An Approach for Error Detection and Error Corrcction

*
in Distributed Systems Computing Numerical Tunctions

by M. Karpovsky, liember IEEE

Mailing address:
{, Rarpovsky, ComputeX Science Department

School of Advanced Technology

State University of New York at FBinghamton

Ringhamton, New York 13901

*

This work was supported in part by the National Science Foundation under Grant

Number MCS-8008330

D e ——— — e s
—— e p—— i m ey

ABSTRACT

We consider methods ﬂ_f error detection and/or error correction in
softuare and hardware of a distributed system computing values of
numerical functions. These methods are based on software and hardware
redundancy for the computation of additional check functions. The
check functiuﬁs are easily derived for anj civen multiplieity of errors.
The redundancy does not depend on the number of processors in the
original system and depends only on the multiplicity of errors. Ve
describe methods for the construction of optimal checks, required
softuare and hardvare redundancy and implementation of the corresponding

error detecting/correcting procedures by a distributed system..

- = . ——"

I. Introduction

Since technology moves toward very large-scale integration and distributed
computer systens find more and more applicatiomns, the problem of testing and error

correction for software and hardware of these systems begins to be extremely

important.

In this paper we shall considér error detection and error correction for
the case of distributed computer systems with errors of an arbitrary but a given
multiplicity both in software and in hardware.

We shall describe one approach to thé solution of these preblems for distributed
systems computing numerical fﬁnctinns (functions whose values are integer numbers,
vectors or matrices){ﬁﬁ%?e all prn;essnrs qf a system.HavE the ?ape input data
(single input data string). The typical example of these computations are polynomizl

computations when the processor Pi computes values of a polynomial

) dl dm ‘ jl jm
fi (xl,...,xm} = ¥% ﬂ(]l,...,Jm? Xy eeeX (i=),...,K).
jlﬂﬂ Jmfﬂ

OQur approach to the problems of error detection and error ¢orrection in dis-
tributed systems computing numerical functions will be based on software and hard-

ware redundancy for the computation of some additional functions connected with

the functions computed by the original system using linear checking equations. The

verification of whether this is indeed the case and analysis of the results of the

—_

checks (syndromes) constitute the error detecting and error correcting procedures.
We note that these procedures may be used in any nultiprogramming environment. %he
implementation of these procedures for many practical cases may be carried out by

adding a few more microprocessors to an existing distributed system.

g T—— ey, A= = - s

We shall describe methods for the construction of optimal checks for the
detectionfcorrection of errors of an arbitrary multiplicity both in software and
in hardware (for the construction of these checks we shall use the techniques of
error—-correcting codes), estimate the requifed software and hardware redundancy
and discuss some of the implementation issues for these error detecting/correcting
techniques. Communication and synchronization aspects of implementatiun will not
be discussed in this paper. O0ther techniques based on error-correcting codes for
error detection in numerical computations for the casé of non-distributed computer
systems were considered in [11, [2].

vrror detecting and error correcting methods proposed in this paper may be used
for the testing of manufacturing acceftance of distributed software, for the
‘maintenance testing of distributed hardware and for error -correction for permanent
and intermiFtent faults in distributed systems. These methods are also intended
to reduce the amount of hardware needed to incorporate fault—-tolerance into a syste=.

1I. Correction of Single EIrrors and Detection of Double Errors in
Distributed Systems |

2.1, Consider the following exanmple:

Example 1. Suppose wWe have k=2 processorls computing two numerical functions

fl and fZ' We want to correct any single error in snftwaré or in hardware of
this system. (All single arrors are supposed to be independent.) Ve may use€

the triplication_technique (TMR),. Im this case we need four additional processers
and four additional programs. lLet us describe another technigque which requires

only three additional processors and three additional prﬁgrams computing the

functions £3,f4,f5. These functlons f3,f4f5 may, for example, satisfy the conditicns

a11f1+312f2'+313f3 =0,
a, fytay fatayf, = 0
£
23171 tazefs =0, (1)

where aij¥ 0 are arbitrary constants.

0 I

In equations (1) and later in this paper we Suppose that for any function fi

h ,
calculated by the it processor and any X we have nﬁfi(x){q, where Q is a large

prime number, and all the calculations are carried out module Q. For example, if

processors produce m—digit binary outputs and Uifi(x}<2m;l,where 2"-1 is a prime,

we can choose Q=2m—1. The results we shall describe in this paper will not depend

on the cholce of Q.

