~ SPECTRAL METHODS FOR DECOMPOSITION, DESIGCN AND TESTING '
OF MULTIPLE-VALUED LOGLCAL NETWORKS#* - st

M. Karpovsky
Computer Science Department
State University of NHew York

Binghamton, N, ¥. 13901

In this paper we aurvey some new theoretical re-
sults on spectral methods for functicnal decomposition,
synthesls and testing of multiple-valued M-¥) logical
networks with many Iinputs and many outputs, In Sectieon
1 we summatize the basic properties of spectral and
correlation characteristics for M-V functions. These
characteristics are widely used in spectral methods of
decomposition, synthesis and testing for M-V networks.
Section II 1a devoted to spectral metheds for aynthesis
of M-V networks. In Section III we introduce several
complexity criteria for systems of M-V functioms.

These criteria are used in Section IV for the solution
of the problem of optimal linearizatjon for systems of
M-V functions. Section ¥V is devoted to spectral
methods for synthesis of reliable informatiom trans-
mission and processing systems. Spectral methods for
testing of M-V networks are considered in Section VI,
Advantages and limitationa of spectral methods are
discussed in Section ¥II. For the proofs, examples

and applications the reader is referred to 1,2,6,7,8,

9,10

I. Basic Properties of Spectral and Correlation
Characteristics for Multiple-Valued Logical Functions

Let

() | &) (,© (1),

¥ P 4

(s=0,...,K-1} ?(5},2(5}1{0,1,...,p—1}) (1).

be a system of K p~valued logical functiomns. We
shall represent the system{l) as

-1
5 E(s) I:‘1:1-1-_-5 .

=={)

y=f{Z) where Z =

K-1
y= L
a=0

F(B} PK—l—s

(zel0,1,.0., P -1). (2)

Let G be the group of all p-ary m—dimensional
vectors with respect to componentwise additiom module
P.

Bl: Any homomorphism of G into the multiplicative
group of nonzerc complex numbers is called a character
of G or a generalized Walsh function or a Chrestenson

1,81.3:2.

function,

The Chrestenson functiens xm{?} may be defined
by the formula

KN(Z) = 11 Wy 22 , where
-1

u-erp{% {——_l‘) and <w,Z> = L E(E}m(m-l_ﬂ). (3)
g=()
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(We shall use the same letter represent a real number
and a vector of its p—ary representation.)

The wide use of Chrestenson functioms In the
analysis and synthesis of multiple-valued logical

networks 1'3‘12'13, i partly duvue to some remarkable

properties of these functions, We shall summarize
below the most important properties of Chrestenson

functions 1'5153-

1) Completeness and Orthogoenality

For any two functions f{Z) and $(Z)

{EE{D’ - ,H-l ;H='Pm) let

N-1
<f p>= L £(ZW(Z). {4)
Z=0

T.l The set of Chrestenson functions is a complete

——r——__

orthogonal system

-1 =
N <X 1 %™ =0y 4 (5)

(where Gt the Fronecker delta),

:

and xq(z) is the complex conjugate of xq(Z}).

1f £{Z) represents a system of p-valued functions of
m arguments such that

<f,x,>= 0 (t=0,..., N-1), {(6)
then £(Z)=0 for all 7 e€{0,..., N-1}.

2) Finiteness of Representing Series

T.2 Let £(7) represent a system of p-valued functions

of m arguments. Then
N=1
£(Z) = I £(@) x,(2) (¥=p"), (7)
=0
where
Ty = Y <, X, (8)

D2: We shall call £(w) the spectrum of £(Z) and W
the generalized frequency.

Many problems in analysis, synthesis and testing
of multiple~valued networks may be simplified by
changing from the original domain Z to the generalized
frequency deomain w. Some of these problems will be
discussed later inm this paper.

3} Symmetrvy of Index and Argument

T.3 For any w, Z €10, ,...,0=1}

x, @ =%, @ . C®

D&

Wiy £, ale cvalutd iuJ;a:
7 {?Ef




" 4) Translation of Arguments

* T,4 For any 0,2 €{0,.,..,N-1}

X, (Z07) =x (2) X (0 . (10)

where # stands for componentwise addition mod p of
m—dimensicnal p-ary vectors.

