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Weight Distribution of Translates, Covering 
Radius, and Perfect Codes Correcting 

Errors of Given Weights 
MARK KARPOVSKY, MEMBER, IEEE 

Abstract-feat V be a binary linear (n, k) code defined by a check 
matrix H and let h(x) be the characteristic function for the set of columns 
of H . Connections between the Walsh transform of h(x) and the weight 
distributions of all translates of the code are obtained. Explicit formulas for 
the weight distributions of translates are given for small weights i(i < 8). 
The computation of the weight distribution of all translates (including the 
code itself) for i < 8 requires at most 7( n - k)2”-k additions and subtrac- 
tions, 6. 2”-k multiplications and 2”-k+’ memory cells. This method may 
be very effective if there is an analytic expression for h(x). A simple 
method for computing the covering radius of the code by the Walsh 
transform of h(x) is described. The implementation of this method re- 
quires for large n at most 2”-k (n - k) logI (n - k) arithmetical opera- 
tions and 2”-kC’ memory cells. We define the concept L-perfect for codes, 
where L is a set of weights. After describing several linear and nonlinear 
L-perfect codes, necessary and sufficient conditions for a code to be 
L-perfect in terms of the Walsh transform of h(x) are established. An 
analog of the Lloyd theorem for such codes is proved. 

I. INTRODUCTION 

S ECTION II of this paper is a companion to [B], with 
which we assume the reader is familiar. Suppose that 

the binary linear (n, k) code Vis defined by its (n - k) X n 
check matrix H with columns h,, . . . , h,. We assume that 
the code V has a distance dist (V) > 2. 

Let f E (0, l}” ((0, l} ’ is the set of all binary n-vectors), 
and Ai( f) be the number of vectors of weight i which 
belong to the translate (coset) V @ f of our code V (the 
symbol @ stands for component wise addition mod 2). The 
problem of determining {Ai( f)} (and especially the weight 
distribution {A,(O)} of the code itself) has been studied 
intensely (see [ l]-[S]). 

Let h(x) be the characteristic function for the set of 
columns of H, that is, h(x) = 1 if x E {h,; ..,h,} and 
h(x) = 0 otherwise. Then h(x) is a Boolean function 
of n - k arguments x(‘); . . ,x(~-“), and the Walsh 
(Hadamard, Fourier) transform i(o) of h(x) [B], [9], may 
be defined by the formula 

/i(o) = Xh(x)(-l)“‘“, 

where w = (tic’), . . * ,w(“~~)) is any binary (n - k) vector 
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Connections between i(w) and the weight distribution 
{A,(O)} of the code were established in [B], where they led 
to another proof of the Pless i th power moment identities 
and a simple method for computing A,(O) for small i 
(i 5 7). 

In Section II of this paper, we generalize the method 
described in [B] to the case of weight distribution of trans- 
lates. Namely, we shall establish the connections between 
/?( Hf ) (where l? is the i th power of 6) and Ai( f ) for all f. 
This will provide us with a simple method for simultaneous 
computing of the weight distributions of all translates of 
the code (including the code itself). This method requires 
about s( II - k)2”-k additions and subtractions, (s- 1)2”-k 
multiplications and 2n-k+’ memory cells for the 
computations of Ai( f) for allf E (0, l}” and all i = 0; . -,s 
for small s (s < 8). Since the complexity of computations 
depends only on n - k and s, this method may be very 
useful for the important practical case when n and k are 
large, and n - k is comparatively small for codes with 
small distances and independent channel errors. We also 
note that for many cases we may derive simple analytical 
expressions for A,(f) for all f. This situation will be 
illustrated by examples in Section II. 

The covering radius t(v) (the true external distance) of 
the code I/ is defined by 

t(v) = rE~c,n $vdist (0, f), 

where dist (u, f) is the Hamming distance between v and 
f. The calculation of the covering radius for the given code 
is an important and difficult problem (see, e.g., [l]). One 
approach to the solution of this problem is described in 
Section III. This approach will be based on the results from 
Section II about weight distributions of translates; its 
implementation requires for n --f cc at most 2”pk(n - 
k) log, (n - k) arithmetical operations and 2n-kf’ mem- 
ory cells. The exact complexity estimations will also be 
given in Section III. 

Let L = (0, l,;..,ls} and 0 < I, < 1,~ . ..I.< n. Let 
us say that an (It, k) code V corrects errors of weights 
1 1,’ * . ,I, if and only if (iff) there is at most one vector with 
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Fig. 1. Logical networks of generators of messages for Example I. 

a weight from L in each translate of the code I’. The 
problem of correction (or detection) or errors of given 
weights appears, for example, when the generator of mes- 
sages is a logical network and errors in a message appear as 
a result of physical failures in the blocks of this network 
(see Example 1, just below), or in the case of a band-limited 
generator of noise. Another example may be the case when 
as a result of an error, either all components of a message 
are distorted or the number of distorted components is at 
most 1 (for this case L = (0, 1,. . . ,I, n}). The general prob- 
lem of error detection and error correction of an arbitrary 
set of errors was considered in [lo]-[12]. 

Example 1: Suppose that the generator of messages is 
represented by the logical network of Fig. l(a), where 
B,; . . , B, are some logical networks. For this network any 
physical failure in one of the logical networks B,, . . . , B, 
may result only in distortion of one or three components in 
the messages, L = (0, 1,3}. Similarly, for the generator of 
messages represented by the hierarchical logical structure 
of Fig. l(b), we have for any single failure in logical 
networks B,, . . . ,B,,, L = {O,l, n}. For an (n, k) code 
correcting errors of weights I,, . . . , I,, we have the following 
analog of the Hamming bound: 

(4 

where L = (0, I,, . . . , I,}. Let us say that such an (n, k) 
code is L-perfect iff equality holds in (4). Intense study of 
the classical case L = (0, 1, . * a, Z} [l] has shown that very 
few such perfect codes exist [13], [21]. 

We shall describe in Section IV that very few perfect 
codes correcting errors of given weights exist, as in the 
classical case L = { 0, 1, + f . ,I} [ 11, [ 131. One class of nonlin- 
ear L-perfect codes for L = (0, 1, n} is also described. The 
generalization of the results to the case of nonbinary codes 
over GF(q) is discussed in Section V. 