The error correction procedure will be based on verification of (1). As a result
of a single error function fp(pE{l,...S}) is replaced by function fﬁ+ep’ vhere

EP # 0 is an error function. The error vector in this case will be

o = (El""’ESJ = (ﬂ’__‘,ﬂ,ep,d,_.,,O) (ep # 0). Ve can define the result of an

>
error (syndrome) § = (31352,83) as follows Si= ?: aij(fj + ej) = aipep
(i=1,2,3). For example, if there is an error e, in £,, then the syndrome instead

of (0,0,0) will be(allel,321el,33lel); for an error e, in f2 it will be

(alzez,azzez,ﬂ}, etc. An error correcting procedure (computation of e. for i=1,...,5)

may be implemented by the analysis of these syndromes, since for any two single errors the

-

syndromes are different aud not equal to (0,0,0). If a syndrome vector does not correspon
ith the syndrome vector for any single error and is not equal to (0,0,0), we suppese that

a double €rror exits in our system, For example, suppose that 51'# O,Si'% 0, 53=U. if

-1_ -1 . _ -1 . -1 -1
S, a8,5,= 54855, then we have the error e, = S, a,, 1n f.; if S, a

| 9 2° 2 299 ¥ 51295
we conclude that a double error exists.

then

Since the constants aij in (1) may be chnsgn arbitrarily, they may be used to
decrease the complexity of programs computing the "checkﬁ functions fB’fﬁ’fS' We
shall see later in this section that fpr many important distributed cﬁmputatiuns, these
aij ma? be chosen so that the check functions become constants. In this

case no additional software or hardware is required (except for software for the

error correcting procedure).

T - —— —]

b,

we note that TMR requires four

Comparing the checks (1) with THR again,

additional processors, and corrects any single error.

three additional processors, all single

For the checks (1) we need

errors are corrected and double errors are detected.

1 functions fl,.--,fk- Errcors in

2.2, Let us have k processors which compute numerica

ant to correct any

the computation processes for fl,...,fk are independent, and we ¥

error correction we shall use r additional

single software or hardware error. FOT

processors which will conpute check functions fk+1""’fk&r? satisfying

r linear equations:

k¥r
_ are constants. (2)

= (). i=1,e0 h C
E cij 3 0 (i=1 y T)y W E]?E i3

5=1 |
(Equation (1) is an example of these equations for k=2,r=3).,
) will be replace by

As a result of a single error OUT system (fl,...,fk+r

), where only one of the components of an error

+
fk+r Ek+r

a system (fi+el""’
) is not equal to zero.

vector (El""’ek+r
0}_(EP%D) the result of the check (2)

For ﬁhe error € = (0,-..,0,EP,0,.¢.,

(which we shall call the syndrome of the error e) will be

k+r
(3)

= f+ — -= I I L
| si E cﬁj(3 Ej} Cipep (i=1, s T)e

3=

The necessary and sufficient condition for the correction of single errors
) (2)

by the check systeﬁ (2) is that any two errors e(l and e

1f e(l? e (0,.ne0,e0,0,00050)

(e(l)¥e(2)) will have different syndromnes. >
and e(z) = (D,...,ﬂ,e(iZO,...,U), then we have from (3)
(1) (1) (1) (2) (2) (2)
(Cl,pep R CZ,pEp ""’Cr,p e) # (Cl,tet' R Cz,tet ""’Cr,t e Y. (4}
nditions for the correction

it follows from (&) that necescary and sufficient co

f
(Cij) each two columns Bp and Ct satlsfty

of single errors 1is that in a matrix €=

the condition:

Ep# th, where b is an arbitrary constant. (5)

In particular, we have CP # 0 for every th-cnlumn of (Cij).