5} Isomorphism between Linear p-valued Functions
and the Chrestenson Functions

D3: A p—valued logical function f(z)ﬂf(z{ﬂz...,ztmuljj

1s linear 1f there exist CaseeesC s €{0,...,p-1}
such that -1

sesay? (med p). (11)
g=()

The linear functicns form & commutative group of order
H=§m'with respect to additiom mod p,
T.5 ‘The multiplicative group of Chrestenson functions

is isomorphic to the group of linear p-valued logic
functions. The isomorphism h is defined by

m1
hixy @) = @ w1787

5e=()

{mod p). {12)

We shall describe now the basic properties of the
A

the Fourier transform over G l’ﬁl*ﬁ.
1} Linearity
T.6 Let
8
f(z) = L aifi{Z), (13)
i=]1

where the a, are arbitrary real numbers. Then

~ B
fF{(w= I =&

f:l (w) . (14}
i=1

i

2) Translation of Arpuments

T.7 Let P(Z) = £ (Z 8 T) for some Tel{D,...,N=-1} ,
where 8 stands for componentwise subtraction mod P,

then ﬁ(mi'- E%(m} £ (w). (15}
3} Involution Theorem
T.8 We have
2 @) =1 ). (1€)

4) Convolution Theorem

=1
Let {flffz) {1) = ZED fltz} f2 (18%).

T.2 1le have o~ A A
: f-lef * £ , and
1 1 2 (17

F’\ " F
i*Ep = £1 ¢ 1.

5) Linear Tranasformation nf the Input Space

Let p be a power of ,& prime, and let O -{Uis)

{(i,5=0,.a.,01) be a matrix over GF{p) with necn-

vanishlng determinant.

Let 0 B Z be the product of 0 with a p-ary m~dimen-
sional column-vector ? and let ¢ — be the inverse
of ¢ (all arithmetical operations are modulo p).

T.1l%h Let fu (Z} = £ (opZ)}. Then

e P
F Y o,

f @ =f(be a1y, (18)
{0} {1} (m—1)

where 1f w= {w s paeny

{o=1) m(m—ﬂ) (ﬂ)}'

+
then w = ('I.IJ PR |1

£} Plancherel Theorem

T.11l We have

(12)

7Y Palsson Summation Theorem

T.12 Let V¥V be a subspace of & G,considered as a

vector space over GF(p},and let vl be the subsgpace
orthogonal to V. Then
W™ e@- 2 @, (20)
7eV MEvl

where '?’ 1s the cardinality of V.

The Poisson summation formula {(20) {s widely

used in the theory of non-binarvy error—correcting

codes 11'Ch'5.

Some additional properties of the Chrestenson

13

transform may be found in 2 and for p = 3 in .

For the sclution of design problems for multiple-
valued logical networks implementing f(7) we shall use
oy

not only the spectrum f {w) but alse the lopical
correlation functions B (t), which we shall define now.

D&: The cross-correlation function B(E) (1) fer
fl'f?

functions fl, 2: G +{ﬂ,...,pK-1} 1s defined bv

(2) B-1
B (t)y = L fl{?) f? {7 & 1), (2))

The next theoremn 1, 51.5 will show the relation-
ship between the cress—correlation function and the
Chrestenseon transform. This relationship is sirilar
to the representation of the elassical correlation

functions as the double Lanlace transform of the

original functions {(the Viener—Khinchin thecrem in
il
the theory of stechastical processes = 3},

(2)
fiof

3]

oy
T.13 Ve have B K f (77

1 2
2
{7

Da: If fl = f2 = f , then the funcrion Ef’? (T)=

E£2}(T} is known as the leogical autocorrelztion

function.

il et mﬂ_-'ibq.q:..m' o
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We now proceed to generalize this concept.

Consider the system of autocorrelaticon functions?

(t) e £ £ £
B (1) = ZEG (2) £ (Z @ T)u.. £ (Z6BTH...0T)} =
t
N-1 ¢ N
I [} f(zeir). (23)
7= im0

(t)

The function Bf " (T) may be viewed as the cross—
correlation function of £{Z)} and its t-) successive

translations on €. We now describe its main proper—

ties E.
T.14 (1)
. N-1
We hawve B{ }(D] = 5L £ (Z). . : (24)
£ Z=0

(ii). Evenness Relation
{03 (m-1)

,---jT

} define Tﬁl =
© g (D)

L B

For any T=(T

(p=1 =T 'K

Then

) . -1, _ ft}
B, " (Tt ) =B (D (25)