II. WEIGHT DISTRIBUTION OF TRANSLATES OF A CODE 

Let V be the binary linear (n, k) code with the check 
matrix H= (/~,,..a ,h,), and let C,(f) be the number of 
i-tuples (h,,; * f, h,) of (not necessarily distinct) vectors 
from {hi;. .,h,} such that 1) h,,@ . . . @h, = Hf, and 2) 

there exists (Y, p E { 1,. . . ,i} such that h,= h, and (Y # p. 
(Note that any rearrangement of an i-tuple counts as a 
different i-tuple.) 

Theorem I: In any translate V CB f of the (n, k) code T/ 
the number of vectors of weight i is given by 

Ai( f) = (z-j 2-‘“-4(Hf) - Ci( f) ) 
i 

i = O,l;..,n, (5) 

where & Hf ) is the i th power of h^( Hf ). 

Proof: The same proof as that of Theorem 1 in [8] 
works for this result, if the reader makes only the necessary 
and obvious changes such as replacing “0” with “Hf ” and 

Corollary 1: The translate I’ @ f of the (n, k) code V 
with the check matrix H = (h , , . . . , h,) has weight t if and 
only if 

/?(Hf) = 0, foralli=O;**,t- 1, 

;‘(Hf)#O. 

For this case 

A,(f) = (t!)-12-‘“-k);r(Hf ). (6) 

Proof: From the definition of Ci( f ) and (l), (2) we 
have 

1) if t is the weight of V @ f, then C,(f) = 0 for all 
i = 0; * .,t; 

2) if ti(Hf)=Oforalli=O;* .,t - 1, then Ci( f) = 0 

for all i = 0;. .,t - 1. 

Corollary 1 follows now immediately from Theorem 1. 
Let us consider now the behavior of weight distributions 

under translations of columns of the check matrix. Let V 
be a code with the check matrix H, and h(x) be the 
characteristic function for H. We shall say that a code V(r) 
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with the characteristic function hcT)(x) is a check-translation We note that by definitions of Ai( f ) and a( P,(i), f) we 
of V iff have 

hcT’(x) = h(x @ T) for some T E (0, l}n-k Ai(f > = (i!)Y’d((l’), f ): 
i-l 

(T @ {h,,-,h,}). (7) ci(f) = 2 2 4P,G), f 1. 
s= 1 P,(i) 

01) 

For a check matrix HcT) = ( h’,T), . . . , h’,T)) of T/CT) we have 
from (7) 

Thus, the problem of determining C,(f) may be reduced 
to the computation of d( P,(i), f) for all s and P,(i) 

hv . . . $h’;f’ = h,,@ . . ..h,;(l - (-l)‘)T, 
(s = 1; . .) i - 1). Values of d( P,( i), f ) are given in Table 
Ifori= l;.. ,7. Using the results from Table I, Theorem 

foranyl If-,< .=.<l;ln, 1, and (lo), (1 l), we have the following corollary. 

HcT)f= Hf@;(l - (-1)“““‘)T. 
Corollary 2: For any translate V @ f of the (n, k) code 

(8) v 

Thus, we have from (7) (8) for a weight distribution A,(f) = 2-(n-k)ho Hf) = a,,,, ^( 
{AIT)( f )} of a check-translation Vcr) 

/p(f) =/++l - (-l)‘+wr(f))T). (9) A,(f) =2-‘“-k’h Hf) =h(Hf), ? 

If we obtain analytic expressions for Ci( f), then Theo- A,(f) = (21)-l 2-(“-k’;f: (Hf) - Ao( 
rem 1 provides us with a simple method for the simulta- 

(14 

neous computations of weight distributions for all trans- 
lates of the given code (including the code itself). We shall A3( f) = (3!)-’ ~-(“-~)b (Hf ) - A,( f )(3n - 2) , 
describe now a combinatorial method for the computation i 
of C,(f) which is expedient for comparatively small i (say, (13) 
i < 8). 

Let P,(i) be an s-partition for the integer i; for example, A4( f ) = (4!)-’ 2-(n-k)h^4 (Hf ) - A,( f ) 
P,(7) = (3 + 2 + 1 + 1) is a 4-partition for 7. We shall use i 

A 

the notation (12), etc., to denote the partition 1 + 1; for 
example, P,(7) = (3 + 2 + 1 + 1) = (3,2, 12). For an s- +2!2(3n - 4) - A,( f )n(3n - 2) 

i 
, 04) 

partition P,(i) = (rp’; . .,r,“r) (a, + . . . +a, = s, a,r, 
+ . . . +vi = i> we denote by 4P,G), f > (f E (0, W 
the number of vectors x = (x1,. . . ,xi) (with not neces- 

A (f) = (5,)-~ 2-cn-k$(Hf) _ A (f )3r10(n _ 2) 
5 

* i 
3 . 

sarily distinct components) such that 

1) Xl,. . . ,xi E {hl>. . ‘9 h,}, @j,,x,= Hf; and -A,( f)(15n2 - 30n + 16) , 
i 

(15) 
2) there exists LY, elements of {h,, . 1 . , h,} such that each 

of them appears r, times as a component in x; there -1 

exists a2 other elements of {h,; . .,h,} such that each b(f) = (6!) i 
2-‘“-k);;n6(Hf) -A,(f) 

of them appears r, times as a component in the same 
vector x, etc. 

.4!5(3n - 8) - A2( f )2! (45n2 - 150n + 136) 
For example, for P,(7) = (3,2, 12), x may be chosen as 

(Xl, x1, x,, x2, x2, x3, x4) or (xl, xl, x2, xl, x2, x3, x4), 
etc., where xl@ x3@ x4 = Hf and x1, x2, x3, x4 are all dif- -A,( f )(15n2 - 30n + 16)n (16) 
ferent. To compute d((3,2, 12), f) we note that there are 

( 1 i different ways to choose three components where the 

given xl appear in x; 4 
( 1 

A,(f) = (7!)-’ 2-‘“d7(Hf) -A,(f)5!7(3n- 10) 
2 different ways to choose two 

components for the given x2; there are A3( f )3! ways to 
choose (x,, x3, x4) such that xl@ x3@ x4 = Hf; and n - 3 

-A3( f )3!7(13 + 5(n - 3)(3n - 5)) 

ways to choose x2 such that 

x2 E {A,,. .9,} - {x,, ~3, ~4). 

-A,( f )(l + 7(Pr - 1)(9 + 15(n - l)(n - 2)))). 