Let H = (hij) be a check matrix with the dimensions rx (k+r) for a binary

single-errur—cnrrecting code [3]. It is well kdown that in this case hi_E{U,l}

and all columns of H are different and not equal to zero, Hence, if we put

13 7 215043 (6)

wvhere aij # 0 are arbitrary constants, then the cun;tructed mﬁtrix C = (Cij)
will satisfy the condition (5), and we may correct single errors using this matrix,
For example, equations (1) were constructed by this method with the check matrix
1 1 1 0 0
H = 11 0 1 ¢ . - - (7

I 0 0 0 1

Thus, for the construction of checking equations (2) we need only to choose
a binary rx(ktr) matrix (hij} with different columns which are not equal to zero
and then use (6). In this case r satisfies the condition k+r+1£2r. (8)

Constants hij in (6) may be chosen arbitrarily (except that-ai. # 0), and we have

'ﬂ=ﬂz= S___ hij free variables Cij in (2); by the appropriate choice of the
i,j]
values of these H2 variables the complexity of computation for check functions

fk+1""*fk+r may be decreased. Ve shall see, for example, in Section 2.4 that,

if fl,...,fk are polynomials, then for many pPractical cases with the appropriate

choice of Cij in {2) the check functions fk+1""’fk+r will be constants, and we
do not need any additional hardware and software for the correction of single errors.

Since the bipmary check matrix H=(hij) has dimensions rx(k+r), we have the

following exact upper bound for the number NZ of free variables

N, <rg™ 1 (%)

and we have equality in (9) iff k+rt1 = 2r. Thus, if we want to increase the

number NZ of free variables, we have to choose the check watrix H of a single-

error—-correcting code with the maximal number of ones.

2.3. Let us describe now another methed for the construction of checks (2) which

will reduce the number r of redundant functions fk+1""’fk+r’ but will also

reduce the number N of free varilables. This mefhod will be based on non-binary

single—error-correcting codes.,

Let us have a rx(kt+r) q-ary matrix B = (hij)’ hijE{O,...,q—l}(qEZ) (q doesn't

have to be a prime number). Suppose H does not contain zero columns, and for

every two columns h_ and ht of H we have hp # bht for all b = 0,1,4..,9-1

(here all the multiplicatiomns are carried out by mod q). I1f q is a prime number

then H is a check matrix for a q-—ary single~error-correcting code.

Let us partition the set of all columns of H into two sets

H, :;M'u:i"l-l2 (lHll-i-lel = k+r, where lHjI is the number of columns in Hj")' Column

hp belongs to the set'ﬂl 1ff hip e{0,1} for all i = 1,...,7T; colummn ht of H

belongs to H2 1f it does not belong to Hl' Matrix C = (Cij) now may be defined

in the following way:

djhij , , if hjEH2
Cij = for all i=1,...,T , (10)
aij hij ,if EjEHl ;
where d. # 0, a,. # 0 arbitrary constants and-—LE-é{Z,...,q—l}.fnr htﬁﬂl. Then,

ij ajt
for the matrix C = (Cij) we have Cp%bct for all possible p,t,b.

Thué, any matrix (Cij) generated by (10) from the g-ary check matrix (hij)

satisfies €6) and may be used for the correction of all single errors

distyibuted system.

Example 2. Let us have a distributed system of k=2 processors computing the

functions fl’fZ' Choose q=3 and the check matrix H of a single—error—correcting

e et 2 2) o e ={() 30 {()]

o ——— e ——— -

and by (10) and {2) we have the following checks

11fl+d2f2+313f3 0

%21
ll
Comparing these checks with (1), we may see that the transition from the binary

+
2,,8,12d,0,ta,,0, = 0

(11)

error-correcting code to the ternary code reduces the number r of additional
functions from 3 to 2 and also reduces the number N of free variables from § to 5.

This illustrates the tradeoff between a number of processors kir and the software

- [—
-- -

complexity of the check functiﬂns fk+1""’fk+r' ?his_tradeaff wi%l he discusggd

1ater in this section.

2.4, tet us consider now the reiatinnship between the number of addifinﬁﬁl
processors. r, and the nunmber H=Nq of free variables for thE'cn:recpinn of single
errors. For a g-ary rx{k+r) chec% matrix (hij) we have [3] |

l+(k+r)(q~1)£qr s (12)
and the minimal r satisfying this cﬂnditiun “decreases with increasing q.

For the number Hq of free variables we have from (10)

= ' - | 13)
Hq :}) hij+k+r IH1| o (
{i,]|hjEH1}

r
Note, that for the minimal r satisfying (12) we have k>2° r-1,

jm, | = 271, > hy = 2™t and (14)
{i,jlhjEHl}
N = k2T Y (r-2)+rH . ' (15)

q

The minimal number of additional processors for the correction of single erTOIrs
number N of free variables are presented in Tables I - V for k¥ = 10,20,30,40,5G.

