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RESUME

Erant donné un groupe fini abélien G, nous &tudions les sous-groupes
(considérés comme codes correcieurs d’erreuss) de sous-espaces quelcongues
donnés {considérés comme ensemble d’erreurs). Cet article est une synthese
des résultats contenus dans [6}1 1].

La partie 2 donne des conditions suffisantes d'existence de codes linéaires
corrigeant un ensemble d’erreurs donné dans un espace linéaire G. La
partiec 3 considére des codes qui sont des sous-groupes d’un groupe
abélien G. La partie 4 fournit des estimations pour les meilleurs codes
(linéaires ou non) corrigeant {ou détectant) un ensemble donné d'erreurs.

SUMMARY

Given a finite Abelian group G, we study the subgroups (considered as
correcting codes) of arbitrary given subsets {(considered as sets of errors). This
paper is a survey of results from references 6]-[11).

The Section 2 gives sufficient conditions for existence of linear codes
correcting given set of errors in linear space G. The Section 3 consider codes
‘which are subgroups of Abelian group G. The Section 4 gives the esimations
of best {linear or not) codes, correcting {of detecting) a given set of errors.
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1.1, L? G be the group of n-vectors (), ..., x'), where
x"e{0, ..., q,-1}{i=1, ..., n), with the operation & of componentwise
addition, so that the i-th components of the vectors add up modulo g,
(i=1,...,n), Let FgG (0=(0, ..., 0)eF),

We shall say that a subset £ of G is a code which corrects the error set F if,
for any x;, x; €& (x, ¥ x,) and any ¢,, e;e F:

xl $E1 #I;%fz.

Il € is a subgroup of G, & is called a finear code in G.

Ifg,=q(i=1, ..., n), where gisa prime, weshallrefertoacodeEinGasa
code in a linear n-space [writing E (n) instead of G}; otherwise & will bc called a
code in the Abelian group G.

1.2, The case, when G is a linear n-dimensional space over GF(g) and Fisa
set of errors of a given multiplicity in the Hamming or Lee metric-or the set of
bursts of a given length, have been studied fairly well (see, e.g., [1, 2)).
Recently a few papers have appeared on the construction of codes for the case
G 1s an Abelian group and F is a set of errors of a given multiplicity {3, 4, 3).
The present paper is devoted to both types of codes and contains a survey of
results from [6)-[11] about sufficient conditions of existence of codes that
~correct an arbitrary set of errors, methods for finding such codes and
estimations for their ¢ardinality.

The problem of correcting of a given set of errors arises when transmitted
messages are outputs of some logical network. In this case an error in a single
element of a network may result in an error of the multiplicity more than one
in the vector of the output (by the multiplicity of the error we mean the
number of distorted output lines). Thus for every error in a single element of
the network we have some vector of error at the output, and for the network

~with m elements we have a set F of errors with | F | =m at the output (| F| is
the cardinality of F). This set F depends only on the logical structure of our
network. |

Example 1: Let us consider the logical network of the Figure with n input
binary lines x,, ..., x, and 5 output lines y,, ..., y,. The error in the block
B, may result in distortion of the signals at the outputs y,, y, and the
corresponding vector of error will be e, =(1, 1, 0, 0, 0); for the error in B, the

Ly

F={e,e1,05,0,,04} -
={1,1,0,0,0),(1,0,1,1, 1), (0, 1, ¢, 1, 1),
(1,0,0,0,0),(0,1,0,0,0), (0, 0, 1, 0, 0),

0,0,0,1,0),(0,0,0,0, 1))

of errors at the output of the network.

Another example when the problem of correction of a given set of errors
arises is the case of ““artificial” noise when we consider a process of data-
transmission as a game situation [8]. Section 2 of this paper will be devoted to
sufficient conditions for the existence of linear codes in linear spaces E(n),
which correct a prescribed set of errors F.

1.3, In Section 3 we shall consider linear codes in Abelian groups,
represented as a direct product of eyclic groups:

G==G.x....xG,xGIx.._xG:x“.xG,x...xG,.

' A, "

where each ('j-,i is a cyclic group of order | G,| =g, and the q,'s are distinct
primes {i=1, ..., 5).

All the results of these sections may be rephrased to apply to codes which
detect a prescribed set F of errors. |

Section 4 will be devoted to the estimations of the cardinalities of the best
linear and nonlinear codes in linear spaces correcting or detecting a given set
of errors.

2. CODES IN LINEAR SPACES

2.1. Let E(n) denote n-space over GF(qg) and FZE(n), 0e F; Define:
B(F)={e,0¢,]e,, e,eF},
where 0 is the symbol for componentwise subtraction mod q.
Theorem 1 [6, 11}, the case E(n) over GF (2} {8): For any FgE(n) if

!