{11i) Translation of Arguments

Let P{Z) = f (Z #A). Then

prt 1) = B{tXn). (26)

{iv) Linear Transformation of the Input Space

Let fﬂ {(z) = £ (¢ ® Z). Then

B(ft} () = B&t)(cr 5 T). (27)
a

The spectral and correlation characteristics
described above are widely used in spectral methods
of analysis, synthesis and testing of multiple-valued
networks. To calculate the spectrum one can use the
very efficient algorithm of the fast Chrestenson

14 2: 1,51.3

transform . This algorithm requires for

m
a system of p—ary functions of m arguments m.p

arithmetical operations and pm memory cells, To cal=-
culate the correlatien functions B(i} £ one Can use
1*~2

the fast Chrestenson transform and T.13.

To conclude this section, we note that calcu—
lations of spectral and correlation characteristics
utilize operations over the field of complex numbers,
However, all of the results above may be easily
generalized to the case when the operations are

.1,51.6
defined over finite fields ™° .

1I. Spectral Methods for Synthesis of Multiple—
Valued Logical Networks

Let £(2Z) represent a system {E(S}(z}} of K p—ary
logical functions of m arguments (seef{l)(2)} Based

cn the Chrestenson expansion{7)of £(Z), we can set up

a block-diapgram of a device implementing {f(E}[?}] ’
as 1llustrated in Fig. 1.

4 é
Chrestenson Memary
function (holding
generator expansion I
| i coefficients)
’ FLY
X, (2) £ ()
]
Multiplier
fﬂm)xm(Z}
Adder

£(7) = £ £y, (2)

el

Block=diagram of a device implementing a
system of meltiple~valued logical fumctionm

Fig. 1

In view of the isomorphism between the Chrestenson
and linear functipns, the Chrestenson function generat-
or in Fig, 1 may be implemented using only elemernts for
two—1input addition and multiplicatlon by constants
med p.

The summation of terms in expansion (7) may be
implemented sequentially or iu parallel, The following

theoren 1,83.4 provides us with the complexity esti-
mations for the parallel Chrestenson functions
generator,

T.15

Let L{E? {m} be the minimal number of two~inmput

mod p adders necessary to implement all Chrestenson
functions "
{xm{z)} (‘H-ﬂ'- say P ‘—1}- Then

t® @) « 5" - (p-1) w1, (28)
The complexity of the memory block in Fig. 1
Eepends on the number L{EFY of nonzero coefficients
f(w) In the expansion (7} of E(Z).
approach will be efficient for small
L(E) = Hw | £ (w)#0}|. To estimate L{f} we introduce

Thus, the proposed




the notion of the inertia group {(group of
symmetries) for the given £{Z):

G (f) = {xeC|f(zex) = £(Z), ¥vZeG}. (29)

T.lﬁﬁ

el ——

We have
L(EY s " / le (D)1 . (30)

We can uge zutocorrelation functions to construct
the inertia group G_ (f)}. First, we construct the
following system of characteristic functions for the

given £(Z) = {E(E}(E}} .

Define fis)

(i=0,.44.,p—-135=0,,..,K-1)
D, ffs}(z)ii.

1, £49) (zy=1; (31)
(z) =
Let B{E) be the autocorrelation function of

1,58
fis)(z) (see (21) ) and BD

correllation function of £{Z}:

{1) be the total auto—

N1
Bi?}(r}n > gfz)(tjn X (5](zlf(5)(29T)fmnd p).
is *F 1,8 z-n {32)

T,.17° !

For any system of K p-ary logical functions of
m arguments TEGI(f) 1£f

{2) (2)

(T) = () = B (0)=K-p". (33)

TEG

To conclude this section we note again that the
application of the block-diagram In Fig. 1 is useful
in case £(Z)} has & large group of symmetries GI{f).

