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Detection and Location of Input ard Feedback Bridging Faults
Among Input and Qutput Lines

MARK KARPOVSKY, aND STEPHEN Y. H. SU

Abstracf—The study of short circuits between conducting paths (bridging
Faults) has become increasingly important. Yet very little work has been done
tn 1his area. In this paper, conditions for feedback brid ging ishort circuit) faults
to generate oscillation and asynchronous behavior are given for short circyits
among input lines and the primary output. The lower and upper bounds on the
number of tests for detecting al feedback bridging faults are given. Necessary
and sufficient conditions for the undeteceability of input bridgings are presented.
It is found that any test detecting single bridging fault & will also detect all
multiple bridgings containipg e. Complete test sets for locating either all input

or alt feedback bridgings of any multiplicities for networks implementing several
classes of lunctions are given.

index Terms—Asynchronous behavior, bridging faults, combinational
networks, fault detection, fault location, multiple {anlts, oscillztion, short circuit
failures, single faults, test generation, undetectability.

l. INTRODUCTION

The diagnosis of digital systems has become increasingly important
in recent years. Unfortunately, most of the published research papers
In the area of testing digital networks deal only with the stuck-at
lauits. A bridging (short circuit) fault is a fault in which two or more
leads in the circuit are shoried together or, in other terms, wired to-
gether. There are few papers in the area of bridging faults [1]-[8].
This s partly because the research work on this topic became active
oaly recently, and the treatment of bridging faults is much more
complex than the treatment of stuck-at faults. Two types of bridging
faults are considered in the literature—namely, the AND -type and
OR-type bridging faults. The AND and OR types of bridging faults
mean that two or more lines are short circuited to form AND and OR
logical operations. The available techniques for bridging fault de-
tection have been approached through the existing procedures for
testing stuck-at faults since a great deal of work has already been
reported on stuck-at faults.

II. DETECTION OF BRIDGING FAULTS

In this section, we shall first present our results on the detection
of feedback bridging (short circuit) faults beiween the primary output
and the primary mputs in a single-output logic network. Then the
results on the detection of bridging faults among the primary inputs
shall be given. Only the AND-type bridgings will be considered here
since the results may easily be modified for the OR-type bridgings.

Instead of considering the bridgings between two lines, we shall
consider the general case of the bridging among the primary output
and s primary inpul lines, called feedback bridging of multiplicity
5. Similarly, an input bridging among s input lines is called an input
bridging of the muitiplicity s. Without loss of generality, we assume
that for a network implementing function F(x,. x5, - - -, x,.). if the
s input lines which are bridged together (either with the primary
output or among themselves only) are known, then these lines are x|,
X2, X (Yxyxg - xg) and (xyx2 - - - x;) denote these feedback
and input bridgings of multiplicity s, respectively.

A Detection of Feedback Bridgings

Let us consider a combinational network implementing F{x,, x>,
. Xu). lf the AND-type bridging fault exists between the primary
~utput and s inpui lines x1, x3, ' - -, x,. then the faulty primary output
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Yo 15 equal to the AND function of the original output of the network
and vy, xa, -, X,

Fach one of the first s primary inputs becomes Vx,xy - X5 This
cun be represented by the model showr in Fig. 1. Such a model will
be used throughout the paper for feedback bridging faults,

The foliowing defnnitions can be found in [8].

Definition |- A circuit oscitlates under a certain input combination
{patlern) if the output of the circuit at the next instant is the com-
plerent ol the current output, ie., ¥ = Y~ where V' is the output
at time /.

Definition 2: A circuit has asynchronous behavior under a certain
input combination if the circuit is stable and the present outpul 15 a
function of its previous tnputs and Y7 = ¥i-1,

Theorem {: Under feedback bridging (¥Yxyx5- - - x, ), any network

N implementing £(x,, x3, - -, x,) osciliates if the binary Input s~
tuple {xy, - -, x,) satisfies the following condition:

The following thearem is the generalization of Theorem { of [8]
or Theorem 13 of [19)].

