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e ‘ o ' 7~ Abstract; - We consider the problem of error detection in programs or specialised devices computing real R
T . functions f(x), where the argument x is represented in binary form. For error detection we use the linear -~ -7 . :
¢ 7 77 check inequalities , _ L B P - i :

. 'Zf(xmf]{PC- <e A P - |

L L - ' ' "
;” T ‘ | where ¢ > 0 is some given small constant, @ denotes componentwise addition mod 2 of binary vectors, T . '
o : ~ 13 some -set of binary vectors and C is a2 constant. A method for the construction of a minimal check set T *'_.
and constant C for the given f{x) and ¢ is proposed. This method is based on the technigues of Walsh o
transforms and least-absolute-etror polynomial approximation. Several important examples of optimal checks . . .
for programs computing exponential, logarithmic and trigonometric functions will be given. | IR

=1 Introduction ' o - ¢ . 7 considered in References 2 and 3. Decoding methods for

. ...the results of these checks (syndromes), complexity of -

We shall consider the problem of error detection for decoding and etror-detecting and exror-correcting capabili-

'~ programs of devices computing real functions f{x), where x ties were also considered in those References. It' was

is represented in binary form, By errors we mean errors in “shown? :
= . ) ~shown” that systems of linear checks of the type of eqn. |
. the text of programs or the catastrop hic structure faitures . generate good error-comecting codes, Methods of error

- -in-digital devices. | g : .o
S - - . detection based on these checks for programs computing .
- Letx=(x1,...,%) €6, x €10, 1} and G be the group - . polynomials of several arguments were considered.? and -

~ of binary n-vectors with respect to the operation @ of . *.- we note that they may be effectively used in the case where . =, .
.. componentwise addition mod 2. In References 1 to 4 the = - f(x)is an integer for every x €{0, 1, ...,2" ~ 1}, and very "', ')
- methods of error detection based on linear checks few noninteger functions have nontrivial checks.

| | ‘ - " In this paper we shall generalise linear check methods to .
2 flx e7)—C=0 () " the case of noninteger computations. These generalised = .
CTET ' - checks will be constructed for such important noninteger - -

"' 4 were considered, In eqn. 1, Tis a ‘check’ subgroup of G and . COmpulations as exponential, logarithmic and trigometric

C is a constant. (We use the same letter to denote the . - computations (see Table 1, Section 4). For errot detection
. integer from {0, 1,...,2" — 1} and its binary represen- , N noninteger computations we shall use linear inequality
‘. /. tation). The verification of whether eqn. 1 is satisfied . . checks. G x . E
..+ constitutes the error-detection method. In Reference 1 the The method described in this paper may be effectively
method of constructing optimal checks so 25 to minimise used for the testing of manufacturing acceptance of the

27 the cardinality of a check set 7"was proposed and generalised . Program or of the device computing the given numerical .
™" to the case where G is an arbitrary commutative group. This - function f(x). In the case of hardware implementation, this

,"* method was based on the very powerful technique of . . ™ethod may be wsed for mg{ntem:}ge testing of the

%" Fourier transforms over the finite groups and the corres- - .. Corresponding devices. -~ . §
L . . . - er ko . S, i A
-, ponding fast” Fourier transforms.’: ™3 Advantages and - ' -

L

'7'5?:'{;.'; " limitations of the error-detection method based on linear ./ * . = ) RO
i checks (eqn. 1) and their error-detecting capability were-. : .2 Compiexity of check sets

-+t "also considered in Reference 1. - , . Let f(x) be a real number for every x € {0,1,...,2" —1},
... " In References 2 and 3 this method was generalised tothe -~ x=(x,,...,x,) and x; €{0, 1} and let €20 be some:
i case where G is an arbitrary finite gfoup, 'dnd summation of - - - small constant. For errog detection 'we shall use linear -
S feeryin eqn. 1 is carried out in an arbitrary {possibly . -~ inequality checks :' e e
. .- Tinite) fieid. Very simple checks (such as that of eqn. 1) for o A
..+ such standard computer blocks as counters, adders, sub- _ R
1 tractors, multipliers etc., are also given in Reference 2. ' L
We note also that a similar til:hnique was used for the 2 Jxen~Ci<e - :
.. problems of logical design'®!%14.15,16 for the design of - TET

linear systems over the groups.!”1?