(1) 9(F)I S —

{qul-H*l —l},

then there exists g linear (n, k)-code correcting the error set F,

- i



Logical Network of Example 1.

Accnrdiné to Theorem 1, all we need in order to construct sufficient
conditions for the existence of linear code correcting a prescribed set of errors
is a satisfactory upper bound for |9(F)|.

Corollary 1 [6}: If:

d+a A Y "...._.....1_ '—'t."l"‘l
(2) .‘);,d(i){q lY'zq -0 h

then there exists a linear (n, k )-code & with base q and Hamming distance d such
that:

max x| =(lyl| ¢

X, yel«0
(where!| z || is a number of nonzero components in a g-ary n-vector z). Note that
in the case e=n—d the condition (2) is very close to the well-known
Varshamov-Gilbert bound [1).

As another example, let us consider sufficient conditions for the existenceof
a linear binary (¢ =2) code 5 & E(n) correcting arbitrary *solid” burst errors
of length b and multiplicity at most /. By a solid burst of length b and
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where ¢,;e{0, 1}, ¥ ¢/, and:
I=0
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(i=0, ..., n=0).
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' 2n+1
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then there exists q linear binary (n, k)-code correc'ring solid bursts of length b
and multiplicity at most |, where ] < 1/2(n—=b+1).

2.2. Let G(k) be the set of all k-dimensional subspaces of E(n).

Theorem 2[7]: The number N, of linear codes & in E (njsuch that | £ = y* and
§ corrects the error set F satisfies the condition:

(4) N;a(l—(l-“’ ;.'E{IF“ )(q"-ll)fG(k}!-

Note that P(£)= N:/| G (k)| may be interpreted-as the probability thatan
arbitrarily selected subspace of dimension k in E (n)willbeacodet correcting
the errors in F (assuming, naturally, that each k-dimensional subspace has
the same probability of being selected). |

It follows from (4) that even a small reduction in the number & of
information digits of the code implies a rapid increase in the lower bound
for P{E). Thus, for large n, a relatively small number of tests will suflice to find
a linear code & correcting the given error set F, having a number of
information digits which is fairly close {and asymptotically equal) to the
“best” number & defined by Theorem {. We note also that for computing the

weight distributions of codes constructed by Theorem 2, we may use the
method described in [13].

3. ERROR-CORRECTING CODES IN ABELIAN GROUPS

3.1. Let G be finite Abelian group, with direct-product decomposition:

G=Glx...thszx...xG;_x...xG,x...xG,.
N it M . T e o e+

L My M,

where G, are cyclic groups, |G;[ =q,, with ¢, distinct primes (=1, ..., 3)



where x m){i=1, ..., sk
A linear code in G, correcting a set F< G (0 e F) of errors, is defined to be a
subgroup § of G such that, for any x, ye& and e, feF,

xBPeAy®f (x#y)

(Throughout, @ is the symbol for componentwise addition of vectors
x=(xy, ..., x3)and y=(yy, ..., y,)in G(x,, y,€ E(n,)} the components of
vectors x; and y, being added modpg,.)

We now consider the question of sufficient conditions for the existence of
hinear codes £ G correcting a prescribed error set F.

L |
Note thatif G= [] E(n,), 4, are distinct primes, then any subgroup & of G

=] :

such that |§| = [] 47 (k;<n,) is a direct product of subgroups &, =E(k,) of
i= |

the order |&;] =¢*.
Consequently, if F=F, x .., xF,, where F.cE(n,)(0cF,}, then £ is a

L
linear code correcting the error set F, such that |E| = [1 4. iff & is a direct
f=

product of linear codes &, in the linear spaces E(n;) correcting the error
sets F, [E,1 =4} (i=1, ..., s).

Thus, if F= ﬂ F;, F,<E(n,) we may utilize the method of Section 2 to

find a linear code in the group G= ]_I E (n;) which corrects the error set F.

We now consider the question of sufficient conditions for the existence of
linear codes in groups when the set F fails to satisfy the condition formulated

above.