It follows from (12) that for any ¢ > k we have r=2. TFor r=2 the minimal
1 1...1 1 0

q is k+1, and we may choose H = (
1 2...k.. 0 1

) . Then we have by (10)

e e rE— — WTE MW Et A E —PEe dr e eer s =k - N T T] T | R I A r T T

the following checks

K+l
- . f
2. 14t
1=1 d
k+1
| £ = ‘ | (16)
4,y 1f1+> Lo lay GEtay o =0
i=2

£ 0 are arbitrary constants and a2 1 ¢H{2,3,...,k}.

where al 1 2y 1? 32.k+2 -
11

e

. The number of free variables aij for this case is Hk+l = +3,

| Tables 1.—- V

L

Methods described in this section may be used for the correction of single
errors mnot only in the software and hardware computing the original system of

functions fl""’fk but also in the software and hardware computing the check

functions fk+l""’fk+r (but not in the software and hardware implementing the ervor

correcting procedures). The-cnrrecting procedures do not depend on the original

system of functinns fl,...,fk.

Ve note also that these methods may be used for the detection of all double

errors., 1n this case we need only to verify that the syndrome

= ¥ Cij(fj+ej) = 5 C is not equal to zero for at least one 1i.
J : J

2.5, We shall consider in this section the special case when the distributed system

S
i i3

of k processors computes k polynomials fl{x),...,fk(x), where

- —

d
fi(x) = E uijxj (i=1,...,k; aid¥0) and uij are some constants, (17)
=1 '

Thls case is very ‘lmportant from a practical point of view since any

analytical function may be approkximated by a polynomial.

9.

Applying the methods described in Sections 1.1-2.3 to thils special

case, we have

k
fk+i(x) = ;il Cijfj(x) (i=1,...,T), (18)
vhere Cij is defined by {(6) or (10). If for the given i we have N(1) free

variables cij’ then, by an appropriate choice of these variables, the degree

of the polynomial £ 3 [ct=X s for xzn) .

C(d-N@E)+
k+i(x) may be always decreased to. (d-N(i)+1) (X 0 . for %<0

i

For example, if k=2, d=3 and fB(x) a fl(x)+a £, (x) (See Example 1).

11 |
fd(x) aZIfl(x)+322f2(K)

12

31

fs(x) = a fl(x) . (aij¥ﬂ) ’

then N(1) = N(2) = 2. 1If, for example, we choose 311=321=1’312=322= - ml3 (ﬁiﬁjﬁl; then
f3(x),f&(x) are polynomials of degree Z.X.If N{i)=d+1l for every 1=1,...,r, then

the free variables may be chosen in such a way, that the degrees of all

fk+i(x) {i=1,...,r} will be equal to 0, and no additional processors will be
required for the correction of single errors. For the estimation of N{i) we may

use the formula N(i} = [CH—r)rflj for all i;l,..;,r, where [a] is the greatest
integer < a, The maximal_degree of pnlyﬂnmials, d, such that no additional Processors

are needed for the correction of single errors is given also in Tables 1 - V.

III. Detection and Correction of Multiple Errors in Distrihutéd Svstems

3.1, Consider a system of k processors computing k functions fl""’fkf Ve
shallladd'tn this syvstem T additional prﬁcessnrs computing fk+l""’fk+r such that
k+r
c..f.=0 ({1 =1,...,1r), (19)
. i3 3 rerTe .
ij=1
d IoY = - e ® - - B
As a result of an er e (el, ,Ek+r) in the new redundant system, (fl fk+r)
+ T B B []
ils replaced by (f1 €y ’fk+f+ek+r)

By a multiplicity of an error we mean a number of nONZero components
in a vector e. All errors of a multiplicity at most L are detected by (19),

if for any error of this type, the syndrome § = (Sl ""’Sr) of this error

is not egqual to (0,...,0), where 4
‘ k+r - k4r |
= j f + = E = rre » -
j=1 3=1

All errors of a multipliﬁity at most L are corrected by (19) if any two
different errors have different syndromes, It is easy to shc;w that (19)
corrects all e;:mrs of a multiplicity at most I. iff it detects all errors of
a multiplicity at r:;ust 2L, If an error, e, has a multiplicity 2L, then
there exists 1£j1<j2<...{j <k+r, such that e, #0,...,e. #0 and e =0 iff jif‘[jl,...,j

The syndrome -of this error will be

}.

