16 16
21 6 10 i1 12 16 16
22 & 10 11 12 17 18
23 3] 10 11 12 17 18
24 6 10 12 12 18 19
25 6 11 13 13 19 19
26 G 11 14 18 19 20
27 6 11 14 18 19 20
28 6 11 14 18 19 20
23 G 11 15 18 19 20
30 6 1 15 19 189 20
31 6 Lk 15 20 20 20
hell = 1), we have, from egn. 10:
Y e(Zer)| = le(t)| > 2e (1)
TET;

Thus for a sngle error e(x)= 8, (1) (teZaly), we
have, from egns.9 and 11, §§?(Z)=1, and this error is

detected.
We shall consider two methods of error detection and/or

location by the previously computed binary syndrome vector
$@(x) = (S§9(), . . . , SE(x)) (see eqn. 9), namely memory-
less and memory-aided decoding.

In the case of memoryless decoding for every given x, we
first compute S(x), and then by the analysis of S*®)(x) in
the case of error detection we decide whether there exists

TE:U: T;, such that e(x®r)# 0 and in the case of error

location we decide whether e(x) 0.
In the case of memory-aided decoding, for every given

m m
TE @ Ti]($ T;=
i=1 i=1

x we first compute & = {S{”}{xﬁﬂ

e ..et, €T;,i=1,...,m}], and then, by the

analysis of the set $&? of syndroines, in the case of error
m

detection we decide whether there exists 7€ r iﬁl T;, such that

e(x®7) # 0, and in the case of error location we compute the
error locator

) = 1—8o.an | 2 () = Iell‘ * (12)

tcG

m
for allrEx&?fiﬁl T;.

We note that these definitions of error detection and error
location by memeryless and memory-aided decoding are very
similar to the corresponding definitions of error detection and

88

error correction by systems of orthogonal equality checks
[2,3]. The main difference is that, in the case of inequality
checks for every x syndrome, S(x) is a bingry vector, and
instead of computing the error e(x) we compute the error
locator I(x) (see eqn. 12).

The following results have been proven [3] for m orthog-
onal equality checks.

For memoryless decoding:

(a) All errors with multiplicity at most m are detected, and
there exist errors with multiplicity m + 1 which cannot be
detected.

(b) All errors with multiplicity at most [m/2] ([a] is the
greatest integer less or equal 4) are corrected, and there exist
errors with multiplicity {m/2] + 1 which cannot be corrected.

For memory-aided decoding:

(a) All errors with multiplicity at most 2™ — 1 are detected
and there exist errors with multiplicity 2™ which cannot be
corrected.

(b) All errors with multiplicity at most 2™7! — 1 can be
corrected and there exist errors with multiplicity 2™~ which
cannot be corrected.

We shall see in Section 3 that, for memoryless decoding, the
error-detecting and the error-locating capabilities of inequality
checks are equal correspondingly to the error-detecting and
the error-correcting capabilities of equality checks.

For memory-aided decoding, we shall see in Section 4 that
the error-detecting capabilities of equality and inequality
checks are equal, but the error-locating capability of inequality
checks is less than the error-correcting capability of equality
checks.

3 Memoryless dacoding for a system of inequality checks

We shall consider in this Section the error-detecting and erroz-
locating capabilities of a system of m orthogonal linear
inequality checks (eqn. 7) for the case of memoryless decoding,

Theorem 1
For any system of m orthogonal inequality checks, we have
for memoryless decoding:

(2) All errors with multiplicity at most m are detected.

{(b) There exist errors with multiplicity m + 1 which are
not detected.

Proof
(@) The error e is not detected under memoryless decoding,
iff there exists x such that e{x) 3 0 and

Y {fxen)+e(xen)}—Ci|<e {{=1,...,m)
rET
(13)
Thus, we have from eqns. 7 and 13:
Y e(xar) | = | e(x)+ Z e(xer)| = ¢
reTy tET-on
=1...,m) (14)

Since |e{x){>2e, it follows from eqn. 14 that, for every
i=1,...,m, there exists 7; € T; — 0" such that e(r;) 0.
For any x, T; and T;(i #j), we have from the orthogonality
relation (eqn.8) {xeo7;}N{xeT;}=x, hence 7;¥7,
el m+ 1, and any error with multiplicity not greater than
m is detected by m orthogonal inequality checks.

(b) We define the error ¢, as follows:

3e.x = O
eo(x) = (—3e,xE{ry, ..., Tpwherer; €T, — 0" (15)

0, otherwise
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For any binary vector 6 =(04,...,0m)€ {0, 1}™, we

denote
1t m
M(g) = i$ o:(T; —0") = i%ﬁ oy1; I €T; — 0%
=1 =1 .
C;T; = T; ifo; = landoyry; = Q" ifo; = O

Utilising conditions similar to those described in References
2 and 3, we also require that, for any &, 8e{0, 1} (a#8)

Mo)N M) = @ (0 is the empty set) (23)

(Note that by setting o= (0?~! 10™ "9 g=(0f"! 10™"%
we have, by eqn. 23, T; N T; = 07,

Theorem 3
For any system of m inequality checks satisfying eqn. 23, we
have for memory-aided decoding:
(@) All errors with multiplicity at most 2™ — 1 are detected.
(h) There exist errors with multiplicity 2™ which are not
detected.