| In: a program or a device for computing f(x) the problem : 3 where Cis so ‘ :
L _ S LX), o me constant and T is a subgroup of the srou
‘ uf _, E_I_I_D.I__FP_I_I_EE?IUII by a 83’51'31_11 of linear checks Wﬂﬂf'.‘?_‘.ifv.._(? of binary n-vectors. (Check eqgn. 1 isg a s;ecial cagsre ngl}"
SR Ry '. : ' o e -.'..r'l.-j*:_-fr:_xpr. 2 with € = 0). T : o .
- | W o077 We shall discuss in this Section the cardinality [7(f, €)]
Papet S9SE, first received 2nd July 1979 and in revised form 8th - of a minimal check set T = ]"(f E) for the given f‘uncﬁﬂnf

' - January 1980 . and €>0. Th . e
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..° 21 Linear transform of arguments o T

i R

1et o be an (# x n)-binary nonsingular over GF(2) matrur.

y={(¥y,...,¥n) be some binary vector and
¢(x) = floxey)foreveryx = (xy,...,x,) (3)3
Then, by definition of 7{f, €), there exists C such that ‘;f w ::.
T ETU’.!}

for every x, and we have fromeqn. 3 that

Y  ¢xer)— cl

rEa "1, ¢)

TETLf, e}

2. floxeyer)—C
reT{f.e).

where ¢! is the inverse of o over GF(2) and ¢ 7' T(f, €) = .
lo™ 1l €T(Y, €)} and o  T({, €) is a check set for ¢(x);

o 'T(f, €) is a minimal check set for @¢(x) since

10"  T( S, €l = 1T(/f, €)l. Thus, we have, for any ¢{x) defined
by eqn. 3 | . | .'
I($,€) = a7 1(f,€) - @

' 2.2 Linear transform of functions

Let fy,...,f, be some real functions, ¢, 20, ...
be some small constants -

l Y fixen—C|< ¢

T E Tl )

s € =0

i=1,...;r . (5

andl T
b(x) = ﬁ: o £i(x) | - ©
Denote

= {Tl B... erllfl Er(flrfl): ..

| | ¢

Since T(f3, €} is, by definition, a subgroup of the gmup G
of binary n-vectors,

T = E T(Jﬁ! Ei) 4.

‘ﬂ[ l. ) - ‘ - . ) . :

is also a subgroup of . Denote by T; a subgroup isomor-

phic to the factor group T/T(f;, ¢). Then, we have fmm

eqns. 5,6 and 7

r

| Y pxer)— Y oC

reT C imy

r r
=X & X X fixeson)= L all
=1 +E€Ty 11 €T &) AR Lk Y

5 o z( ) .f(xﬂrﬁn)-*C)-

i=1 rET\Ti ET(f},e;)
n . , : L
< z Eilﬂ';l lT{l _ _ T (8}
i=] _ : .
70

Y dxeoin)— Cl--

. sTrET(fr: Er)} * |

It follows from eXpI. 8 that fur the function ¢(x) defined
by eqn.6

r

T= & T(e)

isa check set and

T( T el IT;I) ‘g

2, i ed

i=l

< “Tm,e.) SR

. 2.3 Convolution of functions

Denote

LG

¢ (x) = L i)k eZ) (10) .