II¥., Complexity Criteria of Multiple—Valued
Logical Functions

In this section we shall introduce the complexity
criteria which will be used later for the functional

decomposition of systems of multiple-valued logical
functions., These criteria were used in 1,2,6 and

also in 3,4,15 for the case of p=2. 0Of course, these
are not the only possible criteria; our cholce 1s
dictated primarily by considerations of computational
simplicity, We nmote alse that the complexity criteria
we are going to introduce describe the so called
"abstract" complexity of systems ¢f multiple-valued
logical functions rather than the complexity of a
realization of the corresponding networks based on
some specific technology. Some relatlionships between
abstract complexity and realization complexity were
discussed in 16. The complexity of a system

£(Z) = {f(s}(Z(D),...,Z{mﬂl})} 1g defined as the sum
‘of the complexities of the functions entering into the
system, :

The simplest and most natural covplexity criter-

ion for a p~valued logical function ¢{Z(u},...20m‘1}}
is the number thw) of arguments on which | depends

essentiallf {¢ depends essentially on 2(1) 1ff there

exists a Be{n,...,p-1} such that for some
(Z(n} (1—1}’?{1+1} {m—1)

vy oyl grmn gl 1 we have

wfz(D),...,?{i'lj,u,z(i+1),..., (m1)y 4

w{z(ﬂj {1_1),E.Z{i+1) (nhll}‘

,-*ij? ,#li’?

The criterion Eniwj is very easy to evaluate but

it 1s only weakly connected with the specific
properties of the function V¢,

. We now introduce two more criteria, EL anc EF’

arising from two different metrizations of G. Ve
11

shall wse two widely used metrics + the Lee metric

dL( 2,42, ) and the Hamming metric dH{zl,zz}

(”),...,zim'ljj; i=1,2; zis)

(z,=(2 e{0,.ue.,r-1}1):

(1)_ (iﬁi (i) (i}T"+ (1) _ fi}

N Ypod p)

(34)

d (Z;,2,)= "y lz
1=0

(D £Iz§1)- zzri}lﬂ N.5n);

(1, ?{i}%?(i}

a (2,,7,)= E dH(?{i} (15-dH{zl,z y= 1 1

(i) _ }')
027 7=75 7,

(35)

We introduce the following notations:

(1) Ewa} is the number of pailrs {E],E?} such rhat
d(71979)

(11} EH(¢) is the number of p-ruples {?1,

= 1 and m{zl} ¥ $(E?).
??, - . I"-?p}
such that dH(Ei,EJ}zl (i,j=1,...,n:i¥j) and

and there exist o,B8¢{l ,...,p} such that

w(zﬂ} $ ¢(EE}.

We shall use the criteria En, EL and EH for the

saolution of decompcsition problems In the next
section.

I¥. Linearization nf-EgstEms of Muleiple-Valued
Logical Functions

{mxm) matrix nve GF{p

et £{7) = {f(E}(E]} represent a syvstem of ¥
p—valued logical functions each of which depepds
essentially on all m argtments., We first assume that
p is a power of a prime,

Let U-(G ) ﬂu ef0,...,p-1}) be a nonsinpular
i We construct a system

{féE)(Z}} as follous:

££%) (002)=£%}z) (mod p) (s=0,...,k-1).  (36)

Formula (36) generates & scheme for synthesis of a

device implementing the system {E{B}(Z)} by serial
connection of two blocks: linear & and nonlinear




| {fés]}:- The lineay block O may be Implemented using -

only adders mod p and multipliers by constants mod p.

The following theorem 1,53.4 provides us with the
complexity estimations of the linear part .

T.18

Let Lép) (m) denote the minimum number of two-—

jnput adders and multipliers by constants mod p
necessary to design a linear metwork realizing any
{m*m)-matTtix J.

Then for m*= ,

2

{p) Lom
Ly (m log o (37)

Since the monlinear part £ = {fés}} has "almost

)
always" an emponential cnmplexityﬁ_we shall try to
minimize the complexity of that nonlinear part fﬁ.

Thus, the problem of linearization with respect
to a criterion Ei may be formulated as follows:

Civen a system £(2), find a nonsingular matrix O,
guch that

ein £, (£ ) = § (f
g 1 8 i ﬂi

). (38)

We denote by “1 the complexity Ei(fﬁ } of the nonlinear
_ 1
part for the best linearization U

i

T.l?6

Let TD be a matrix whose set of columms contains

gome basis for the inertia group GI{f) of the given

system £(Z) {see (29) ). Then

% 9 'Iu = E (mod p), where E is the (mam} identity
matrix , and (39)
g = K ﬁm—lugp[GI(f)|). (40)

Thus, in view of T.17 and T.1% lirearization with
Tegspect to Eﬂ reduces to the following operations:

I. Construct by (31), (32) the total autocorrelation

function Eﬂf} (T).
2. Using the maxima of BE?}(T)' construct by T.17 the

inertia group GI{f).
3. Select an arbitrary basls in G, (£).