-T]'YE I‘I-F[{]'I U‘.r.!ﬂ!x$+]'..-’xﬂ)
XF{L 1,"'1. l.-r_t.'+|=-
A will have asynchironous behavior if

LA N 'I.,-F{Di 0,---.,0, Xs+l, - '--IH)
HF{L 11'“11--1':+1p"'-1n]=i~ {2]

L Xg) =0, (13

Proagf-
1) Performing the Shannon expansion of F(x,, - -+ . x,,} 5 times
(1 =5 = n), we obtain
Fi{x:,. -, x,)
=_¥;E1"'f;F{O,ﬂ,"',ﬂm-xs+h s L-IHJ‘
+ X

|E1' T ES—IISF{G, ﬂa ---!ﬂi LIJ-I-I- s ':In)

+ o (3)
+I|IEJI-IIF(11 11-.‘-1 I'III+I!1 PI:IH}-

To obtain the equation for the network with a feedback bridging of
multiplicity s, we substitute each x;(j= 1,2, -, s} by Y 'x x5 -
b
V=¥ loxy 50,0, -, 0, X041, X)

YT hoxy o x (L L L Xy, LX), (8)

From (1), we obtain
X)Xz xs =,
F(0.0, -, 0, x40, -, xp) = 1,
and
FOLL -l X, -, xq) = 0.

Substituting the above three equations into (4), we obtain Y7 = Y/
thus, the network oscillates.
n} Substituting conditions generated from (2) into (4), we ob-
tain ¥* = ¥'~1: hence, the circuit has asynchronous behavior.
Corollary I: Under feedback bridging (Yx,). any network N
implementing F(xy. xa. - - -, x,} oscillates if the binary input n-tuple
(xy. x3, . x,) satisfies

X1 Pl x3, -, X2 }F(0, X2, -, x,) = 1 (5)
N has asyachronous behavior if
xtF(Loxa, -, x )0, x5, - x,) = 1. (6)
Example I: In Fig. 2, F= rl'z_:l'_}xq, + X4X5x6. Since
F{0,0,1,1,0,0) =i
F(1,1,11,0,0) =0,

(1) is satisfied if (x), x3, x3, x4, x5. x5} = (1, 1. 1. 1,0,0) fors = 2
and bridging (¥x,x3). Therefore, the network oscillates when the
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| .ogical model of feedback bridging {Vx, - - x, ).

Fig. I.
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Freg. 2. A ~NaND network with a fan-out ¥ = xxax5xs + xaxsxg

AND-Lype bridging exists between the output and both x, and x3.

Note that for the network to oscillate, the total number of inversions
in the feedback loop must be odd. If the number of inversiens in the
feedback loap is even, bridging faults in the network can be detected
by utilizing the asynchronous behavior property. If (2) is satisfied,
then

FIO,0. -, 0, x40, -7, x) = 0,

which means that the circuit cutput can be reset to 0 as long as the
first 5 input variables are 0's. After resetting the output 10 0, if we
apply an input patiern ¢ such that F{r) = 1, then from the model
shown in Fig. 1, the output response to v is | for the fault-free network
and G for the network with feedback bridging of a multiplicity s.

Iet us now examine the model of Fig. | in the case of asynchronous
behavior more carefully. Suppose the output is reset to O by applying
a test patiern & such that F(u) = 0 (if the output is equal 1 for this
test pattern, then the fault :s detected). Now if another pattern o is
applied and F(v) = 1 for faule-free circuit, then for a circuit with
feedback bridging {¥x,x; - - x;), the first s componenis of vector
v becomes 0's, Two cases can occur.

Case I F(0,0, 5 O xeer, - xg) =00

The feedback bridging is detected since the good circuit produces
a | and the faulty circuit produces a 0.

Case 2: F(0,0, - 0.x:41. x5 = 1.

‘h_}-lll—-"

According ta the model shown in Fig, 1, the output ¥, will be 0 for
a short ume and then becomes 1. So a O-pulse (1 — 0 — 1 transttion)
15 obtained, [the duration of this pulse will be determined by the delay
in a network implementing F(x . - - -,x,)]. Again the fault is detected
by such a O-puise. This capiuring can easily be done by using an
edge-triggered flip-flop in a monttoring device,