If L |
Y f}(xﬁr) C; %E, ,;l'=_l,2- ‘

r = T{f; €§)

then we have fmm eqn, 10

Y. gxen—Cy 3 fl(Z)li

rETm.e ) zZec

y 5 f:(Z)f:(Nf*Z) D) fla)i

TET(, €,) ZEG . ZEG

—
——

il

) fl(z}( 2 f;(xEZmr)—ci)

ze6  \TETU,e)

<& ¥ U'l(z:m R an)

ZECG

It follows from expr. 11 that T(f,, €1) is a check set for

¢(x) defined by eqn. 10,and

r(qb,e: y If:(z)l)‘ﬂlﬂfhfzﬂ @
zeg - | -

By a similar proof we can show also that

T(@:ﬁ Z |f1(g}|)|-’;§,.|r(fhfl)[ B

Zed -

(13)

2.4 Superposition of functions |

Let x = (Xy1,...,%,) and f(x)=(f1(x),...,fnlx)) be 2
system of n Boolean functions of n arguments.

We shall say that 7= (7,,...,T,) is a self duality point
for fi(x) if fi(x ® 7) =1 ® fi(x).> We shall denote by Dy the

set of all self duality points- for f,(:-—l Lon) (IF
(1,...,DED, the:nfi is self duai)
SUPPDSE Caian o Co
V) = By R L)
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P} +pxe(l,...,.1N—Cl<e s
 where C and ¢ are some constants, Then we have, for every
CTE ﬂ D;

f=1

Py T O PR Y N

and for ¢(x} we have for eveiy x

Wy +dxeor)—Cl = P+ e(fixer) —(
= B(feN +d(fx)e(d,....1))—C<e  (16)

It follows now from expr. 16 that, for Y(x) and every-

o
?TEIHIDI

xe(l,...

Iy, e) = {0,...,0), 7} (17)

We note aiso that, for any function ¢(x), expr. 15 is satisfied
for every e =03 (max (p(xy+op(xe(l,..., 1)) — mm

(Plx)+¢(x e(l,.

» 1)) + min (9(x) + px &(1, ... 1, 1)])}-

2.4. 1 Example i: Let  n=3, f;(x1, x;,_#;)=x1,
Ja(x1, x4, X3)=Maj (xy, X3, X3} =X X3X3 VX X3X3 V

x|x1i3 VX1X3X3, where Vv denotes lﬂgll:al Eddiﬁﬂﬂ,
fale1,%2,%9) =EXOR (xy,%;,x3) =% ®x3 ®x;3,2and

_ 3
o(x) = (TT)

where
3

x =), x27t.
i=1

Then £, f3, f53 areself dual (fi(x (1,1, 1)) =1 &f,{x)), expr.
15 is satisfied for C = € = 0 and we have from egns. 16 and

17 for ¢Lx)=d(f(x)=2"2(7—(xy +2 Maj (x,,xi,x3)+
4 EXOR (x, x;, x3)))*: 'J’(x) + yx o (l,.
every X = (X, X5, X3 ).

2.5 - Check complexities for positive {negative} functions

Let f(x) be a pn'smveu function (f(x) =0 for every x €

{0, ..., 2" —11). By .the definition of T(f, €) there e:usts_

a cunstant C such that
) f(x‘af),—c < e | (18)
rET(f e)
or
. C—e< Y

fixen < C+e
r < T{f €) )
foreveryx €{0,1,...,2" — 1}

Then we have from exgpr. 18

C-msar < T f(¥)

YEG

= ¥ 2, feor)

xS CQ/IT(f, ey TET( e

< (C+e) 2MT(f, i __ (1%}
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1)))) if we choose C=0-5 (max ($(x) T

., 1))=0 for

" n+] logy(a+ 2'””)—1031(0*5_:IN+_2‘“:5N”

- where G/T(, €) is a subgroup isomorphic to a factor group

of G with respect to T(f, €) and [G/T(f, &)l = 2"|T(/, )| *.
Since lop, IT(/f, €)| is an integer, we have from expr. 19 the
folowinp lower and upper bounds for positive functions:

kY .

n+1log, (C—e)—iog, ), f(¥)]
YEG

< logs IT(f, O < n+llogs CHe)—log; T AN

YEG
(20)
where | o[ ([a] ) is 2 smallest (greatest) integer 2 a (> ).