S, =C., e, +...1C.,, e, (i=1,...,1), {(21)
S TS oy, Jo1, .
and this error is detected by (19) iff S 4 (0,...,0) for every jl""’jZL and

every Ej ,...,ej . Thus, equations (20), (21) show, that the system (19) detects
' 1 -~ 2L

alfIL errors of a multiplicity at most 2L iff each (2Lx?L) submatrix of (Cij) is
nonsingular, Methods for the construction of matrices (Cij) satisfying this
condition will be discussed in Sections 3.2 and 3.3. We note also that the
minimal nqmber r of pProcessors for the detection of all errors of a multiplicity

at most 2L (or for the correction of all errors of a multiplicity at most L) is

It

¢dqual to r

min 2L L]

3.2, Let'dl,...,dk+r be arbitrary constants (dj#ﬂ for all j), r=2L and

cij = 3j° "d. ({1 = 1 r). (22)

11, 1o 4

Then any {rxr) submatrix F of (C,,) may be represented in a form:

i3 F
C.. C ves C.. \ d d, ... d \
13, 13, 13, 34 Ig Jp
F = 'C C - ee C j d l_.. j d """"‘j d' (23)
Zjl 2j2 er _ 1 jl - 2 j2 T jr
r-1 -1 r-]1
. C ees G i d,] d, ...j d. }
\ Ti; T, rJr/ 1 3072 3y T 3y
where lﬂjlﬁjz ...ﬁjr£k+r. Hence, for det F we have
det F=4d, ...d, A# O - {24)
Jl Iy

where A is the Vandermonde's determinant [4].

It follows now from (24) that the matrix (Cij) constructed by (22) detects all errors

of a multiplicity at most r=2L or corrects all errors of a multiplicity at ‘most L.

Example 3. - Sﬁppuse that the given system of k processors computes the

Krawtchouk polynomials [5,p. 151]

i .
Py =S " 03 A EH O oa,.L L kx 0,1,
i 20 3 1i-]

and we want to detect all errors of a multiplicity at most three, If we choose

di 1.(1 1,...,k) and dk+1 dk+2 dk+3 1, then by (19), (22),

E

the check functions fk+1’ fk+2f fk+3 fnr the Krawtchouk polynomials [5, pf 153] are:

k
I 4
fk+l(x) = Ei-_-]_ Pi (x) = 2 5}:’0 1,

k
. _ _ ak=1 s
fk+2(x) = :%;;: i Pi (x) = 2 (k 61,0 61’1) I
£, (x) = EB__'. izP (ic) = 2k"2 (k(k+1) 6 -2k8 428)
k3 1=1 i x,0 " T x,1 x,2
(where xe{0,1,...,k]} Gx ¢ =1 1f x=t, 63 ¢ = 0 if x # t is the Kronecker symbol), and
: > »

an 'additional software for the computation of fk+1(x), fk+2(x) and fk+3(x)

is very simple.

i ' '; :!.2-- I

3.3. The check system (19) constructed by (22) is a system with the

minimal number of checks, but this system is not unique. Ye shall describe now

another solution of the sane problem which may be more efficient in the case of

-
¥

faults of a high multiplicity.

Let Uﬂfi(x)fq for all i=1l...,k and Xj E'he a primlitive elemeﬁt of GF(Q),

r=2L and
5(1_1) (jnl)dj, j=1: .-.e :k >

(L = Ly0eest) (25)

Cij=

5 j = ktl,...k¥T

d
15°)
where Gij {s the Kronecker delta and dl""’dk+r are arbitrary constants not
equal to 0., Then any (rxx) éubmatrix of (Cij) $= monsingular, and the check
system (19) with Cij defined by (25) detects all &rrors of a multiplicity at

most 2L (or corrects all e€rIors of a multiplicity at most 1).

d . £,) may be considered

£ k+r ktr
(6].

k+1,lil’—

the discrete Fouriler Transform (see, €.E.,

We note that for the systeml (25) (-dk+1

as the first T coefficients of

R £.
ol (d,%, ,d, £,

The number of free variables dj for both solutions (22) and (25) is equal to

R=k+y., If fi(x) (i=1,...,k) are polynomials of a degfee at most d, then, applying

the results from Section 2.5, 1t is easy to show that for d E[E-ILE] no additional

Processors are needed for the correction of errors of a multiplicity at most Le

lementation of Error Detecting and Error Correcting Procedures

IV. Imp

4.1. For srror detection we need to compute the syndrnmé g = (Sl ,...,SL) (see (20},

{ (1 = 1,...,k)

r=1,) and check whether 5 = (0,...,0Y. If Pi is a processor, computing f

then for these computations we need only communications PifPi_i_1 between processors.

may be estimated as

(26)

The required time Td for the detection of at most L errors

_ _ 2
T, = AgL(ktT) = A (LEHLD)

wvhere Ad 4¢ a constant characterizing the processor's speed and the

communication's speed for the glven distributed system.