For exampile, fet 15 consider a 2-bit adder which accepts inputs
{x1.x2) and {y.y2) and produces the sum {(z|,z2.23). Let us first apply
{I],Ig] - U—'|,}‘3) = ({],ﬂ] and obtain {31,31,2'3} = {ﬂ,ﬂ,ﬂ}. Next we
apply (x.x2) = (¥1.y2) = (1,!) to the adder, then the fauli-free adder
should produce (z),2;.23} = (1,1,0). If there is a feedback bridging
between z3 and x;, then according to Fig. | the input (x,,x3) will
become (1,0} [instead of {1,1}] which produces the faulty output
{zy.z2.z3) = (1,0,1). On the other hand, if there is a feedback bridging
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between zy and ¢, then the input {x,.x») will become (0,1) which
produces the faultv oulput (1,0,0). Now z; becomes 1 and according
to the model shown in Fig. 1. (x,x2) becomes (1,1) which yields
(z1.72.z3) = (1.1.0). Thus the faulty output pattern (1.0,0) only ap-
pears for a short time but can be captured since the output of the
fauli-free circuit has the (0,0,0) — (},1,0) transition but the fauliy
circuil has the (0.0.0) -« (1.0,0) — {1,1,0) transitions.
Exanmple 2 In g, 2, since

Flx), x: x5.0,0,0)=0
and
Flx,, xs, xs, 1,1, ]} =1,

(2) 15 satishied 1l v3 = x5 = x¢ = | forthe bridging { Vxaxsxg) of
multiphicity 3. and { ¥x xsxq) can be detected by applying x4 = xs
= xy = Ofollowed by x3 = x5 = x¢g = 1 (each of the rest of the vari-
ables can be O or 1)

Remark {: From Theorem |, if there exists x;41, - - -, x, & {0, I}
such that F{0.0. O xer - xad #Z= FOL L L Xegr, -, X))
then either {1) or (2) i1s satishied for an input pattern with the first s
variables equal to I's. Therefore, the bridging {¥x,x;- - x,}can be
detected by observing the oscillauon or asynchronous behavior of the
faulty network,

It 15 interesting to note that sometimes the same test pattern can
detect oscillation for the bridging of the given multiplicity s, but
cannot detect bridgings of multiplicity less than 5. Formally speaking,
if test pattern ¢ satisfies (1) [or {2)] for the bridging (¥x, - - - x;). then
t not necessarily satisfies (1} [or (2}] for a bridging (Yx,; - - x5 ) g
=1, - .5s— 1)

Example 3: Letn=4 F(0,1,0.0)=F(},1,0,0) =0, and F{0,
0,0,0)=1.Thenfrom (1}, 7 = (1, 1,0, 0) generates the oscillation
in the case of the fault (Yx,x,). but ¢ does not satisly (1) in the case
of the fault {¥Yx ) since 1 - F{0, 1,0,0) - F(1,1,0,0) = 0.

Theorem 1 1s devoted to the condittons of the oscillation or of the
asynchronous behavior and to the detection of the given feedback
bridgings. The following thecrem will be devoted to the case when
we do not know which input lines are bridged and only the multiplicity
s of a faultis given. Let | x| denote the number of 1's in the binary
n-tuple x = {x;, -, x,); then

xl = £ x and F(lxl =)= F@l=e ()

We note that, as it follows from the model of a Faulty network (see
Fig. 1), if ¢ is a single test pattern generating the oscillation for all
possibie bridgings of the given multiplicity s (1 £ 5 < n), thent =1
=(1,- -, 1)

Theorem 2:

1) The single test vector 1 = (1, 1, -- -, 1) detects all possible
teedback bridgings of the given multipticity s by oscillation 1n a net-
work realizing F{x,, x3. - -, xy)1f

F(|x| =n)=0,
F{lx| =n—5s)=1. (8)

i) The test sequence (R, 1) detects all possible feedback bridgings
of the given multiplicity 5 by asynchronous behavior in a network

realizing F{x;, xo2, . xp)if
F{|lx| =n)=1
F{lx| =n—5)=0 (9)
where R i1s the input pattern which resets the output to 0.

Proof-

1} 1 {8} 15 satistied, then for any bridging of multiplicity s, test
pattern 1 satisfies (1) since | - {---1- F(0,0,---,0,1, -, 1) F(I,
1,--, 1, L,---,.1)=1, and by Theorem 1, the network oscillates.

i1} Let R be aninput pattern such that F(R) = 0. [f we apply
R and the output is 1, there must be a fault in the network and the
fault 15 detected. If the output is O and we apply, after R, the test
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pattern 1, then from (%), the output of the fault-free network will be
1. For any feedback bridging of multiplicity s, since s inputs will be
“anped” with 0, onty 7 = 5 inputs are 1's. From (97, the output will
be 0.