For - positive functions € >'min fi(x), and we have from
[xlf(x)#+0] - .

. expr. 20

log, IT(f, €}l = n

+ ]log, (min f(x) —¢)—log; f(l’)[

lxir{rl #* 0] Yego

(21)
The bounds similar to exprs. 20 and 21 may be ubtamed

* also for negative functions (f{x) = O for every x).

We note also that the bounds in exprs. 20 and 21 are
exact, and there exist positive functions such that these
bounds are reached (see example 2, following),

25,1 Example 2: Let

n

x = ) x27x, €{0,1)),

f=]

N =2" I
¢ — O,S(z—ﬂ'iﬂ" __Z—N-Irl) '
and . '
fx) = x,(@a+27) where a = .
- Then
min @ f(x) = a+ 27N
ExIfix) # 0]
N-1
I/¥)= Y (@+27) = 05aV+ 205N
Yeag . x=05N '
_2*.”1-1

~and by eqn. 21 foreverya = 1,n > |

log, IT(f) = n + Jlogy(a + 27N+ —0-5(27 05N — 3 N+1y)

— lng;{O'SaN + 2-&5N+I — 2;N+ t }[ = |
Choose

€ = g +05(275N 4 27N+1)
Then it follows from expr, 20 for every a 2> 1, n > 1
— 9N+l }{
= n+ [logy(a +27%%%) |
— Jog, (0-5alV + 279sN+1
ogs 1,0l =1

—27 )]

11

NP ARy . . = - T Wy T -
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- We note that, for f(x) = x,,{a + 2 RN = 2"
)+ e 2 (0,0 L0) _ ,
| —{a+{}5(2'“'5” 2N

< 0-5(2795N — 270+ 1y

for every x, and the bounds of exprs. 20 and 21 are
reached.

3 Optimal inequality checks and error-correcting codes

Our problem is to construct, for the given function f(x) and
given e ;> 0, nontrivial inequality checks expr. 2. (For every

function f(x) there exists the trivial check with T=G; -

C = 2f(x) and € = 0).
x G

Let P(x)= Eatx be a pﬂl}rnumlal of depgree s which is .

| the least-absniute-ermr approximation for f(x) over the set
{0,1,...,2" — 1}, with maximum absolute error:

B, = max |f(x) — £, (x)]
: x<s[0,...,2 -1]

Methods for the construction of the pnlynumial approxi-

mation F£,(x) and estimation on A, for the given f(x) are - |

well known (e.g. see References 9 and 10).
. Suppose that we have already found a check set 7 and *
constant C such that P,(x) satisfies eqn. 1. Then we have,

for f(x) P{x)+ﬂ,(x)(|ﬂ,(x}|£ﬂ,) fﬂl‘ gvery X €.
{0,...,2" —1} | Lo
Y fxen)—C
TET
'- = ¥ Rxen—Cc+ L Akxern
reT . TET
= ) Afxeor) < AT (23

TET

where |7 is the cardmahty of T,
Thus, it follows from expr. 23 that the check set Tand
. constant C satisfy eXpr. 2, if T and Csatisfy eqn. 1 for the
polynomial approxima lugn P {x}, and

N AT < €

satisfying eqn. 1 for P,(x)} we may use the results from
References 2 and 4. Let V{(n, d) be a maximal binary linear
error-cotrecting code with code words of length n» and -

distance 4,'! and let V'(n, d) be a dual code to V(n, d’)
. Then -

Vl(n,d) = {r=01...,Tm) EG .El 7 = 0

for every

X = (Xiy...,Xn)EV(n,d)}

B Methods for constructing V(n, d), V* (ﬂ d) and estimating , -

22)

. and

24)

. i For the construction of the check set T and constant C Ry

.'i."'

their cardinalities may be found, eg. in Reference 11. It

was shown in References 2 and 4 that if

2 .
P,x) = Z HEI‘: a, :?E 0
i=0

72

g

3

where ¢ is the base of the natural lnga.ritluns and

| xE{D,l,...,'Z"—ll},
then |
Y  Pxer)-C=0 (25)
revigsen) |
where
CC = |V, s+ I Z P(x)

xe0 e, to r i

]

[Vin,s+ DIt ), a @+ D1

=0

) 2{1+1 -u}an
A co ..

where B, stands for Bernoulli numbers.