Proof
(@} Let e(x)#0 for some x. If lef<<2™ — 1, then there
existe, F€ {0, 1} and i€ {1,. .., m} such that

M(a) = M(§) e {T;—0"} (24)
e(x@r1) = 0forall r€M(a) (25)
e(x ® 7g) # 0 for some 75 € M{(f) (26)

It follows from eqn, 24 that 74 ® 1 & M(a) for all r € T; — 0",
Thus, we have from eqns. 24, 25 and 26:

ZE{IETI-;—E'T) -_-’E(.I‘E'Tﬁ)‘i' ' Z
TET) rETy-0R

=‘E(3‘E’Tﬁ)+ 2 elxor) | = le(xorg)l >2e
TEM(x) .

e(xergeT)

(27)-

Hence, from eqns. 7, 9 and 27, we have S{¥(x®75) = 1, and all
errors ¢ with 0 < lle¥ << 2™ are detected.
(b) We now construct the undetectable error e, with

m%ll‘tiplicit)r 2™ let s fix ;€ —0" (i=1,...,m) and
5€

(— )N3¢if thereexist o = (0, ..., 0m)
eol(x) = 1 €40, 1™ such thatx = El or; (28)
lﬂ, otherwise
(llegll =2™)
If for some x and i€{l,...,m}es{x®r)=0 forall r€T;,

then % ey{x®7)=0andSF¥)(x)=0.
TET;

If there exists £ € T;, such that eo{x®r) #0, for some x
and 7, then by eqn. 28 there exists JC {1, ..., m}, such that

x@t= o 75 In this case, e,(x®r)=3e(— )|, and by

i=rl
eqn. 28,
Y exer) = eg(xe)+ ) exer)
TE T reTi—i
— _ 7|
- BE( i) +TE%—!‘ Eﬂ(j%f T} mT)

= 3e(— DI + ¢, Lg fjea-r;) 29)

Since, from eqn. 28

[35(‘_ 1}”!'1 : ifiel (30)
€ T:97T; | =
° (E: J f) 3e(— DMI*E, ifigr

90

we finally have, from eqns. 29 and 30, for this case:
Y  elxer) =0

xE= Tﬁ["n] N
Thus, Sx) =0 for all x and i, and e, cannot be detected by
memory-aided decoding. Suppose & / i gl T; is the set of coset
representatives of subgroup _’g! I; in G, (‘G / _gl T,-I ="
i= i=

m
Il 'T;

f=1

'1) . To detect errors by memory-aided decoding for
- ' m
every x; € G/I;ﬂl T;, we have to compute $®(x;or) for all

TE F T;. Then we conclude that e(x;®7)=0 for all 7€
-1 _
im
IE T; iffS(E}(Ij'@T) =0" forallr € 151 ;.
=1 : i

Let us nmow consider the problem of error location by
memory-aided decoding.

Theorem 4 -
For any system of m inequality checks satisfying eqn. 23, we
have for memory-aided decoding:

{2) All errors with multiplicity at most m are located.

() There exist errors with multiplicity m + 1 which are
not located.

Proaof
For any two errors ¢; and e; with locators 1y =1, {see eqn.
12), there exists x € & such that

g;(x) = 0and le;(x)1 > 2e (31)
Dencte
( 1, if there exists 7, € x ® M(o) such that

lgg(x ®T5)| > 2e (32)
0, otherwise (f = 1,2)

Li(o) =1

Since e, I, ke, | < m, we have:

[{elLi(o) = Ly(o) = 1} <m (33)
Thus, there exists @, € {0, 1}™ and i€ {1, .. ., m} such that
Mia) = M(B)= {T;— 0"} | (34)
L) # L,(P) (35)
Loy = Ly(a) = 0 (36)
Then, by eqns. 32 and 35 there exists 15 € x @ M(f), such that
Lhixerg) Fh(xerp) (37)

Since, for any € T; — 07, it follows from eqn. 36 that
gifxerg®r) = e;{x®7397) = 0 (38)
we have, from egns. 34 and 38:

Y g(xerger) = ¢{x@rp)
TS T

/=12y (39

and from eqns. 37 and 39
S (x @ 74) # 52 (x ® 75) (40)

Consequently, all errors with multiplicity at most m are
located.

() We now construct two errors ¢; and e, such that
le,b=m+ 1,1 #1I, but §€’(x) = $%2)(x) for all x.
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