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Error detection for polynomial computations

M. Karpovsky

Indexing terms:
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Computational complexiry, Error correction codes, Error detection, Fourier rransfarms

Abstract: We consider the problem of error detection in a process of mmputatmn of a polynomial over the
field of complex numbers or over GF(p). By errors we mean errors in the text of a program or ‘stuck-at’

errofs in a device computing a polynomial. For error detection we use linear checks constructed by the tech-
nique of Fourier transformation over the group of binary vectors. Complexity estimations, optimal checks
and estimations of the error-correcting capability of these checks are obtainad.

1 Introduction

We consider the problem of error detection in the process
of computing polynomials

3 m f r
ImJ = Z" ) 'Z ﬂ(fll' .. :fm)xltl* . :-'IJTT
il"ﬂ' fm=ﬂ (l)

where x,€{0,...,2"t—1} (+=1,...,m), and all the
computations are in the field C of complex numbers orin a
finite field GF(p) (p > 2 is a prime). The set of all poly-
nomials of this type we denote X, [xi,....Xm].
The errors to be detected are ermrs in the texts of the
programs, in the case where f is calculated by a computer
program, and they are catastrophic stable structural failures
in the case where computations are carried out by a special-
ised digital device. For practical reasons, we suppose that
the argument x; is represented in binary form, x, = (.:-:m},
. ,x,"‘ ”) [The generalisation of the [esults of this
paper to the case when x, is represented by g,-ary vectors
(t=1,...,m)may be done without any difficulties].
- Denote by (3 the group of binary vectors with » compo-

flxy, ..o,

nents (r=1,..

addition mod 2. For error detection, we shall use linear
checks over GF(2):

Y flxy o7y, +e 2 %m ®7,,) = df
r={f,,....T)ET

forevery x,,...,X, | (@

when T {‘check set for £°} is a subgroup of C'; ,n= ‘2 e

T, €EC3Y, dp — some constant, the symbol @ stands fur
componentwise addition mod 2 of binary vectors, and
sumrnation is carried out in.the same field as in eqn. 1.

The verification of whether condition eqn. 2 is satisfied
for the given x;,...,x, constitutes an error-detection
method. The method may be effectively used for the testing
of manufacturing acceptance of the program or of the
device computing the given polynomial. In the case of
network implementation (see Section 4), the method may
be used for testing during installation and maintenance of
the corresponding devices. As examples of these devices, we
note such standard computer blocks as counters, adders,
subtractors and multipliers.
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m
. ,tElnt] with respect to componeniwise

. We note, also, that, although all the examples given
below deal with computations in the field of real numbers,
the same error-detecting technique may be used for the
computations of polynomials with complex coefficients.

We shall denote by T(f) a check set T with minimaj
cardinality. We shall use the cardinality | T(f)| as a criterion
for check complexity of the polynomial f.

Our first problem is to find for the given polynomial
F€K, . & [Xt,....Xm] @ minimal check set T(f). The
implementation of the check eqn. 2 and error-detecting
capability of these checks will be considered in Section 4.

For the search of T(f) for the given f we shall use the
method proposed in Reference 1. [The generalisation of
this method for the functions defined over an arbitrary

- (possibly even non-Abelian) finite group and for the case of

error detection and/or error correction is given in Reference

2). This method is based on the technique of Fourier

transforms over the group C7. The advantages and limi-
tations of this technique were discussed in Reference I. A

.. stmitar technique was used in References 3 and 4 for the

problems of logical design, We note also that there is
another simple method of error detection for polynomial
computations by linear checks based on the finite differ-
ences of the orders sy, ..., s, for pelynomial equation 1.
In this case, we have the following check:

o B (M) ()
,70 Tym=0 T Tm

f(x] +51 T T e 3 XKy +$m _TH"I]

= a(sy,...,5n) tl:[l 5! (3)

The number of values of f involved in check eqn. 3 is
“ (5t

than the corresponding number |T(N) for check eqn. 2;
(Estimations for |T(/)] will be given in Section 3), but there
are at least three dlsadvantages to check eqn. 3. These are
as follows:

(a) For 1mplementatmn of eqn. 3 we need ‘arithmetical
shifts” of arguments x,, whereas in eqn. 2 we need only
componentwise additions mod 2

(b) For check eqn. 3 we need additional multiplications
by the constants

+r,é., ﬁ _(If_)
i=1 T,

1), and this number, generally speaking, is less

Gt ) Ee
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B (c) Check eqn. 3 cannot detect errors in coefficients
a(iy,..., i) resulting in the replacement of the given

polynomial f by another polynomial p€K,  ,
Ix(,...,%Xm,] with the samea(s,,...,s,). We shall see in
Section 4 that eqn. 2 detects a2lmost all errors of this type.

2 Complexities of linear checks over GF(2)

Before going to the minimal checks for polynomials, we
shall consider some general properties of check complexities
|T(MN. Denote

(fie i)z} = ), fix)fixe2)

n
IEE:_

Theorem 1

(i} Linear transform of mgu-menrs: Let o be an {n x n)
binary nonsingular ovér GF(2) matrix, y € C3 and

p(x} = flox e y) . (4)

forevery x € CF.
Then, () = | T(/).