- .Thus, we have from exprs. 23 and 25 - .

*Z fxon—C|< a5+ ) 26)

re v {n +1)

and the dual code V4(n, 5+ 1) is the check set for f{x)lf

A, vi (n,s+ 1)f<e.

Example 3
Let
n=24, x€{0,l1,;,.,2"~1},"
X = (X, .. .,X2a),
then |

e, 1)), f().= exp (= (logze)2*x)

(05 < f(x)<1 for every:'-.njE.{D, 1,.. 2“ —1})

'- ande = 107°

The function f{x) may be appmxunated b}r the polynomial.

. P4(x) of degree 7 with maximum absolute error A, =2 x

107" (Reference 9). Choose the (24, 12)-Golay code -
"V (24, 8) with distance 8 as V(n s+ 1) = V(24, 8).
Then ‘ |

|V(24,8)] = |VG(24 a)l = 212
A V1(24,8) € 2x 10710 x 212 < 1078

and

TS, 107%) = V5(24,8).

We note also that, as shown in Reference 4, the com-

. plexity of the network implementation of the check of eqn.
.25 for P,(x) (minima]l number of two-input gates in the

corresponding logical network) for n —+ee is, at most,
 [5/2]n, where [a] is the graatest integer < a,

4 Error detection in computation of anulvtica!

functions

' ' We note that, for the great variety of anal}*tir.:al functions, .
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A, |Vi(n, s+ 1)| decreases very rﬁpidly with the incraa;a .

of the degree s (s < n) of an approximating polynomial.

Denoting y=2"x(0<y<1), an example of the -
~ behaviour of A JVi(n, s+ b is given by Fig. 1 for f(y) =
~ 10"%Y . The maximum absolute errors 4, for this example
" are taken from Reference 9.

Using' the Varshamov bound!! for {T1= |Vj'(n, s+ 1)

" we have, from expr. 26, sufficient condition for the
- minimal degree s of an approximating polynomial £,(x):

Ce-rf N L

 For estimating A, we may use-Taylor’s expansion for f()

: . u".

(.y = 2'Hx): o 3 . __-.__.._-.-.'“.--. .

Fal

FE+ IOy —HT (29)

where f@*1(y) is the (3 4+ 1)th derivative of f(y) and
0 < 6(¥) = 1. Then we have, from eqn. 28

Be = v € 10011 Iﬂ(y)l |
-t r(a¥1) —_ +1
ﬂﬁ max l(¢s + DD FAVPEONE — 2P
s+ DH 1276 max  {Fery))| (29)

y&[0,1}

Thus, from exprs. 27 and 29 if

: -1 '
((S'l‘ 1}!)-12*{:4-1)( max |f’{s+1}l—y] E (ﬂ Tl) % ¢

TE [“; 1] jau .’
| | (30)
then there exists C such that -
Y, . fpen—C|<e

TS Ia'_'l{:_:. 2+ )

L

L -1 —t -l -l
e e R . S T B -
T T 3 ™ 1

Da D
;

by W o -]
;

T -lﬂgm{ﬂgw*(”.E‘””

T

|

1 1 - | I N T B T
'012.?&55?591011121313}

Fig.'l. fiy) = 10°%7
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Expr. 30 provides us with a good upper bound for the
~ Gardinality [T(f, €)l of the minimal check set for the given
" f, €. 1et s{/, €} be the minimal s satisfying expr. 30, then,
- using the Varshamov bound, we have

s{f, e)-1 —
LTl s L ( . )

@

j=0 /

i 1t follows, also, from expr. 30, that simple inequality

checks (expr. 2) may be constructed only for ‘smooth’

" functions f(»), such that max |+ ()| increases very
Mty v |

- slowly (or not at all) with increase of s.