Thus, (17) 

d((3,2J2),f)=A,(f)3!(;)(;)(n-3). 
We note that (12)-( 16) generalize the corresponding results 
from [8]. 
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TABLE I 
VALUESOF~(P,(~),~)FOR~= 1;.,,7 

i s P,(i) 4P,(O, f) 

A,(f) = h(W) 
4d.m = 4, ff, 
A,( fP 
A;(j) 

1 1 
2 1 

2 
3 I 

2 

3 
4 1 

2 

2 

3 

4 
5 I 

2 

2 

3 

3 

4 

5 
6 I 

2 

2 

2 

3 

3 

3 

4 

4 

5 

6 
7 I 

2 

2 

2 

3 

3 

3 

3 

4 

4 

4 

(1) 
‘2) 

‘t3: 

CLl) 

((g 
(331) 

@*I 

(2, I*) 

y:; 
(491) 

~3~2) 

(3, I*) 

(22> 0 

(2,“) 
(13 
(6) 

(59 1) 

(4.2) 

(32) 

(4, 12) 

(3.2.1) 

V3) 

(3, I’) 

c2*> 19 

(L I41 
(n 
(7) 

(61) 

(592) 

(493) 

(5, I*) 

~4~2% 1) 

c3*, 1) 

W2) 

(4, 13) 

(3,X I*) 

P3, 1) 

W( ; jk - 1) 
A3(f )3! 
Adf )n 
A,(fP ( ; j 
A,(fW’( ;)nb - 1) 
A,(fP ( ; jb - 2) 
Adf )4! 
A,(/ 1 
A,(f)(; jb - 1) 

A,(f)( ; )(n - 1) 

A,(f)3! ( ; j 
A,(OW1(; j ( ; jb ~ l)(n - 2) 

A,(f)34 ;)(n - 3) 

Adf )5! 
Ao(f)n 
A*W( :, j 
Ao( - 1) 
A,(fP(2Y’ (; j 
A,4 ;)(n - 2) 

A,(fP ( r; j ( ; j(n - 2) 

A,mw’(~ j( ;)m - I)(n - 2) 

A,(f)4!( I;) 

A2(f)2!(2!)-‘(; )( ;)(n - 2)(n ~ 3) 

A,(f)4!(; )@ - 4) 

J46Cf w 
A,(f) 
A,(f)( ;)(n - 1) 
A,(O( ;)(n - 1) 
A,(O( ;)O - 1) 
A,(f)3!(~ j 

5 (3.19 

5 G2, 1’) 

6 v., 17 

7 (1’) 

A,(/)(; )( ;)(n ~ I)(n -2) 

Aj(/)3!(2!)-‘(; j(; j 
A,W-I(; )( ;)b - l)(n - 2) 

A,(f)3! ( ; j@ - 3) 

A3(f)3!(; )(;)O - 3) 

4(O(3!)1(; j(; j(; j 

.(n - l)(n - 2)(n - 3) 

M)5!(; j 
A,(f)3!(2!!-I(;) (; j@ - 3)(n - 4) 

A,(f)5! ( ; jb - 5) 

For any (n, k) code and any f E (0, l}” 

l$Ai(f) = 2k (184 

An-i(f) = Ai(1 ‘f )3 where 1 = (l;..,l). 

(18b) 

Thus, by (12)-(17) and (18) we may immediately obtain 
the weight distributions of all translates for any code with 
n -=c 18. 

It follows from Theorem 1 and (12)-(18) that the com- 
putation of weight distributions {A,( f )} of translates may 

A 
be reduced to the computation of p( Hf ). The computa- 

A 
tion of g(r) for all 7 and all i = 1; * *,s by the fast Walsh 
transform [9], [14] requires at most s(n - k)2”-k additions 
and subtractions, (S - 1)2”-k multiplications and 2n-k-t1 
memory cells. This method of the computations of weight 
distributions {Ai( f )} of translates may be much simpler 
(especially for codes with small distances) than the well- 
known alternative based on the computation of the exter- 
nal distance of the code and the expansion of the corre- 
sponding annihilator polynomial in terms of Krawtchouk 
polynomials (see, e.g., [l, pp. 166- 1701). 

We note also that if an analytic expression for h(x) is 

available, then sometimes we may find ti( Hf ) and A,( f ) 

immediately (without application of the algorithm of the 
fast Walsh transform). This situation wjll be illustrated 
below by several examples. Tables of h(w) for a large 
number of classes of Boolean functions h(x) may be found 
in [9]. 

Example 2: We consider the (n, k) codes with n = 2* - 
2”-‘, k = 2” - 2*-’ - LY (t = 2,. . . ,cx) obtained by delet- 
ing from the check matrix for the (2* - 1,2” - (Y - 1) 
Hamming code all columns hj = (hz), . . . , hj”-“1) for which 

hl” = . . . = hj” = 0. Thus [8], 

i(u) = n8,, w - 2”-k-‘60, w~~+l) 

.80,,v+2) . . &J~k~(l - 6Q,J, (19) 

where ai, j is the Kronecker delta. Hence 

A 
p(T) = ti(T(l),. . .,7(n-k)) 

= ,i + 2i(n-k--r)( _ l)i 

. (2’6,, T(‘v50, 7(2) . . .a,, T(f) - 1). (20) 

Denote X = Hf, h = (A”);. .,tinPk)), then by (12)-(17) 
and (20) we have for the case when the first t coordinates 
of X are all zero 

A,(f) = 60,,> 4(f 1 = 09 (21) 

A,(f > = (2!)-‘n(l - So,,), (22) 

A3( f) = (3!)-‘n(n - 2n-k--f), (23) 
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A,(f) = (4!)-‘(22(“k)- 3n(2”+‘+ 2 - 60,Hf) where I, is the (m X m) identity matrix. Then 

-WI,,+ 8)p (24) 
h(X) xz /+U),. . .,xw+‘)) 

A5( f) = (5!)-‘n(n - 2n-k-1) 
= h,(X(‘),. . . ,x(k+l)) + h2(-#),. . .,-p+‘)), 

where 

( n2 + 22(n-k-t) - 10n + 20), (25) 

1 

k 

hl(X(l),. . . ,X(k+l)) zz 1, 
I, = (6!)-‘(n(n4- &y-k-‘+ n222(n-k-r) 

if x x(O= 1; 

i=l 

-&“-k-t) + 24(n--k--f)) - n(l - a,,,) 

(45n2 - 150n + 136) - 5! (3n - 8)x4,( f )), 

0, otherwise; 

1, if XC’) = . . . 7z xCk) = 0, 
h2(x% * * ,xck+‘)) = X(k+l)= 1. , 

(26) 