Example 4:

i) For F=@&_x;andn =c¢even, t ={1 [, -, |} gencrates the
oscillation for any fecdback bridging of odd multipheity.

ii) For an n-input AND gale, lest sequence {0, 1) detects any
feedback bridging of any mulupliciy.

Theorem 2 deals with the case when the multiplicity of bridgings
s known. The following result is lor the gencral case where the mul-
tiplicity of the bridgings ts unknown.

Theorem 3: Let Ny p{n} be the minimum number of tests for de-
tecting feedback bridgings of any multiplicity n any network
implementing a function F of n variables (the subscripts 4 and f de-
note “detection” and “feedback,” respectively). Then

| < Nyfm <n (10)

Proaf:

) Lower Bound: If F(0) =1, then 015 the single test pattern for
detecting all feedback bridpings.

i) Upper Bound: There are only three cases 1o consider.

Case 1+ 1f F contains 2 minterm with X; for each [ = 1.2,
s, then the test pattern ¢ corresponding to this minterm can detect
a feedback bridging (of any multiphicity) involving x;. Therefore, the
set of 1 such test patterns will detect all feedback bridgimgs.

Case 2- \[ F does not contain any minterm with X; for some /,
then all minterms of F must contain x;. In general, £ may not coniain
any minterm with the complements of several variables. Without loss

of generality, we can express £ as
F=I|I2qu[11 ]1---.1 ]$Iq+1-.1-rIﬂ}

where F(1.1,- -, L, Xge 1o "2 Xa) contains at least one minterm with
x;foreveryj=¢g+1,--.n There are n — ¢ such minterms. The test
patterns corresponding to these # — g minterms will be used for de-
tecting the feedback bridgings. Let o= (¢4, 1h, -, 1) be a test
pattern with ¢/ = 1foralli=1,2,-- . gand t{=0fori = j where j
€ fg+1,g+2 - . nl Lct R beatestpatiern such that F(R) = 0.
Then the test sequence (R, 4%, ¢9%2 - - t7) such that F(ret))y =
F(ia*2y = - - = F(t™) = | detects any feedback bridging since the
fault-Tree network will produce the sequence (0, 1.1, - -, 1), and the
output sequence of the faulty network will contain at least two zeros.
For this case, Ny (n) =n—g+ 1 < na.

Case 3: If ¢ = n. 1.e., F does not contain any munterim with X; for
all i. then F = x,x; - X, and test sequence {0, ) will detect all
feedback bridgings.

Remark ?: Since 50 percent of functions have the property F(0
— 1. feedback bridgings in networks implementing half of the func-
tions can be detected by applying only one test pattern, 8.

Example 5- Let F be the following threshoid function:

(11)

I when | x| = n—1,
F r ] T B r A = -
(e X2 *n) LJ otherwise.

Then the sequence T, = ({0, 1, 1, -, 1), (1,0,1,---, 1), -, (4 1,
.-, 1,0)) detects all feedback bridgings. For example, (0, 1,---, 1}
will detect all feedback bridgings involving x; and any number of
other input lines. In fact, as we shall see in Section 111, for this func-
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tjon. 7, can focate anv feedback bridging as long as the output 1s sel
toa | before T, 1s apphed.

Remark 3- Let £ be a test pattern (input binary a-tuple) and let {
be its complement. If for a tuncuon F, F{1) = Firy =1, then in 2
network realizing F. any feedback bridging of any muiupheity can
be detected by applying just two test patterns: £ and . Tosee this, let
|1| = n — k. then without loss of generality. we can permute the
variables of F such that the first & componenis have 0's in  and the
last # — & components of r are s, Any feedback bridging involving
at least one of the first & {lust # — A} input tines will be detected by
e{6) since the fault-free circurt will produce a L and a faulty circuit
will produce a 0.

The following thearem is the generaltzation of Theorem 3, Remarks
Zand 3.

Theorent 4: For the function #F{x,. x3. . X,), afy sequence of
input patterns {¢!, ¢°, rYysuchthat FGOYy = 1{i=1.2,---, N}
and Ilf;-‘;. ¢/ = 0 (L.t is the componentwise multiplicatian of
vectors ¢) is the test sequence for detecting all possible feedback
bridgings in any network implementing Flx;. X3, . Xa).