In Table 1, the minimai s satisfying A, }Vi(n, s+ 1)< e

“'is given for several important analytical functions for
- n=123and e = 5 x 107, The Table also gives corresponding

approximation errors A, taken from Reference 10, the
parameters (1, K, d) of the codes ¥(n, s+ 1) and check
complexities {T{. As regards the parameters (n, K, d) of the

code V(n, s+ 1), n is the number of binaty components in
* the code words, K the number of information bits and d the
., distance of the code;check complexity means the cardinality

of the check set 7= Vi(n, s+ 1).
Thus, we may see from Table 1 that many important

. analytical functions have simple inequality checks of the

type of expr. 2.

T4 Example 4
- Let us construct a(g optimal inequality check for the

it

function
- , n .
f) = y " sin yo?
with
e = 5x%x107?
where

_],-=2"‘13‘;'...lr Ié{D,l,...,Zla—l}
(see no. 7 in Table 1). This function can be approximated

- by the polynomial P3(y) of degree two: 10

% sinZ 0 = Pa(y)+ 8:0)

- whete

P,(y) = 007287y —0-64338y + 1-57064
and

max A,(y) = A, < 14x107°
; y ] ' '

Choose the (23, 18) code with the distance 3 and the check

matrix _
huuuunnu'l_uulnlluni\
01 0000010010101 010
H=|0 0100010011 0011010T0
000101000111 000°1.11
'uu'ut|1.1-’11"1dnﬂuunlll/
73
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i““';"lmﬂﬂ'?“r"f -h--ﬂnm T Wl f 1A i

Table 1: Linear inequality checks for soma analytical functions {7 = 23, e =5 X 1077}

: :.' Mo, Function f{y} Minimal degrees of Approximation error Parameters (n, K, d} uf_ Eheclk complexity
‘ | approximating A, ‘ the chosen code -
polynomial - ' Vin, s + 1}
1 e” 7 2% 30" (23, 11, 8) 212
2 1ge-Y 5 18X 1077 {23, 13, 8} 210 |
3 In {1 +y} B 185X 107* (23,12, 7) 2!
4 n (1 —ay) 5 41 X 107 (23,13, 6) 2'°
. 8 = 1—056/2 .
5 ity =y 5 5X10°7 123, 13, 61 21
4 RGO
6 fsin = y)y 4 ~o12x 1077 ¢ (23, 14, 5} .2°
T
. sin E \,frF .-
7 2 14 X 1073 (23, 18, 3} 2% -
8 - eosty 4 99 X 107 23,14, 51 2*
- 4 R
9 Y 4 ~ 3BX 1077 o (23, 14, 5} 29 :
10 - .. siny 7 1004 (23,11,8) 21t !
" i1+ y) 7 12 10°¢ (23,11, 8} _2"
oo,
: E — 5m "V . _ B o
12 3 7X10°% (23,17.4) 2¢
VT —p

as V(n, s+ 1)=\{23, 3)." Then |V1(23, 3)|=2° and
42|V (23, 3)i <€ =5 x 1072, For the constant C, we have

C =215 P,(y) = 40-74372.
¥

Thus, we finally have the following optimal inequality check
for our function: o |

TET

2, Qe r‘})"’" sin g@'“{x ® r}j’" — 40-7437

< 5x 1073

for every x €{0,...,2* — 1) where T= V4 (23, 3} is the
set of all 32 linear mod 2 combinations of the rows of A.
We note also that all the results given above may be
generalised to the case when x is represented in nonbinary
torm. If x isrepresented asa g-ary n-vector x = (xy,...x,)},
c;€4{0,...,9g—1}, g=2), then all the previous results
-remain valid, but the check set Vi(m, s+ 1) must be

| replaced by the set Vé(n,s +1)={(ry,. ... 1)l ® Tx; =0
. ' ju g

for every (xy,...,x,)€V,(n, 5+ 1)} where X, T €
{0,...,9 —1}, the symbol ‘@ stands for mod q addition
and ¥V, (n, s + 1) is the maximal linear code in n-dimensional
space of g-ary vectors with Hamming distance s + 1.1