Let us describe now the error detecting capability of the system (19) with
r additional check processors, where C,, is constructed by (22) or (25).

1]

We denote the relative frequency of errors of a multiplicity L which cannot

be detected by Q(r,L). It was proven in the prévinus section that g(r,L) = 0
for 1<1<r. Note alsn’that the check system (19) detects a high percentage
of errors with a multiplicity L>r. We assume, that for every i £ {1,...,k+r}
values of fi are represented by binary ?ectﬂ:s with m components, then an error

e = (Elf""ek+r) with Ej#ﬂ iff jE{jl,.-.,jL}(Lbr) cannot he_detected by (19) iff

ktr
"
S, = C..e. =C.. e, +...1C, e = [) (i=1,...,r). (27)
1 2 S 5 B R & P Y ;3 S
j=1
Since for any fixation of e, syeses@. (27) has at most one solution for
]] |
] r+1 L
€. syeeese. , wWe finally have:
[0, 1<L<r

D(r,L1)s <

| (28)
k-(zm;l)ur, for 1or.

Far unidirectional errors such that EiED (i=1,...,k+*r) (or Ei£0 for

all i = 1,...,k+r), we have Q{I;L) = 0 for all r,L>0. Thus, for many practical
cases one or at most two additional processors are usually enouygh to provide the

required error detecting capability.

4.2, We shall consider in this section the problem of implementing of the

error correcting procedures for a distributed system. The error correcting

procedure is divided into two steps, as is usually done in coding theory:

first, we compute results of the checks (19) (syndromes) and secondly, we

correct errcers (compute fi+ei for éll 1= 1,.4s3ktr) using the computed syndromes,

For the syndrome computatiomn, (20) and (22} or (25) may-be'ﬁsed;-'Fnr the

case L~ {(1/2)k or r=k and Cij1which 1s defined by (25), the very efficient

—_—— e - i e ——

! ; | P | | " 14,

alporithm of Fast Fourler Transform {6] may be used, This decreases the total
pumber of additions and multiplications, but increases the number of communication

lJinks between processors,

For the correction of an e€rror e = (El"';;ek+r)’ such that Ej#U iff

jE{jl,...,jl} by (19, (22) and the computed syndrome § = (Sl,f..,srl,we need

to solve the system

iy, e bt a e =5, GeL..,D). (29)
11 1 I L
where T=2L and 3.seeesd.» €, seesse, are unknowns. It follows from the results
}) L Jq Iy,
of Section III.that (29) has a unique solution for every dj ,...,dj # 0 and
: 1 L

Every_sl ""’SZL’ if a2 multiplicity of tﬁeenﬁxn: e is no more than L. This

solution for the correction of single ‘errors (L=1, r=2).ﬁay be described as follows:

1. Xf Sl =‘S2 = (0, then there are no é&rrors.

2. 1If 5, # 0, 5, # 0, compute j = §, (sl)"1; if je{1,...,k+2} then,
0 y1#3 _

{ + if jﬁ{l,...,ka}, then there is a double error.

81 li=j T -

1)
il

3. If 8, =0, 8, # 0 or 5, # 0, 5, = 0, then there is a double error.
4,3, Let us consider now - the correction of double errors by the
couputed syndrome, For this case r=4, and from (29) we have the following system

of four equations with four unknowns j,.J,se. €, ¢
- 1772 iy 3,

~1—-1 1-1

jl d e, + d e, =8 (i=1,2,3,4). - (30)

. e = _ -1 _ -1 _
84 (53)_1 E{l,...,k+4}, then the multiplicity of an error is one, and
3, = 8., (S }_1, e, =S djl . If the two previocus conditions
1 2 1 Jq 1 3y

are not satisfied, then the solution of (30) may be found in the following way.

_',| : . : : | | ' . e 151

2 Y4, 2 °3 771 4 . (31)

- Then, it is easy to check that

W V‘Hz) w VWZ |
S IS A S T

-1
e. = {(j.,8, =S,) d,
3, 21 4 3y

(32)
1 S
~,(j1_32} .