4, Construct a nonsingular matrix Tﬂ whose set of
columns c¢ontain the basis of GI(f) chosen in step 3

and fovert Tﬂ over GF{(p}.

The class of systems of p-valued logical functions

vossessing a nontrivial linearization with respect to

50 15 relatively small, We therefore proceed to
li{nearization with respect to EL based on the Lee
petric,

1f B{E) {1) is the total autocorrelation
function for £(2} {(see (31), (32) }and Tn,....Tm_IEG
are linearly independent over GF{(p), we denote by T

the fmxp)matrix with columns T seas,T and
0 m—1
m—1 -
1@ =1 32 ). (1)
f f i
1 =0
T.Zﬂﬁ
Let
max 82 m -3 @y . (42}
Then
o 6T =E {mod p} , (43)

(2)

aud for p>2 n, = (0" =K -B £ (T,) ). (44)

To conclude the discussion for EH’ based on the

Hamming metric.

Given a system F£(Z) = {f(S}(z]} we construct
the characteristic functions fis)(zj (see {31) ) and

{r)

£ {1} where

the total autocorrelation function B

P = 2 8Py =1 ff’) (z)fis}(za-r)...
£ 1,8 ¢ 1,5 Z¢G
£ (zepe...00 ,  3)
-1
®) . ML ()
Eﬂd_’,if TD’-II.’TD.]F G l.tl':l.E'[.'l. pr {T)“ iED pr (Ti)t
r.21°
Let |
m;xﬁ ;P:' (T) = B(I;) () . (46)
Then
ot =E (aod p) (47)
atd
n=" o st B (7). (48)

A simple algorithm for the construction TL
satisfying (42) (or Ty satisfying (46))1is given 1nﬁ.

We note that the theorems established above may
be easily generalized to the case when p 1s not &
power of a prime. In this case matrices Tﬂ'TL and TH

have to satisfy the condition (Det Ti,p) = ]

{(i=0,L,H: {(a,b) is the greatest common divignr of
a and » and Det Ti is the determinant of Ti .

Let us consider now the case of p-valued




%
k-

Z, Af(Z) | »—

functions of one argument. To implement a function
f(z},ZE{u,l,...,p-l},cne can uge adder-accumulator
L mod p for the summation of its [inite differences

{see Fig. 2) ﬁ’ﬁ.

BE(Z) = £ (Z) © £ (Z61) (mod p), (49)

E I,_ £(Z)

Implementation of multiple-valued logical
funetions based on finite differences

Fig., 2

In this case Tis{ﬂ....,p-l} » (Toop) = 1
{1=0,L,H), and linearization with respect to EL

minimizes the number of discontinuities of £(Z) (or
the number of nonzero values of Af(Z) ).

To conclude this section we note that the
linearization defined by (36) results in the serial
commection of linear and nonlinear blecks, Methods
for the construction of optimal linearizations with

respect to criteria Eﬂ' £L and £H in the case of

parallel connection of linecar and monlinear blocks

are given 1in 1,52.65 Er.

V. .épectral Methods for Synthesis of Reliable
Information Transmission and Processing Systems

The general structure of information transmission
and processing system is shown in Fig, 3.

Errorsg

Message

Fig. 3 Block diagram of an information transmission

and processing system

The message generator produces informatjon in the

form of p—ary vectors (Z(ﬂ),...,zinrlj. This inform—

ation may be distorted because of errors in the
communication channel or in the message generator it-—
self; it then proceeds to the input of the recelver.
We shall consider parallel transmission, 1,e. 211

components Zﬁi) {f20,...,m1)} reach the receiver input
simultaneously, and the receiver itself is a p=-valued
logical network without memory which may be described

by £(z2) = (£ ()} (s=0,...,K-1).

Two types of errors may appear 1n the communi-

11
cation channel, namely Lee errors and Hamming errars

‘We shall say that there exists a Lee (Hamming) errorx

with multiplicity t in the channel iff as a result of
an error the transmitted message Zl 1s replaced by ZE

and dL (zl,zz) - L (dH{El,Zz)-t) where dL {ﬂH) iz the

Lee {Bamming) metric {see (34), {35). The probability
of either type of error, Lee or Hamming, depends on
the physical representation {(i.e. type of modulation)

of the transmitted signal 1111.