3.2, LetFcG= f[ E(n;)beasetoferrorsandput 0(F)= {0 f|e, feF},
where € denotes c;r:poncntwisc subtraction of vectors e and f, subtraction
of each f, from e, being performed modgq, (i=1, ..., s).
Let:
C=(cy, ..., c,)e{0, 1}(c,e{0,1};i=1, ...,3)
Denote: |

G9={{e, x,, ..., e,x)eG|x,eE(n), x,#ﬂ;'inl, v 51 |

I“Elﬂl
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Theorem 3 [7): Let Fc [1 E(n,) and N, be the number of linear codes in

fw]

;H: E(n,) such that & corrects the error ser F and:

€] = H qr(1 Sk, <n,).

im]

Let P(E)=N,IGtk,, ..., k)|, and for every C={¢,, o e)e{0, 1)

) = 11160 o)),
f=187 =
Iy {-Z o<1, then N 12 1) moreover:
()
(6) PRzt~ ¥ o

Cwud

Example 2: Let s=2, §,=2, g,=3, n =n;=2. Then:
E(n))={0,1}2, E{n1}={0,1,2}1,
|Gl =47 g7 =36;

G___’E{"l}x E'[”;J,

for every:

xeG,  x=(x;,x;), x,eE(n,), x,€ E(n,);
GO 1 {(0, 0, -"31”-"-'155'[“1}"0}!
Gl 0o f(x,, 0, 0} x,€eE(n,})-0},

G- 1 {(.xl, x3)1x,€E{n,) -0, x,€E{n;) =0},
Suppose that the error set:

F={(0,0,0,0,(1,1,1,1),(1,1,2,2)}.
Then:
B{F]gFU{(ﬂ, 01 Il I}l [.01 01 2:- 2}}1

IG{“'”r‘iE{FJJ=2, (G~ 0(F)=0 and G D A B(F) =2

Let us :stlm.atc how many codes may be constructed such that every code £
corrects the given error set F and:

(c) =‘I: qigﬁ {k1-=-"51=“-

Flrnm {5), (6) we have a'® '@ 5 V=0, g V= 1/6 and P(&)z1/3.
Since our group G contains | G (,, kil = |G, 1} =12 subgroups with six

- ) 3 . e I i . ! ¥ -



It fﬂl_lav':m Theorem 3 that {as in the case of codes in linear spaces) a
relatively small reduction in the numbers &, (i=1, ..., s) of information

| 4
digits (in such a way that the transmissionrate Y &,/ 3 n,does not change
=1 =1

as n— m) will bring the probability P(£) close to unity, whete P(£} is the

probability that any subgroup from G (k,, ..., k,) is the desired code E. This
implies a very simple procedure for searching for linear codes in finite Abelian

groups, yielding codes which are sufficiently close to optimal.

The number of elements |£| of a code £ found with the aid of Theorem 3
depends on the choice of the parameters o for all0¢ { 0, 1 }*. This motivates
the following corollary from Theorem 3, which gives a sufficient condition
that is more convenient, though coarser. '

Corollary 3 [7]: If:
{T:I ﬁ {qi,_ ”{',g{:\/j_ IJIIE‘IF H [qil'_-:_ lr',lGl("}ﬁ E_}{Fll—-l‘
i= i=1
Jor all C=(cy, ..., ¢,)e{0, 1}* (C0), where [C[l= ¥ ¢, then for any
i=1

Fo [] Edny) there exists a code Ec T E(n,) with 1E] = ] 41 2k;8n,),
i= | i=t P
correcting the error set F.

We note also that all the results of Sections ! and 2 may be generalized to

linear codes & in linear space E(n) or Abelian group [1 E{(n,) correcting a

=1
gtven set F of errors and satisfying the additional restriction £ € R, where R is

& given subset of E(n) or [] E{n,).

i=}

4. BOUNDS FOR THE CARDINALITIES
OF THE BEST LINEAR
AND NONLINEAR CODES
CORRECTING OR DETECTING
A GIVEN SET OF ERRORS

4.1. Let Ein) be a linear n-dimensional space over GF(g) and
F{0e FeE(n)) be a-given set of errors, Denote by n{F) any largest code
(0cn<E(n))correcting the errors of the set F [i.¢., 8(n(F)) ~#{F}=0] and

L.oupm mpry - -

ks cpr o, e e e e - _amE,

IE?F}] - ITI(F” =

q

(8} "
tFl-

In the classical case (when F is a sphere in a Hamming metric):

(i} rigﬂht side of FS) is just Rao-Hamming sphere-packing bound and in case
of equality n(F)is a perfect code [1]; Analog of it is given in [14].

(1) left side of (8) is just Gilbert bound and the case g"({0(F)1) "5 |E(F)
corresponds to Varshamov modification of Gilbert bound [1] _In 12'
Fiuppa has :shnwn (in other notations) that g"(} 0(F)| )T S |E(F)] z;s n _.[ ]
1f' E(F) restricted to be subspace which is a irreducible Gu[;-pa code. In [! I]:F
given the same bound for other specification of concept of suhsp;r:c ;

Some improvement of this ' '
| generalized Gilbert bound (8) is g
following result which is the corollary from Theorem 1. )5 glven by the

Corollary 4: Fyr any Oe F= E(n):
(9) grrITionta-DIsE et o e (Fy o In(F)!
{where 10 is a smaltest integer 2 ga).