Proof: If the &1h component of ' is a 0, then any feedback
bridging {of any multiplicity) involving x; will be detected by 7 since
the fauli-free and Faulty circuits will produce 1 and a 0 at the output,
respectivety. 111,77 = 0 guarantees that this case is true for all
variables. Q.E.D.

Example 6: For function F{x, X2, X3 %53) such that F(0,1,1,1)
= F{1,0,0,1)=F(1, 10,00 =1, (01,1, 1). (1,0, O, 1} (1, 1,1,
0)) is the test sequence tor detecting all (ecdback bridgings since {0,
.11 -{1.0,0.1}-{i.1.0.0) =(0.0.0.0). Test pattern (0, 1, t,
1) detects the feedback bridging between x,; and the output {1,0,0,
1) detects the feedback bridgings between the output and x5, X3. The
bridging between x, and the output is detected by (1,1, 1,0).

B. Detection of fnput Bridgings

When the bridging lines are known. without loss of generality, we
can assume that the input bridging exists between the first § input
lines. The logical mode! for the AND-type bridging of multipiicity s
among lines x. xx. . X, 1n a network implementing F{x,, x3. - -,
x,) is given in Fig. 3. The next theorem presents the necessary and
sufficient conditions for undetectability of an input bridging of any
given mulitiphicity.

Theorem 5: For any network implementing Fixy, x3, - - -, X»). the
bridging between input lines Xy, xz. - . X is padetectable if and only
if for every X,y 1, X432 . Xy £ 10, 1 and every 4 = {ay. a2, - -,

(0,0, -.0) and1=“‘i*'”‘”
""-——-.'E_.-—-"' . "'-—-},-“""

a) =0 1whered =

....I”]
= F{0,0,- .0, x40

Fla,. az -

g PR T

(12)

Proof- A = 0, 1 mcans that there exists at least one ¢; = 0 where
iell,2, -, sk Il here is bridging between x), x2, - - -, x;. the output
of the faulty network will be F(0,0,--- .0, X545, 7, x, } which, ac-
cording 10 {12), is the same as the output of the fault-free network.
Hence. the fault is undetected. Conversely, if the bridging is unde-
tectable, (12) holds.

Example 7: F(x). x» x3) = x1{X; + X3) + x 1 x2X3. The bridging
between x» and x; 1s undetectable since F{x;, 0,1} = F(x,, 1,0) =
F(x;, 0,0) =X, and {12} is satisfied.

Coroflary 2: An input pattern t = (fy, I - . Iy) detects the
bridging (x,x2 - x,)if and only if {1y, 2. - -, £5) > 0, 1 and

F(O_U*"',{], Fey. ™ 7. f,,) = F(h.IL - ,fn]. “3}

Example 8; In Fig. 2, since F(x, x3, X3, x4.0,0) = Fixy, x2, xa,
x1. 0,1} = F{x,., x> x3. xa. 1.0) = x,X3x; - X4 the bridging between
xs and xg is undetectable. However, since F{xy, x2. x3, 0, 0, xg) =
0and F(x;. x3, x3. 1.0, xg) = x;x2x;. the bridging between x4 and

" x4 can be detected by (0,0,0,1,0,0).

Corollary 2 provides us with a simple method for detecting a given

input bridging by finding an input vector satisfying (13).
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Example 9: Let F(xy, - .x,)=0if|x| =0and F(x|, -, x5)
= 1if |x| = | (e.g., F= Z7_,x,). then by Carollary |, the test se-
quence T, = ((1,0,-- .00, (0. 1.0, 0. (0.0, -.0, 1)) dectects
all input bridgings of all multplicities,

It is well known that two stuck-at laults may compensate each other
[9]. It is interesting to see that the situation Is different for bridging
faults. The next theorem states that two ANDR-type (or OR-type) input
bridgings cannor compensate each other,
each other.

Theorem 6: For a network implementing F{x,. x>, . xp). if there
does not exist any 1est for detecting the doubie input bridging e, =
(xyx2- - xs)and ez = Xy ) Xsaq) (5 + g < n), then no test pat-
tern can detect either bridging. -

Proof: For A = (u,, a>,
b; € {0, 1}, we denote

cac). B= (k. by, -, by)witha,

Fag=Fla.ayxn- . a.b by Py Xedg+ 1.~ . Xa ).