E1 Communication 22 -f(zz}
channel Recelver
generator .

.

In this section we shall consider the most
tmportant case from the practical peint of view, of
single errors (t=1). The reliability cof the system
represented in Fig. 3 may be increased by using
sophisticated methods from the theory of p-ary

11
error-correcting codes . The information

Z'(Z(D),...,Zﬁm-l}}is then tramsmitted in a redundant

code and quite complex encoders and decoders are
needed,

We shall use a different approach based on the
fact that some errors may be corrected by the system
represented in Fig. 3 without any redundancy, since

any device implementing f{2}=ff(5}(?)}'w111 correct an
arror {zl,zé} if f(zl)'f(zg}'

In order to increase the reliability of the
entire transmission and processing system we shall
linearize f{7). This will result in the replacement
of the original system by the system represented in
Fig,. L

Errors

Message Linear

Modified

eneratorf—dblock O _'_1{:5 nication receiver
7 7 channel o
1 2 £y o

Hh

Fig, &4 Modified data transmission and processing

svstem, Zl= o8z, fn (C 8 Z) = £f{?) (mod p)

(ur problem is wmow to determine a matrix Cppy
minimizing the number of single Lee or Hamming errors
vncorrected by the modified receiver fn'

Denore by X (ﬂH] the minimal number of Lee

(Harming) errors uncorrected by the modified
recelver.

22815225 €

(1) For Lee errors

. o 5N
Hupt o and a Bf _ {TL} . {5n)

wvhere a and TL are defined by T.20.

({1} For Hamming errors

{p)
= - - — B T 51
%pt nHandc:H 0.5 (p 1) P (H}’ (51}
where UH and TH are defined bv T.21.

e note also that T.20, T.21 and T.22 illustrate
the relationship between the concents of commlexity
of svstems of p-valued logical functions with respect
to the criteria EL and EH and error-correcting

capabllity of a device Iimplementing these functions,

Vi. Testing of Multiple-Valued T.ogical Metworks

The problem of testing of multiple-valued net-

f.49.1n0.,17,1%
works was considered im 7,%,9,10, . We shall

consider in this section the spectral approach to



‘Eglthis‘prﬂblem. Details and proefs can be found where H is a maximal subgroup of G such that if

’ 0 ' ~ )
It ?'§’9'1 - wed and wf0 then £{W)=0, Thus, the method for con-

i
structing a checking equation (52} reduces to the

1-".:-.."

R LR I-. 4"
..-':;" Sk et
R R 2t Ty
-t g o i P AT

following operations: 1) Compute E(m] for the given

Suppose we are given a device computing
1

f(zj-{f{S}(z(ﬂ)'___,gfm_l)}(z( }E[ﬂ,...,p-l}}. By £(2); ?) Construct a subgroup H;{m]?{mﬂ=ﬂ}u{ﬂ}.

errors in this device we mean catastrophic structural c ' i -1 o
L £ T=H . = "

failures. To detect errors, ona can compute £(Z) for 3) Construct 1 and compute C =IH| ﬁegf(E)' f

all Ze[ﬂ,l,...,pm-l} and then verify that Z £{Z) =

ZeG Several generalizations of T.23 are glven inﬂ'g'

{s equal ro the given constant C. This method is

Let us consider now the important speclal case
when our device f computes a polynomfal of degree d
and fnput signals are represented in p-ary form

1
used for the bimary case ? but usually it 1is very
time-consuming. Im this section we shall discuss
another method of error detection, and error correc-