A,(f) = (7!))‘n(n - 2”-qn4- 21n3+ 175n2 

-630n + 784 + 22(n-k--I) 

. (2 - 21n + 70 - 22@-k--1))). (27) 

For the case when there are nonzero coordinates among 
the first t coordinates of X we have by (12)-(17) and (20) 

A,(f) = 0, 4(f) = 1, 

A2( f ) = (2!)( n - 2n-k-t), (28) 

A3( f ) = (3!)-‘( n2 - n2”-k-f + 22(n-k--1) - 3n + 2)(29) 

A,(f) = (4!)-‘(n - 2”-k-r)(n2+ 22(n-k-r)- 6n + S), 

(30) 
I, = (5!~‘(~4- &y-k-r+ &$n-k-r) 

-n23(n-k-r) + p(n-k-r) + 102n-k-r 

.(n-2”-k-r)(n-2)-10n3+35n2-50n+24), 

(31) 
I, = (693 - 2”-k-r)(n4+ n222(n-k-r) 

+-p(n--k-r) _ 5(3n _ 8)22(--r) 

- 15n3 + 85n2 - 210n + 174), (32) 

A,(f) = (7!)-‘((n7+ 27(n-k-qn + 2n--k-y 

-1 - 7(n - 1)(9 + 15(n - l)(n - 2)) 

-A,(f)3!7(13 + 5(n - 3)(3n - 5)) 

-A,(f)5!7(3n - 10)). (33) 

Formulas for A,(f), A,-,(f),. . .,AnP7( f) for these codes 
may be derived by the substitution of 1 @ f instead off in 
(21)-(33). We also note that formulas (21)-(26) are gener- 
alizations of the corresponding results from [8]. We shall 
illustrate now the application of Corollary 2 to weight 
distributions of a code V and its dual VI. 

otherwise. 

(34) 
Thus, we have [9] 

i,(@) = /qw(‘),. . *,&p+l)) 

= 6 a,Jk+I12(k - 2wt(w)), 

L,(w) = (- l)“(x+‘), 

L(o) = Ii,(w) + i,(w) 

= 6 0,w’k+‘j2(k + 1 - 2wt(w)) - 1, (35) 
and 

S(o) = ~iqo) 
w 

k k ZZ I:! I( j=O 
j 2k + 1 - 4j)’ + (- 1)i2k. (36) 

From (36) and (12)-(17) withf = 0 we finally have for the 
weight distributions of these codes 

-4)(o) = 1, A,(O) = A2(0) = 0, 

A3(0) = (3!)-’ 5 2-Ck+l) 
(,-. is) 

.(2k+ 1-4j)3- l/2 (37) 

A4(0) = (4!))’ i 2Uk+‘) (,=. (;)@k+ 1 -Ad4 

+ l/2 - (2k + 1)(6k + 1) (38) 

A,(O) = (5!))’ (jT(k+l)( ;)(2k + 1 - 4j)’ 

- l/2 - A,(0)3!10(2k - 1) (3% 

Example 3: Consider the weight distributions of the 
(2k + 1, k) codes with the check matrices + l/2 - A,(0)4!5(6k 

II= 4+,1 ( 4% I 
- ---- 9 

I 11 ea.1 
(2k + 1)(60k2 + 1) 

(2k + 1 - 4# 



KARPOVSKY: WEIGHT DISTRIBUTION 

A7(0) = (7!)-’ ; 2-Ck+‘) ijxo (;)t2k+l-4d7 

-l/2 - A,(0)5!7(6k - 7) - A3(0) 

.3!7(13 + 5(2k - 2)(6k - 2)) . 
1 

(41) 

We note also that the Walsh transform i(w) may be 
used for the computation of weight distributions for dual 
codes, since [8] 

wt(cdH) = (1/2)(n -K(o)), (42) 

where oH is the vector of length n obtained by multiplying 
the check matrix H by the row vector o. 

Thus we have, for example, from (42) and (19) for the 
weight distributions B,(O) of (2* - 2a-r, a) codes which are 
dual to the codes from Example 2 

Bj(0) = 60,, + (2a-t- l)S,,-1, j 

+ (2”- 2a-f)82”-‘-2”-‘-‘, j. (43) 

For the (2k + 1, k + 1) codes, which are dual to the codes 
from Example 3, we have from (42) and (35) for even k 

1 

k 
( 1 
2ki ’ 

ifj = 2i, i = 0;. .,k; 
B,(O) = 

ifj = k + 1; (44) 

0,’ otherwise; 

and for odd k 

k 
‘( ) i ’ 

ifj = 2i, i = 0;. . ,k, 

Bj(0) = ,. 
i # (1/2)(k + 1); 

zk+ (1/2)[k + 1) , 
i i 

ifj = k + 1; 

LO, otherwise. (45) 

III. COVERING RADIUS OF LINEAR CODES 

For the (n, k) code V the covering radius (the true 
external distance) t(V) is 

t(v) = gy,, ~“pp (UT f ) 

Calculating the covering radius t(V) for the given code 
V is an important and difficult problem (see, e.g., [ 11). We 
describe in this section one approach to the solution of this 
problem, which will require for the computation of t(V) 
for n + cc at most 2”-k(n - k) log, (n - k) arithmetical 
operations. The exact complexity estimations’ will be also 
given in this section. This solution is based on the follow- 
ing theorem. 

Theorem 2: Let V be the binary (n, k) code with check 
matrix H = (h,; . .,h,) and 

gi(w) = i lqo), i = l;..,n. (46) 
j=l 
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Then the covering radius t(V) of the code V is equal to the 
minimal t such that &(7) # 0 for all 7 # 0. 

Proof: It follows from (1) (2) that 

@ = 2n-k 
2 h(x,) .+ .h(xi). (47) 

x,@ . ..@x.=r, 

If for the given 7 # 0 $(T) # 0, then for anyfsuch that 

Hf=rthereexistsuE V/$withwt(u)<i.But,ifuE V 
@ f and wt( u) _( i, then there exists b E V such that u = o 
@ f and dist (0, f) I i. Since for every 7 # 0 there exists 
f E V such that Hf = 7, the covering radius of V is the 
minimal t such that 

i ;(T)fo 
i=l 

for all 7 # 0. Using the definition of g,(w) and linearity of 
the Walsh transform we have 

i=l 

This completes the proof of Theorem 2. 

Theorem 2 provides us with simple algorithms for the 
computation of the covering radius t(V) for the code V. 
For small t(V) the following algorithm may be used for the 
code V with the check matrix H = (h,; . .,h,). 