If the double AND-type bridging (xyxs - x) and (Xer 1 Xew 2 - Xeag)
cannot bedetected by any test pattern, then using the same argumenis
as in the proof of Theorem 5, we have the [ollowing.

1) Forevery A B = 0,1, F 5= Fapa (14)

where F 4 5 18 the fault-free output and Fy g 1s the faulty output with
the aforementioned double bridging of multiplicitics 5 and 4.

2) For 4 =0, we have Fy y = Fyu. (15)
From {(14) and {(15), we obtamn for 4 = 1

FA_E=F|]_3 where # = 1. (lﬁ}

W ForB8=1t wehave Fyy=Fg,y. ford =1 (17)
From (16) and (17), we see that for every B and A4 = 8,1
Fan=Fos. {18}

Therefore, by Theorem 5, the bridging (x,x; - - - x;) cannot be de-
tected. Similarly, we can prove that F; g = F, ¢ for every A and B
# 0, 1 and the bridging (x.y1xc42 - x,) cannot be detected ei-
ther.

Example 10: In Fig. 2, since there is no test pattern which can
detect the double bridging (xxzx3) and (xs5x5). it 15 impossible to
find a test pattern to detect either bridging. Since test paltern (0, 0,
0, t, 0, 0) detects bridging {x3x4). 11 can also detect (x3x4x5) or the
double bridging (xix4) and (xsxg).

Jil. LOCATION OF FEERBACK AND INPUT BRIDGINGS

An input test sequence T locates a set E of bridgings if and only
1f the output sequences for all bridgings from £ under the input se-
quence T are alb distinct and all different from the output sequence
for the fault-free network.

A. Location of Feedback Bridgings

In this subsection, we shall assume that for the iocating of AND-
type bridgings, output ¥ ia Fig. | 1s set to | {for OR-type bridgings,
the network output is reset 1o 0} before applying a fanlt-location test
sequence.

Once we sersignal Y in Fig. | to |, we then apply an input sequence
such that the fault-free circuit will produce the sequence of 1's. 1f
there is a bridging between Y and, say, x;, then based on the model
shown in Fig. 1, the output sequence of the faulty network will be the
same as the input sequence of the component x;. Then, if we make
sure that input sequences for x,'s for all #{i = 1, -, n) are alf distinct
and are not equal to {1, 1,---, 1) (fault-free output sequence), we can
locate ail bridgings ¢; = (¥x;). Based on the above observation, the
following theorem is established, assuming that the network output
15 preset to logic 1.

ey — —_— - -

e — -
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Theorem 7: Lel T, = (¢!, 12, - - V] be a sequence of input pat-
terns such that F(z*y = ! foralli = 1,2, - & and in the binary
matrix (7;) with rows ¢!, 2 4% all componentwise multipii-
catrons of at most 5 columns arc different and not cgual to 1. Then
T, 15 a test sequence tocating all feedback bridgings of multiplicity
at tnost 5.

Proof: Without loss of generality. we may assume that the
bndgingtse = (¥Yx,x2 - x;pwhere/ e }1.2. s} Then the output
scquence of the Faubly network with the inpul sequence T, will be

CETF(EY))
={riz- ol 7). {19)

(e1ey- -} FGY), -t}

Since the above output sequence is distinct for each different bridging
and notequalto {1, 1, - -, ) {the output scquence flor the fault-frec
neiworks), T locates feedback bridgings of multiplicity al most s.

Example 11 Consider the network shownin Fig. 4, Fx,, x1. x5,
Xg, X5} =Xy + Xox4 + x2xs + X305 + x3x4.

Let

Xy Xz X3 X4 X4

(M=o 1 o 1 o0
0 0 1 1 1

Since columns of ( Ty are distinct and F{1,0,0.0, 1} =F{0, 1,0, 1,
0= F{0,0, 1,1, ) = 1, T will locate any single feedback
bridging.

Example I2: Let F(x,. -, x)=1iflxj=n—=1.Then T, = ({0,
L1 L0 0 1), (L, L, D) ) s the test
sequence locating all feedback bridgings of all multiplicities.