H R e e o
e gl m
; '.?A%%ﬁ" R

tion, according to which, given f one determines d .
zl....,ZREG and comstant € such that T={zl,__.,2R} (£(z)= I aiZi}. £l
fs subgroup in G and 1=0
R 1,240
L f{zazi)-c (mod p) for any ZeG. {52) —
i‘l |
i m N 1
f f - E Z asw - T ¥ )
A network implementation of this method is illustrated I 2 1=0 3 (ze {0, ;0 -11), then T is = %&;
"‘q’-\. .
in Fig. 3 c dual to the maximal p-ary error-correcting code with ;
_ * the length of codewords equal to m and the Hamming
. ‘ 11
d =}
Z e £ T distance d+17 7, ET
7 v ' Let ﬁ%
1 2 i ) f(zat}=ci (1=1,...,4) {54) %
error TeTy ik
_‘_ B B § . Eignal _-J._-I-'.
be a system of linear checks constructed by T.23. %%1
A system of checks (54) 1is said to be orthogonal %
— — delay element | if TinTj=U {i#{)}. We shall estimate now the error- -
. detecting and error-correcting capabilities aof systems 3
f ¥ orthogonal checks: §§
. element for componentwise addition o '
d = x & d -
mod p (2 x &y (mod p) ) An error e(Z)} is said to be present in a device
7 computing the given system of p-valued functions f(Z)
if for the latter f(Z)+e(2) 1s computed imstead of
I £{z). By the multiplicity of an error e(Z), we mean
d the t . '
e TG pary logical network under the test] aumber of non—zero values for the function e({Z). ] 4
(Such a definition of multiplicity is natural, if 2
c errors in computing £(Z) are indepent for different 5%
Z's.) :
~ I adder-zccumulator with initial state -c, We shall define the syndrome
@) = @)seeess ) (2) ) Of the
Fig. E ti 5
g 2 rror detection by equation (52) error £{2) for the check system (54) by

The complexity and the testing Ctime of a system (e)
8y ()= £ (f(zZet) + e(ZﬁT})-Ei- T e(7Zé#1). (55)

represented by Fig. 5 depends on the cardinality
EFTT] of the check set T-{zl""‘zﬂ}' Thus, our TET1 TETi
problem is to find for the given f£(Z) a set T of _
minimal cardinality and conmstant C such that (52) By errar—-correction we mean the cnmputatiun of error e
is satisfied for every ZeG. using the previously computed symdrome S{E .
T.ZET We shall consider two methods for detection and
}

: e
(), (0) {m=1) correction of an error e by the syndrome s , namely
For amy £(2)={f (z seeeal )} there exists memotryless and memorv-aided decoding.,
a subgroup T-{Zl,...,ZR} and a constant C suchthat (52)
For memoryless decoding error detection or €rror

correction for any given Z is implemented by
E(E){E). For memorv—aided decoding we fi{rast compute

fg gsatigfied for every Z and, in fact, we may choose

T.HL-{z]xw(zj-l for all weH},
n{e)(Z) for all T and then detect or correct errors. v

-1 =1 m
c=1u] ZEGE{EJ , R=|H] Tp , (53) The following two theorems describe error—
£




detecting and correcting capabilities of M orthogonal
checks for memoryless and memory—aided decoding,

T.25

For any system of M orthogonal checks we have for
memoryless decoding:

(1) All errors with multiplicity at most ¥ are
detected, and all those with multiplicity at most
FM/2] are corrected. v

(ii) There exist errors with multiplicity M+l and
{M/2]), which are oot detected and not corrected,
respectively, (Here [M/2] 1s the greatest iateger
< M/2)

T,26

For any system of M orthogonal checks we have
for memoxry~alded decoding:

(1) All errors with multiplicity at most 2 -1 are

detected, and all those with wmultiplicity at most

fu-l—l are corrected.

(1) There exist errors with multiplicity EH and

fﬁil, which are not detected and not corrected,

respectively. Thus, it follows from T.25, T.26 that
error-detecting and error-correcting capabilities of
M orthogonal checks do not depend on the function
f{2) 1mplemented by our device, do not depend on p,
and increase exponentially on transition from memory-
less decoding to memorv-alided decoding,

Generalizations of T.25 and T.26 are given

in 7, B and 9.

VII, Clesing Femarks

Spectral methods provide us with simple solutions
of many difficult problems in the design, decomposition
and testing of multiple—valued logical networks.

These solutions are based on the spectral or corre-

lation characteristics of the original system {f(ﬂ}(z)}
of multiple~valued logical functions.

The main advantage of spectral methods fs in their
simplicity and convenience for computer implementation
even for problems of quite high dimension. In
eddition, the spectral methods provide easy estimations

changes Iin its envircnment.

Another advantage of spectral methods is their
weak dependence on the number p of stable states of the

basic compenents, so that one cbtains a unified set of
salutions for devices that operate in p-ary svstems for
any pz?, This urniversal property makes spectral
methods particularly suitable for the design and test-
ing -of multiple—valued logical netwerks.
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