1) 

2) 

t> 

Compute A, = (0, l}n-k - (0, h,; 1 .,h,}. If A, = 0 
(empty set): then t(V) = 1. 
Compute h(o) by the fast Walsh transform, then 

i2(o), /?(T),andA,= A,- {~ifi(~) # O}. If A,= 
0, then t( I’) = 2. 

A 
Using the fast Walsh transform, compute h”‘(7) from 
the previously computed i(w) and Q-‘(w); then 

A 
computeA,=A,-,- {71!?(7)#O}.IfA~= O,then 
t(V) = t. If A, # 0, go to t + 1). 

The algorithm requires at most t( V)(n - k)2”-k addi- 
tions and subtractions, (t(V) - 1)2”-k multiplications and 
3. 2”-k memory cells. We shall describe in the proof of 
Corollary 3 another algorithm which is more efficient in 
the case of big t(V) or in the case when no good upper 
bound for t(V) is available. 

Denote by V( n, k) the set of all linear (n, k) codes with 
distance > 2. For the given V E V(n, k) let L(V) be the 
minimal number of arithmetical operations for the compu- 
tation of t(V) by any algorithm and 

L(n;k) = 
l’E?f; k) L(v)’ 

(49) 

Let us construct now an asymptotical (n + 00) upper 
bound for L(n, k). 
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Corollary 3: For n + GZ 

L(n, k) 5 2”-k(n - k)log,(n - k) 

a(n, k) 5 b(n, k) iff %m a(n, k)(b(n, k))-‘51). 
n-c% 

(50) 
Proof: We have by (46) 

grtw) = 
t&J), if i(w) E (0, l}; 

(/?+I( (3) - &( o))( i( w) - 1)-l, otherwise. 

(51) 
Let us first compute i(w), g2( w), h4(o); . *,i2mmI(w), 
where m is the smallest integer such that n - k I 2”. 
These computations require (n - k)2”-k additions and 
subtractions and (m - 2)2”-k multiplications. After this 
we compute g,,(o) for t, = i”-’ - 1 by (51) and &,(T) by 
the fast Walsh transform. If &,(T) # 0 for all 7 # 0, then 
we compute g,,<w) and &,<T) for t, = 2”-2 - 1; if&,(r) = 
0 for some 7 # 0, then we compute g,z(ti) and &,<T) for 
t, = 2”-’ + 2”-2 - 1, etc. 

This algorithm requires (n - k)2”-k + m(n - k)2”-k 
additions and subtractions, 2( m - 1)2”-k multiplications, 
and m2”-k memory cells. Since t(V) I n - k and m - 
log,(n - k) (44 -b(n) iff a(n)Zb(n) and a(n)? 
b(n)), we finally have for n + 00 

L(n, k) 5 (n - k)(log, n + i)2’-k 

+21og, (n - k)2”-k 

- 2”-k(n - k)log,(n - k). (52) 

For many cases an upper bound S(V) for t(V) is known 
(for example, we may choose as S(V) the external distance 
of the code V [I].) Let s be the minimal integer such that 
S(V) I 2”. Then using the method described in the proof 
of Corollary 3, we always can find the covering radius by 
at most (s + l)(n - k)2”-k additions and subtractions, 
2(s - 1)2”-k multiplications and ~2”-~ memory cells. We 
note also that, if we have an analytical expression for the 
characteristic function h(x), then sometimes we may find 
t(V) immediately from h(x) (see Example 4 later in this 
section). 

Let us consider codes with small covering radii. For the 
code V with: dist (V) > 2, t(V) = 1 iff V is a Hamming 
code. Since h(7) = 2”-kh(~), we have by Theorem 2, that 

t(V) = 2 iff G(7) # 0 for every 7 @ (0, h,;. -,h,). BY 
the Wiener-Khinchin theorem for the Walsh transform [9], 
we have 

G(r) = 2”-kB(~) 

= 2”-k 2 h(x)h(x @ 7). (53) 
XE{O, 1)n-k 

The function B(T), known as the logical autocorrelation 
function, is widely used in logical design, fault-tolerant 
computing, digital filtering, signal processing, etc. (see, e.g., 

[9], [15]-[ 171). Thus, the code V with a check matrix 
H = (h,; * ., h,) has the covering radius t(V) = 2 iff the 
characteristic function h(x) for the set {h 1,. . . , h,} has 
nonzero autocorrelation B( 7) for every 7 # { 0, h , , * * a, h,}. 
Tables of autocorrelation functions B(T) for a large num- 
ber of classes of Boolean functions h(x) may be found in 
191. 

Example 4: Consider the (n, k) codes V with n = 
2*-‘(2” - l), k = 2*-‘(2* - 1) - 2a and dist (V) = 3, 
generated by “nonrepetitive quadratic forms over GF(2)” 
through 

h(x(‘); . .,x (n-k)) = ~,(O,W, (54 

in which each of the arguments jc(‘) (s = 1, * * *,2a) appears 
exactly once [8], [9]. The weight distributions {Ai( for 
these codes for i < 7 are given in [8]. For the nonrepetitive 
quadratic form (54), we have [9] 

= 22a-2 _ 2a- 1 
3 for all7 # 0, (55) 

and by Theorem 2, t(V) = 2 for every (Y 2 2 (we note that 
for these codes the stronger statement is valid, that for any 
(n, k) code V generated by the quadratic form (54) and 
anyf @ Vthereexistv,;.. ,V,E Vsuch that dist(vi, f) = 
2 (i = l;.., r) where r = 22u-3 - 2”-2 (see Corollary 4 
below). The “nonrepetitive quadratic forms” (54) are a 
special case of “bent functions” [l], [29], and the following 
corollary generalizes the results of Example 4. 

Corollary 4: If for an (n, k) code V/z(x) is a “bent 
function,” then t(V) = 2, and for any f @ V there exist 
VI,‘. .,v,E V such that dist(vi, f) = 2 (vi# vj; i, j = 
1; . . ,r; i # j), where 

r = n/2 - 2n--k-3. (56) 

Proof: If, h(x) is “bent” then [ 11, n - k is even, n - k 
= 2a, and ] H(w)\ = 2* where H(x) = 1 - 2h( x). Thus, 

i(O) = n = 2*-‘(2* + l), i2(0) = 22(a-‘)(2” * I)‘, 

and for any w # 0 

pq@)I III 2a-1, p(4 III 22(a--I)* 

By (l), (2) and (53) we now have for any 7 # 0 

(57) 

B(T) = 2-2a;;A2(~) = 2-2((2”t 1)2 - 1) 

= 2*-‘(2”-‘& 1) = n - p-2, (58) 

and by Theorem 2 t(V) = 2. It follows from (53) that for 
any f @ V such that Hf = r there exist r = (1/2)B( 7) 
vectors ui;. ., u, E V8 f with wt(ui) = 2 (i = l;+.,r). 
Corollary 4 follows immediately from (58) with vi = ui@ f 
(i = 1;. .,r). 