We note that if 7 is the test sequence for the location of all feed-
back bnidgings of multiplicity at most s, then matrix {7, } is similar
to the matrix of cutsets (or paths) locating bridgings {or open circuits)
of multiplicity at most s tn the nonoriented graphs or unate contact
networks [7]. {(For graphs, we nced that all componentwise logical
additions (instead of componentwise muftiplications) of at most 5
columns are different. The problem of the construction of the matrix
{T,) for graphs was considered in [7].)

The condition of Theorem 7 for the matrix (75) gives us the pos-
sibility to estimate the minimal number & A #, 5) of tests for the lo-
cation of ail feedback bridgings of the multiplicity at most 5 in any
network with 2 input lines (7 and f stand for “location™ and *“*feed-

back,” respectively).
Corollary 3:
| log i;.] (D)= Nign s} < ‘_.‘i_jjﬂ (). (20)

{] 2] is the Jeast integer greater or equal to a.}

Proof: Letd = Nifn s)and T, = (11, ¢2, - - -, %) be the minimal
test sequence for locating all feedback bridgings of the multiplicity
at most s in a network with »# input lines and let (T} be the corre-
sponding & x # matrix. Thien by Theorem 7, 1" = 0,1 wherei = 1, 2,
- -+, 8. Let ({T;) be the expanded matrix with columns of matrix (77)
and all possible componeniwise multiplications of at most s columns
of matnx (7). Then the dimensions of (T} are 6 x Z1_o(7). Since
all columns of T, are different and ¢ = 9, 1, we have N; s, 5) <
2% o(M). In order to provide 27 ,(") distinct columns, we need at least
|logs Zio(7)] rows, Q.E.D.

It follows fvrom Theorem 7 and {20) that the test sequences T and
T, irom Examples 9 and 12 are minimai for location of all possible
feedback bridgings. We note also that these test sequences T, and
T, with good error-locating capabilities have a cyclic structure, and
the test generators for Lhese test sequences may be implemented by
an n-bit end-around (circular) shift register.

B. Location of Input Bridgings

For a network with & input lines, the number of input bridgings of
multiplicity at most s is Z{_;{7) (see Fig. 2). Thus, simtlar to (20),
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=

Fig. 4. The logic network for Exampie 11 (location of feedback bridging
faults).

we have for the minimal number &, ;(#n, s) of tests for lhf:_lpcatiun
of all input bridgings of the multiplicity at most 5 in any network with
n input lines

Llug;(l + i {(N]] =Ny il(ns). (21)

i=2

Corollary 4:

i} If F{0) =0, F{|x| = 1) = 1, then the test sequence T = ((1,
0,0,---,0,0),(0,1,0,---.0,0), - ,(0,0,0,- -, 1,0}, (0,0,0,- -,
0, 1)) locates ali input bridgings of all multiplicities.

i) fF(|x| =n—-1)=1F(|x| =rn—-H=0({=2,---,5),then
T, =011, 5L 10,01, 1,1, {,1,1,--,1,0)
locates all input bridgings of multiplicity at most s.

Proof:

i) For input bridging (x,x; - - - x;) of multiplicity s, the output
for test sequence T) has 0's at positions 1,2, -+, 5 and 1’s at all other
positions. Thus, ¥.(7)) for all input bridgings are different, not equal
to I, and T locates al} input bridgings of all multiplicities.

ii) The proof is similar to the proof for1).

Combining the above results with the resulits of the previous sub-
section, we obtain the following corollary. |

Corollary 5:

i} If F(0} =0, F(|x} = 1) = 1, then T locates all input bridgings
and all single feedback bridgings.

U Fx] =n—-D=1F(ix]=n—-0H=0 (=2
.-, 5), then T, locates all input bridgings of multiplicity at most s
and all feedback bridgings of all multiplicities.

Sumenarizing the results of the last two sections, we may say that
the location of feedback and input bridgings may be carried out for
the most practical cases in a reasonably short time.

CONCLUSION

The results presented in this correspondende have been applied for
generating complete test sets for detecting input, output, and feedback
bridgings as well as stuck-at faults at the input and output pins of
standard digital components including shift registers, counters, de-
coders, multiplexers, adders/subtractors, multipliers, dividers and
RAM [11]. Future unsolved problems in this aréa are also given in

[11].
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