“All checks considered zbove may be represented as a
. convolution over GF(2): '

Y. ar)f(x @ )

T

<e | (32)

. where a(r)€ {0, 1} for every r. We note that the check
complexity (number of nonzero values of a(r)) may some-

14

iy o w1 oy o

fix) =

times be essentially decreased. if we use checks with
a(r) € {0, £ 1} for every r. For example, if '

It + .bl
I! + b‘l

x€{,1,...,2"=1},b, > b, > 0)

_ then we may construct the following check:

b
6= f e 00...0)] < =i

The problem with constructing optimal checks (expr. 32)
with a(r) €{0, 21} for the given f(x) seems to be very

(33)

© difficult.

5 Error-detecting capability of linear inequality checks

As in References 1, 2,3 and 4, we shall use the additive way
of describing the influence of errors, namely, by the
error € in a program or a device computing f{x) (x €
¢, 1,...,2"—1)P, we mean the function e(x) (x €
{0, 1,..., 2" — 1)) such that, as a result of the error; our
program or device computes f{x) -+ e(x). We suppose also
that for every T®€{0, 1,...,2" — 1} either gTe(x} =
: x

or k éSTe[x)I > 2e. (The last condition may be used for the

choice of e for practical applications).

The error-detecting capability . of proposed linear
inequality checks depends on a specific implementation of
a computational process for f(x). We shall consider three

* widely used types of computational processes: polynomial

approximation f (x) = P, (x), rational approximation

Py (x) |

flx) = 000)
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“and continued fraction approximation

. where Py, ...

'nomials by constants C,,...
~ coefficient of these polynomials is stored in a corresponding
m-bit memory cell; thus, the binary representatmn of _~ .

C n(®)=0 for every &,

- plicity 2 in coefficients a; , ..

C ";‘ﬁ'j-j"‘-‘if"’“'.r-ﬁ-ﬂ.\.'l_",.,-._‘-.;-*_ . ;

0:)” &) T o)

s Py, Q1. .., Qg tepresent polynomials (e.g.
see Reference 10). By an error of multiplicity 2 1 we mean
any error resulting in the replacement in a program
computing f(x) of £ coefficients in some of these poly-
, Cp. We assume that every

(%) ﬂ_,_ Py(x) _{_P:(.x) +

constants C,.{r =1, .
suppose that expr

., ¥) each contain m bits. -
2 is. satisfied for f{x] 'Ihen

- for the error. e, such that I E e(x)i} Ze, we hzve
-| E (f(x @7)+e(x 7)) C]}E :md this error wﬂl be

detected by the inequality check, expr. 2. Thus, if an error

e cannot be detected by expr. 2, then gTe(x ® ) =0for
. _

- gvery x. The last condition may be used for estimating the

error-detecting capability of an inequality check expr. 2
For the practical implementation of linear inequality checks,
we may verify expr, 2 for any given test pattern x (say,
x = 0). Let us now describe the error-detecting capabmty in
this case.

We denote the relative frequency of. errors of multi-

~ plicity € which cannot be detected by n(2). (if the number
of all possible errors of multiplicty £ tends to infinity, then
1 —n{R) tends to the probability of the detectmn of errors

with multiplicity £.)
If the error e is an asymmeiric error (j.e. e(x] = O for

~every x or e{x)< 0 for every x) and for the given test

pattern x there exists 1 €T such that e(x 1)+ 0, then

since for asymmetric errors
Z e(xor)+0.