We note that if h(x) is “bent,” then formulas for A(2), 
A(4), and A(6) for these codes may be easily derived from 
i(0) = 2”-‘(2** l), ]/+)I = 2*-i (w # 0) by (12), (14), 
and (16). 
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TABLE II 
THEPARAMETERSOF SOMEBINARYLINEARPERFECTCODES 

Number Code V Parameters (n, k, dist) Set L of Weights of Errors 

1 (2s + 1,1,2S + 1) (I,,l,;~~,1,I/,E {i,2s+ I -i);i=O,l;~~,s} 
2 (n, 1,2S + 1) [0,2,4,...,2[(1/2)nl) 
3 (4s + 2,2,min{2i + 1,2j + 1)) {1,,/,;..,1,I1,~ {2i,4s + 2 - 2i); i = O,l;..,s) 

4 Hamming codes C, (2”- 1,2*-a - 1,3) (I,,I,II,E (0,2a- ll,I,E {L2a-4) 
5 (u 1 o E C,, wt( o) is even) (see Number 4) (2”- 1,2”- (Y - 2,4) (0,1,2”- 2,2”- 1) 
6 ((0;. .,o(“-‘))~u(“)E (0, I), (2* - 2, 2a - a - 2,3) 

(d’); . .,u(“)) E C,, wt(o) is even} 
{0,1,2*-211E {1,2”-3)) 

(n = 2a- 1; seeNumber4) 
7 Golay code G (23,12,7) (I,,1,,12,[31~~~ {0,23),~,E (1,22),i,E (2,211, 

1, E {3,19)) 
8 
9 

i(“?;,’ G, wr(“) is even} (see Number 7) P-3,11,8) 
;. ‘,tP )Iu(23) E {O,l}, 

{0,1,2,3,20,21,22,23} 
(22,11> 7) {0,1,2,1,20,21,22~1E{3,19)] 

(u(I); . ,u(*~)) E G, wt( u) is even} 
(see Number 7) [27] 

10 {olwf(~)iseven} (2s + 1,2S,2) 
11 {(u”‘,. ..,Lw)lu(‘)= 0) tn, n - 1,1) 

It was pointed out by H. F. Mattson, Jr. [23] that the 
codes from Example 4 and Corollary 4 are special cases of 
the structure codes considered in [24]-[26]. The codes from 
Example 4 and Corollary 4 are structure codes correspond- 
ing to coset leaders of the first-order Reed-Muller codes 
RM( 1,2a) with the weight of coset leaders equal to the 
covering radius t(RM(l, 2a)) = 22a-1 - 2”-’ of 
RM(l, 2~~1). 

If for an (n, k) code V with a check matrix H = 
(h,,. . .p h,) h(x) is a “bent” function, then for any code v’ 
with a check matrix H’, obtained by addition to H of at 
most 2”-k - n - 1 different nonzero columns or by dele- 
tion from H of at most n/2 - 2n-k-3 - 1 columns, we 
have t(V’) = 2. Similarly, if V(‘) is a check-translation of 
V (see (7) in Section II), then t( V(‘)) = 2. For example, for 
the (2a-1(2a - l), 2a-1(2a - 1) - 2a) codes V with 
h(x(‘); . .,x (2u)) = @~(x%x(j)) where each of the argu- , 
ments appears exactly once, (Y is even, and v stands for 
logid summation (x(%x(j) = 1 unless both x(j) and x(j) 
are zero, we have from (54) with T = (1,. . . ,l) that t(V) = 
2. We note also that Theorem 2 may be used for the 
computation of the radius p(V) of the given code V. The 
radius p(V) of V is defined as [l] 

Note that if V is an L-perfect (n, k) code for L = 
(0, I,,*. . ,1,}, M c L - 0 and 1 = (1;. .,l) E V, then Vis 
also L-perfect for any L’ = (L - M) U,,,{n - a}. Thus, 
there is no L-perfect code containing 1 if for some I, both I 
and n - I are in L. 

We note also that if V is L-perfect, then any translate 
V @ f of V is also L-perfect for the same L. Several 
examples of simple L-perfect binary linear codes are given 
in Table II (where we use the notation: 

oiij= (oe is)). 

i j 

We note that for any perfect (n, k) code V from Table II 
an extended (n + 1, k + 1) code V X (0, l} with distance 
1, obtained by adding a last component 0 or 1 to any 
v E V, is also perfect for some L such that 0 @ L; and, if 
I E L, then 1 is odd. (The L-perfect codes V X (0, l} where 
V are repetition codes, Hamming codes, or the Golay code, 
are described in [ 191.) Some nonlinear binary perfect codes 
will be discussed later in this section. 

Now, let us describe necessary and sufficient conditions 
for a code to be L-perfect. For L = (0, I,, . . . ,Z,} denote 

a,(Hf) = 1 + 2 (l!)-‘G(f ), (61) 
IEL 

and, from (59), p(V) = n - t(V), hence p(V) L k. 
where C,(f) was defined in Section II (formulas for Ci( f) 
for i = 0,. . . ,7, n - 7, n - 6; * *, n may be derived im- 

IV. PERFECT CODES CORRECTING ERRORS OF 
mediately from (12)- (18)). 

GIVEN WEIGHTS Theorem 3: An (n, k) code V with a check matrix H = 

Let L = (0, I,, . . . ,l,} and 0 < 1, < . . . < I, I n. As be- (h,,. . ., h,) is L-perfect iff 

fore, we say that the (n, k) code V corrects errors of 
weights I,, . . . ,I, iff for any v, v’ E V (v # v’) and any e, 2 (I!)-‘@(w) = &.,(a), for all (3 E (0, l}n-k. 

e’ such that wt(e), wt(e’) E L v ~33 e # v’ ~3 e’. The (n, k) 
IEL 

code V is L-perfect iff it corrects errors of weights I,, . . . , 1, (64 
and satisfies the Hamming bound (see Section I) Proof: A code V is L-perfect iff 

= y-k. (60) x A,(f) = 1 forallf. (63) 
IEL 
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By Theorem 1 and (6 1) we see that (63) is equivalent to 

2 (1!)&) = 2”%,(T) for all 7. (64) 
IEL 

Since d(x) = 2n-ku(x) for any Boolean function of n - 
k arguments, we have (62) immediately from (64) using the 
linearity of the Walsh transform. 