-1 PR -

2
4.4, For a multiplicity L of errors more than two analytical solutions for

the system (29) are very cumbersome. We note that the checks (12), (22) or

(25) are very similar to the checking equations for Reed-Solomon error—correcting

- -

codes [3] , and an analogue of the Berlekamp-Massey decoding procedure [3] can be used

for the solution of (iﬁ); This procedure however 1s again rather complicated for

L23, For many practical applications k is not too big; hence, to find the

solution of (29) we may fix 1£jl{...{jL£k+2L arbitrarily, and then try to solve

(Z8) for r=2L with respect to €, ;...,€

« If there is no solution, then we
iy Jy

have to change jl,...,jL, ete,
1f Pi is a processor computing fi(i = 1,...,k+2L), then for the implementatiorn

of the error correcting procedures described in Section IV we need only communications
P14y

As a3 concluding remark we note again that methods dgscribed in.this paper
may be "_,leied to simultanenus. ervor detection/correction both in a software and a -
nidware of a distributed system, and very gmall hardware and software redundancy
for most practical cases is needed,

The main limitation of these methods iélthat they are efficient mainly for

numerical computations, when the output values compulted by the distributed system are

integers; and all the prncessnfs within the distributed system have the same input data,

' ! SRR R v 6.

REFERENCES

1. Karpovsky, M., "Error Detection for Polynomial Computations", IEE dJ.
on Computers and Digital Techniques, Vol. 2, N1, Feb. 1979, pp. 49-57.

2. Karpovsky, M., "Testing for Numerical Computations”, IEE Proc.,
Vol. 127, N2, March 1980, pp. 69-76. '

3. Peterson, W.W. and E.Y. Weldon, Jr., Error Correcting Codes, Cambridge,
Ma., 1972.

4. Korn, G.A. and T.M. Korn, Mathematical Handbook for Scientists and
Engineers, McGraw-Hill, 1968,

5. F.J. MacWilliams and N.J.A. Sloane, “The Theory of Error-Correcting
Codes", Part 1, Norih Holland, 1977.

6.

Brigham, E.O., The Fast fourier Trans form, Prentice-Hall, 1974.

T —————

k=10

q | 2! 3 ...1 101 11
5 e A

nl31lis| ... 1 18] 13

d 5 a‘l -.-.l il[SJ

TARLE |
k=30
9| 21 3] 4] 5| el { 30 |31!
i |

r: 6| 4] 4] & 3 3] 2
N 133'51 51|51]38 J 38 | 33
al 21{10}1010 1n| .. I 10 | 14}

TARLE 111
k=50
gl 2] 3laysiei7l...|50(51
r] 6| sl4{aal3)...1 31 2
n{190 }104 |71 |71 |71 58] ... | 58] 53
dl 29| 13'15 15{15J11J .o '17

TARLE V-

24

17,

k=20
Qj2]3|4]5])... 120 |21}
I |
ris5]ala) 3y ... 21
I | |

N {73

41[&1’28, v 1728 {23

ah2 8i sl 7] ..

Ll

TAPLE 11
k=40
LA 21.3) 4] S 6] ... Jan &)
“r| 6|S5f &l &3 .. 3] 2
|
’N]1?4 04161 Bliﬁﬂi 48 1 43
qJ 27 {16115 15 1&' |14 19]
TARLE TV

1}

INDEX TERMS

Distributed Systems
Numerical Computations
Error Detection

Error Correction

Error Correcting Codes

MARK XARPOVSKY was borm in Leningrad, USSR on October 27,
1940, He received the M.S. and Ph.D{ degrees in computers from
Leningrad Electrotechnical Institute, Leningrad, USSR in 1963
and 1967. respectively.

His résearch intere;ts include fault-tnlerﬁnt computing,
distributed systems, errnr-eGrrecting codes, reliable software
and hardware. During the past 15 years, he has been active in

computer research and has published about 40 papers in these

areas.

i
Dr. Karpovsky is the co-author of Epectral Methods of Analysis

and Synthesis of Digital Devices (Energy, USSR, 1973 in Russian);

"and the author of Finite Orthogonal Series in the Design of

Digital Devices (John Wiley, 19276).

Dr. Karpovsky is currently an Associate Professor at the
Department of Computer Science, State University of New York at

Binghamton, Binghamton, NY.