£ note also that Cor 4t mo O O
W nl]ary [5 an analug of Varsh

_ sha v h d
arbltrary set of errors. und for

4.2. We shall call Fel0eF_<E(n}) a worst noise IN(F ) 2 n(F)| for

any F such that IF: = |F fand we shall call F 0eF,cE e
. b
IH{F*”éln(F”(|Ff=‘|Fb|}_ »{ b€ (n)}a best noise if

We shall estimate now the values IN(EIL ISR In(F,)], [S(F, .

F:Thmremnl [B-10):(i) Forany1< Mm% q" there exists the worst noise F with

| ,I'=m such that there exists subspace F(n—r), F c:E{n-—f}' and
:ﬂ{f,};{g}l &2 for any geE(n—1), g#0, where |
QL—- { Gk=0, . o g -1 ] .80 E(F )= E(t) where E{I}$E(n-—rJ=E(n)
and for =2, 3 n(F,)=&(F,)=E(1), IM{F )| = |§(F,}|;

(1) I n{F,)#0 then:

(10) < InF)g™"IF, |2 <(g+1),
and for g=2:
(1) 2<|M(F,)27*|F, |2 <9.

We note also that left sides of (10) and (11) are valid for every error ot F



ol {11) be improved {for | F| >4 even for linear codes. Namely, we have
for g= JWPom the Corollary 4 and for any F:
(12) 2418 e E) - Pl g IneE) 270 FPL

|0(F})| +1

Thus asymptotically (n -~ )| n(F )| and | £ (F )| have the same order as
generalized Gilbert and Varshamov bounds.

4.3. Let us consider now the bounds for cardinality of codes correcting the
best noise F,,

Theorem 5 [8-9): For any F, we have:

(13) [E(F,)| =gt TPl
(14) max(—;,—;) <|n{F,)lg "|F, 5.

Lower bound 1/g< | n(F,)|g~"|F,|is valid for arbitrary noise F even for
linear codes £ (F).

Thus for every q:

(15) n—Jlog,|Fyll=log JE(F,){ Slog In(F,} sn—log,|F,]

and if { F,| =¢', then:

{16) 18(F )l =n(F,)| =q""".

We can show [8, 9] that very “'concentrated”’ [in some subspace of E(n)] or
very “'scattered™ [in E(n)] subsets F are the best noises. The intermediary
constructions (given in Theorem 4) between these two “‘inefficient extremes”

are on the contrary the worst noises.

So, asymptotically {n — o) |£(F,)| and |n(F,)] have the order of
generalized Rao-Hamming bound (8). We note, that all bounds given in

Theorems 4 and 5 for codes correcting F_ and F, are constructive.

4.4. The problem of inding | £(F)| and [n(F)| for any given set F is very
complicated and, perhaps, any general algorithm will be not shorter than
complete scanning. But the evident implication

FQFSF' = |nF") SIn(F) £{n(F)| give us the possibility to
approximate *‘real” noise F by two “‘artificial® noises F' and F’' such that it is

easy to compute |n(F’)| and | n(F")]|. ~-

We shall illustrate this situation for the linear codes by the following
theorem. |

L aa T R — -

Sl Bedki s

E(’”ﬂUE(’":JEFEE(MJUE(%JUEf’"’
where m, 2m, > m, and:
E{ml}nE(m,)-E(m,}nE{maj-E{mI)n E(my}= {0},
Then;

{I7) |E(F)| =g?=m-m

4.5. Let us estimate now the cardinality of the best codes det. cting the given
set F of errors, Code Oen< E(n) detects the errors from tha: set F ifT:

B(n)nF=0,

We denote the largest (linear} code detectin
g the errors from the :
E(F)n*(F). m the set F by

[t is evident that code N corrects Fiff it detects 0(F), So. determination of

[Z(F){ and | n(F)| is more eéneral probl inati
and | (B B problem that determination of tE(F))

One can easily see that-

o
(18) FO(CET S INF) S¢"— IF] 41,

We can dcﬁ'ne+by analogy noises F¢ and ‘. bestand worst for dcteclinﬁ and
develop the similar resujis. For example, from [8, 9] follows:

(19)
(20)

| HJ{F:” = |ﬁdfF:” =qilﬂl~.llr'—rl‘"'.'.r+!ll'-
INYF)0 = [§(F4)] = gr-tosiren
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