Example 5: Let us construct perfect codes correcting 
errors in any one component and errors in all components 
in a message. (These types of errors may appear, for 
example, as a result of physical failures in a generator of 
messages if a generator has the hierarchical structure of 
Fig. lb; see Example 1.) Thus, L = (0, 1, n}, and we have 
by (5) and (18) 

z (l!)-ltyHf) - 2”-k(n!)-‘C,(f) 
IEL 

= I;no(Hj) + (n!)&Hf) 

- 2”-k(n!)-‘C,(f) + h:(Hf) 

= 2”-vo,Hf+ wm +4(f)) 

= w~o,Hf+ Wf) + ‘400 @f>> 

= w~o,Hf+ h(W) + ~O,H(lfBf)). (65) 

From (61), (63), (65) and C,(f) = C,(f) = 0 for all f (see 
(12)) we have the following necessary and sufficient condi- 
tion for an (n, k) code to be a perfect code correcting 
errors of weights one and n: 

a,,.+ w + ~o,Tc3H1= 1 for all 7. (66) 
Let 

h(7) = 
i 

l7 7 cjz ((0,~~-,o), 1 = (l;..,l)}; 

0, otherwise. 

(67) 
Then, by definition (67) of h(7), we have Hl = 1, and (66) 
is satisfied. Thus, the (2” - 2,2* - (Y - 2) codes defined by 
(67) are L-perfect for L = (0, 1,2” - 2). Similarly we can 
show that these codes are also L-perfect for L = {0,2” - 
3,2* - 2)). Note that the condition (62) of Theorem 3 (or 
the equivalent condition (64)) provides us with simple 
checks to verify whether the given code V is L-perfect with 
respect to the given set L. 

We note also that very few perfect codes may exist. We 
have seen that perfect (n, k) codes with k < 3 exist for 
L = { 0,2,4,. . . ,2s} (see Table II, numbers 2 and 3). K. A. 
Post [ 181 pointed out that there is no perfect code for 
L = { 0,2,4, * * * ,2s} with k 2 3. Indeed, if V is a perfect 
(n, k) code for L= {0,2,4;..,2s}, denote V,= {v E 
Vlwt(v) is even} and Vi = {(v(‘); + .,~(n~‘))]~(n) E (0, l} 
(*“‘,. . . ,d”)) E V,}. If IV,] > 1, then dist (Vi) I 4s + 1 
and, since 

2”*=1%,(;J = ; (“T’), 
i=O 

Vd is a perfect code for L’ = (0, 1,2,-a *,2s}. Thus [l], 
v,l = (0 4s+‘, 14’+‘}, V, = {04s+2, 14st2}, and k -C 3. We 
shall prove now the analog of the well-known Lloyd’s 
theorem [l], which will provide us with a strong necessary 
condition for any (not necessarily linear) code to be L- 
perfect. 

Theorem 4: Let V C (0, l}“, VI = {wl(x.o) = 0, x E 
V}, {Z+(O)} the weight distribution for V l, and Z = 
{i(Bi(0) # 0, i # O}. D enote L(x) = ZieLPi(x), where 

pi(x)= i (-‘)‘(~)(~I~) 
s=o 

is the Krawtchouk polynomial [ 11. If V is L-perfect, then 
for every i E Z we have L(i) = 0. 

Proof: Denote 

o(x) = A’ i 
x E v, 
x e v, 

ii(X) = r,(&. . .,x(“)) 

1, wt(x) = i, 
= 

1 0, wt(x) # i, 

Z(x) = XiELZi(x). If Vis L-perfect, then for anyf E (0, l}” 

2 o(x)Z(f@x) = 1. (68) 
xE(O,l)” 

Using the convolution theorem for the Walsh transform 
[9], we have from (68) 

s(cLqo) = 0, forallw#O. (69) 

For 6(o) we have [9] for o # 0 

6(o) # 0, iffo E VI or r&(o) EZ. (70) 

For the elementary symmetrical Boolean function Z,(x), 
we have [9] 

i&l) = P,(wt(u)). . (71) 

Theorem 4 follows from (69)-(71). It may be shown by 
Theorem 4 that the only perfect codes correcting exactly 
two errors (L = {0,2}) are (2, l), (3, l), and (6,2) codes 
(described in Table II), and there is no perfect code cor- 
recting exactly three errors (L = {0,3}) and having a 
distance of more than 2. 

Moreover, it was shown in [19] that for L C 
((41,. . .,[n/21} nontrivial L-perfect codes exist only for 
the following parameters (n, k, L): (2” - 1,2” - (Y - 
l,{O, I>>, (2s + 1, L{O, 1,. * * ,s)), (23,12,{0,1,2,3]), (2*, 2* 
- a,{l}), (2s+ 2,2,{s,s - 2;..,e}) (where s= 2a +e, 
E E (0, l}) and (24,13,{ 1,3}). We note, however, that for 
the given parameters (n, k, L) several nonequivalent per- 
fect codes with different distances may exist. To illustrate 
this, we shall give now the example of nonlinear codes 
correcting errors of weights 1 and n (perfect linear codes 
for L = (0, 1, n} were constructed in Example 6). For any 
binary vector u denote a(u) is zero if wt( u) is even and 1 if 
odd. 
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Theorem 5: Let V be a perfect (m, t) single error cor- 
recting code (not necessarily linear) with m = 2” - s - 1, 
s 2 3 and for any o E V 

X(v)= ($ v = 0, 
3 v # 0. (72) 

Then 

c = (++‘)lu @ (d2); * +q?7(24) cd A(v)1 

2.4 E (0, l}m-‘, (0, v(2); * *,v(“)) E v) (73) 

is a perfect (2’+ ’ - 2,2’+ ’ - s - 3) code correcting errors 
of weights one and 2’+’ - 2. This code is not equivalent to 
any linear code. 

Proof: Denote 

c,= (ulu a3 VI?+) @ X(v): 24 E (0, l}“, v E v). 