TET

Since for polynomial, rational or continued-fraction
approximations any single error is an asymmetric error,
all single errors ‘are -detected. For any error e of a multi-
plicity £>1 and for any type of approximation for
every Cyy .o v s Crmg s Crags e o

C,, such that é‘T e{x ® 7) = 0 for the given test pattern x,
T

Since the bmmr;q.lr representation of C, contains m bits, we |

have for n(2) _
7(¥) < Hﬁm)(Z"‘ — 1) G

where 8¢ ; is the symbol of Kronecker. -
Expr. 34 illustrates the good error-detecting capability

of inequality checks for errors in coefficients in the case of

polynomial, rational or continued-fraction approximations.

 As a disadvantage of these checks, we note that, if we use

for the computation of f(x) some expansion in orthogonal
polynomials P,(x} {e.g. Cheb¥shev, Legendre or Hermite

. polynomials), that is,
[

f(x) =) a,Pi(x)

I=1

{whete the degree of P(x) is i), then for an error of multi-

. A1, We have

Q
e(¥) = ), (o, —C)P; (x)

r=1

(ﬂ'r?&Crl r = lr"'rﬂ)
IEE PROC., Vol. 127, Pt. E, No. 2, MARCH 1980

, Oy, there exists at most one

s . 'h-'l' r"1:'r__ '_ﬂl::;'ﬂnﬂ'hfi"-|_,l-- PR T

If iy <i; <. {lg_ s;.': we ha'n: fmm eqn 25 fﬂt every
given test x v -

Z E(IET) -_- Z

e(x @71)

reT re vim e
'
= ) (ﬂ: - r) ' ): P:(x*f)"ﬂ
rai ..

revig ey -

and tlus errof cannot be detected by expr. 2. Thus, inequa-
llty checks are inefficient fur computations by expansiuns

~ in orthogonal polynomials.

For further improvement of the errur-dEtEctlng capa-

_bility of linear inequality checks, we may verify expr. 2 for

several test patterns x, whn:h wlll resuft in increasing the
testing time. Since ' = V (n,s + 1), these test patterns have
to be chosen as elements of V{n, s + 1). If n is not too big
{(say n < 20), then we may use all elements of V{n, s+ 1)
as test patterns. We shall describe the ermr-de:tucting
capability for this case with respect to output errors.

By an output erior e. of multiplicity £ we mean any
function e(x) which is not equal to 0 at € points (j.e. the
multiplicity of output error in computing the function fis
the number of distorted values f(x)). This definition is
natural if errors in computing f(x) are independent for
different xs, as for example in the case where f(x) is
information stored in a memory cell whose address is x. An
output error e(x) cannot be detected by expr. 2 if, for
every X,

r exen = )L en=

CrE VT eel) TEG

Thus, if the computed values of f(x) + e(x) are stored in
m-bit memory cells, then we have

n2) < (W, s+ DI— 1)1 2™ — 1)
n@)< Ve, s+ 01— D7 (Vs + DI @7 - 1)

(35)
and for every £ > 3 we have

) < (Y, s+ BI—D2" -1t (36)

For the estimation on | V(1,5 + 1)] in exprs. 35 and 36,
we may use Hamming-Rao or Plotkin bounds."* Exprs. 35
and 36 illustrate the good error-detecting capability of
linear inequality checks with respect to output errors, when
the set of test patternsis ¥(n,s + 1).

We note also that all results in this Section were
obtained for the case where fault-free programs or devices
compute the exact values of the function f(x), but for
many practicat cases our program or device computes f{x)
only with some finite accuracy §. Hence, all the previous
results remain valid only if § <e.

6 Conclusions

We have described a method of error detection for
numerical computations based on linear inequality checks.
For the construction of these checks we use the techniques
of least-absoluteemmor polynomial appmximatluns and of
linear error-correcting codes.

We have seen that a great variety of smooth analytical
functions have simple mequahty checks with good emor-
detecting capabilities.




R . The proposed error-detection method may be effectively -
- . used for functions with a good Jeast-absolute-ertor poly- .

nomial approximation. - . |
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