(74) 

Then 1 E C,, and for any x E C,, X = 1 @ x E C,. For 
any x = (x(l); . . , xczm)) denote Ox = (0, xc’), . . . ) XC2@). 
We note that from (73) and (74) Ox E C, Iff x E C. Let us 
prove now that for any y E (0, 1}2m there exists unique 
x E C such that dist(x, y) E {0,1,2m}. Since C, is 
the Vasiliev’s perfect single error correcting code [20], 
for any y E (0, 1}2m there exists unique x(‘)x = 
(x(o), x(‘) . . . , ,x(~~)) E C, such that 

dist (Oy , x(‘)x ) 5 1. (75) 

We shall consider the two cases x(O) = 0 and x(O) = 1. For 
x(O) = 0, since Ox E C,, x E C and dist (x, y) I 1. If there 
exists z E C (z # x) such that dist (y, z) I 1, then 
dist (Oy,Oz) I 1, Oz E C,, and we have a contradiction. 
Similarly, if z E C and dist (y, z) = 2m, then dist (Oy, 12) 
= 1, Oz E C,, 1Z E C,, and again we have a contradic- 
tion. 

For x(O) = 1 from (75),y = x, lx E C,, OX E C,, X E C, 
dist (y, X) = 2m. It is easy to check that for x(O) = 1 there 
is no z E C (z # x) such that dist (y, z) I 1. 

Since C, is not equivalent to any linear code [20], there 
exists x(‘)x, y(“)y E C, such that x(‘)x @ y(‘)y @ C, and 
x(O) = y(O) = 0 (if, e.g., x co) = 1, we have to consider OX 
instead of lx). Then x, y E C, and x EB y @ C. This com- 
pletes the proof of Theorem 5. 

We note that by extending of perfect (2”+’ - 2,2’+’ - s 
- 3) codes C defined by (73) (adding to any v E C a last 
component 0 or 1) we obtain the nonlinear L-perfect 
(2 s+‘- 1,2”” - s - 2) codes for L = {1,2”+‘- l}. 

V. GENERALIZATION TO NONBINARY CODES 

Most of the results of previous sections may be easily 
generalized to the case of linear codes over GF(q) (q is a 
prime). To this end, we need only make two changes in the 
basic definitions. 

First, we replace the check matrix H = (h,, . . . , h,) by 
the “extended check matrix” with columns h,, 2h,, * * * ,( q 

- l)h,; . .,h,,2h,;. .,(q - l)h, (all the multiplications 

are carried out in GF( q)). Second, we replace (- l),‘, by 
5”‘” in (1) where 5 is a primitive complex q th root of 1. 
This generalization is very similar to the generalization of 
formulas for weight distributions of binary codes to the 
nonbinary case [8]. 

For any r = (r(l),...,r(“-k)) (rci) E (0;. .,q - 1)) de- 
note 7 = ($‘), . . . , 7(“-k)) where 

,-(i) = 14 - TCi)7 if rci) # 0. 9 

10, if .(i) = 0. 

Then, for example, Theorem 1 may be modified to yield 

Ai = (i!)-‘( 4 -‘“-“‘;(Hf) - C,(f) , 
i 

i = 0,l; * .,n, 

where h(x) is the characteristic function of columns for the 
extended check matrix, k(w) is the Fourier transform over 
GF(q) of h(x) (defined by (1) with the replacement of 
(- l),., by 5”“‘) and Ci( f) is the number of i-tuples of 
(not necessarily distinct) q-ary vectors from {h,, 2h,, . * . , 
(q - l)h,;..,h,,2h,; ..,(q - l)h,} such that for every 
i-tuple (h,,; . .,h,) we have 

1) h,,@ . . .@h,= Hf; 
2) there exists (Y, /? E (1;. *,i} and A E {l;**,q - l} 

such that h,= Ah, (all the summations and multipli- 
cations here are carried out in GF(q)). We note also 
that Ci( f) depends on q. 

Formulas for A,(O) for small i and q = 3 are given in [8]. 
For weight distributions of dual codes we have the follow- 
ing generalization of (42) to the nonbinary case 

wt(wH) = q-‘((4 - l)n - i(w)). (76) 
A 

To compute fi it is expedient to use twice the algorithm 

of the corresponding fast Fourier transform [9], [ 141, which 
requires only (n - k)qnek arithmetical operations and qnpk 
memory cells. The computation of C,$f) for small i may be 
carried out by the method described in Section II. 

We note also that the previous results may be further 
generalized to the case of codes over GF(q”). In this case 
we need only take trace from GF( q”) to GF( q) of the dot 
product x*w [28, p. 3671. 
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Properties of Cross-Entropy Minimization 
JOHN E. SHORE, SENIOR MEMBER, IEEE, AND RODNEY W. JOHNSON 

A bsrruct- The principle of minimum cross-entropy (minimum directed 
divergence, minimum discrimination information) is a general method of 
inference about an unknown probability density when there exists a prior 
estimate of the density and new information in the form of constraints on 
expected values. Various fundamental properties of cross-entropy minimi- 
zation are proven and collected in one place. Cross-entropy’s well-known 
properties as an information measure are extended and strengthened when 
one of the densities involved is the result of cross-entropy minimization. 
The interplay between properties of cross-entropy minimization as an 
inference procedure and properties of cross-entropy as an information 
measure is pointed out. Examples are included and general analytic and 
computational methods of finding minimum cross-entropy probability den- 
sities are discussed. 

I. INTRODUCTION 

T HE PRINCIPLE of minimum cross-entropy provides 
a general method of inference about an unknown 

probability density qt when there exists a prior estimate of 
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4’ and new information about qt in the form of constraints 
on expected values. The principle states that, of all the 
densities that satisfy the constraints, one should choose the 
posterior q with the least cross-entropy H[q, p] = 
/ dx q(x) log (q( x)/p( x)), where p is a prior estimate of qt. 

Cross-entropy minimization was first introduced by 
Kullback [l], who called it minimum directed divergence 
and minimum discrimination information. The principle of 
maximum entropy [2], [3] is equivalent to cross-entropy 
minimization in the special case of discrete spaces and 
uniform priors. Cross-entropy minimization has a long 
history of applications in a variety of fields (for a list of 
references, see [4]). Recently, the theory has been applied 
to problems in spectral analysis [5], speech coding [6], and 
pattern recognition [7]. 

It is useful and convenient to view cross-entropy minimi- 
zation as one implementation of an abstract information 
operator 0 that takes two arguments-a prior and new 
information-and yields a posterior. Thus, we write the 
posterior q as q = p 0 I, where I stands for the known 
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