/ r
fii) Linear transform of functions: Let { = El Cif;, where
C;,...,C, are some constants. Then '

IT()| < .-él T(f:) ‘
where
é TU}) = {Tl ®_..87.|7r ETUI): R rTrET(fr)}
A (5)

(iii) Convolution of functionsover C3: Leti = fi @ ... 0f,,
then

I7(¢)| < min IT(J_*})I (6)

(iv) Necessary condition for nontrivial checks: If f:C3 >

{0,x1,...} and [T{fH))<2", then there exist d€&
{0,x1,...}andi{€{l,...,n— 1}such that

Y fx) =d2 - 7

:EE‘;‘ _ -
{v] Lower bound for check complexity: H f:C3 -+
{0,1,.. .}and f ¥ O then
1r{()) = 2" ( )) f(x)) " min f(x) (8)
xecl [ {x\rix)# 0} :

-and there exists f:C7 = {0,1,..
expression 8 is reached,

Proof

.} such that the bound

(i) By definition of T'(f), there exists dy such thatTéT..Tm

fCx @ v} = d; for every x € (7. Then, we have from eqn. 4

Y wxor) =

r<o ' T

Y, wxean)

reT{N

= 2 floxeyer) = 4,
TET()

(07! is the inverse of o over GF(2), and o7 'T(N)} =
{a"rIrET{f)}) and o ' T(f) is a check set for (x);
2T(f)isa mln:unal check set because |a ' T{N| = I TN

(H) Let T—+__E'1 T{/) and T; be a subgroup isomorphic to
the factor group T/T(f;). Then

Y¥xer)=3 3 V¥(xerner)

TET TET fETUD
(f == l’ * & N ’r}

and, because

Zﬁ(‘xmﬁ)_dﬂ (I= 1,...,?)

1€ TN
for every x € C3 we have

Yeren =Y GY I

fixoTeT1)

7T i=1  TET; ;=T
z qdﬁ |Tii
i=1
and
r
T = eT()
i=1

is a check set for W,
(iii) Let 8;(x) be a characteristic function for T(f;):
- l ’ v = T(.fl)
] 5,‘ (,I} - [ :
0,x €T(f})

Then, by definition of T'(f;), (fi@8 N x)=d; for al
x € (7, and there exists the constant d¢ such that for every
i=1,...,r

(08, = 2 /,0/i0% = 2 f,edy = dy

and T(f;} is a check set for &,
(iv) If H is isomorphic to C3 /T(f}), then

Y= ) Y fxey)=

:Ec‘; xSH yET)

(v) Formula 8 follows from eqn. 7 because |H| = 2™ T(/)™
and d = mm f(x) The bound inequality 8 is reached, for

dil| = d2?

flx)#
example, for
100) 1,0 £ x < 2"71
xy =
0,2"° 1 g x < 2"
In this case

YIx)=2""d=1

xEC‘"
and f(x) + flx @ (1,0,...,0)}=1.

Thus o *T(f)isa numma] check set for p(x) = f{ax my)
* T(f;) is a check set for ¥ = E Cif;; for evary 1—

i,....7, T(f;) is a check set for § = e f;; and for linear
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systems over ' with input f,, impulse-response function
fi and oulput e=f;9 f, (these systems have been con-
sidered®™" } the same check may be used for error detection
in input and output signals.

We note zlso that, because it follows from step (iv), only
a very small part of functions defined over €} have non-
trivial checks over GF(2), but it will be shown in the
following Section that these nontrivial checks always exist
in the case of polynomial computations,

3 Linear checks for polynomial computations
]_net,qufEK.I ..... £ [xl:---:xm]:
5, m
f(xll"'ixHI): Z"' Zﬂ(fl,.“,fm}x
i,=0  ipy=0

x:'...xi’“;x,E{O,_..,EH’—'I}
xe = 2. aP e (Ve 1p;
S < m(t=1,...,m)

For flxy,....xn) =/, 50" (xPeo, 1}
f=0,...,n—1: n= Elﬂt) we define Fourier (Walsh)

transform f—rf and inverse Fourier transform f—*f over
C3 by the formulas

flw) = f(L®, ..., &M

=2"% f(x(“},”-. XYWL, ()

PO e {0, I}

) =[x, .. ,x" D)

= 2 [ "), )
W, ..., w{""}E{u,l}
where
S @, ®
Wox) = (—1)°

is the wth character of C§ or so<alled Walsh function.®
For Fourier transforms {eqn. 9) the main properties of
classical Fourier transform remain valid (Reference 8,
Section 1.4). We note here the convolution property of this
transform |

¥ =fep iff V=2 (10)
Denote by ¥(n,,s, + 1} a maximal linear code in €t with

Hamming distance s, + 1%~

ne-1
- )
Vinsse+ ) = @7t e 1 = 0

for every (_y:m, ‘e ,yf"‘-“) € ¥V(n,,s,+ 1)} and

= {T = (Tli***!rm)lfl EVI("IIII + l):"'!
T™m € Vl(”m:-sm + l)}

Theorem 2
(i) For every fEK, ...

Z f(‘rl IEI7"-13---'sn-':.:'l".trl E"ll'l"l".l) = df (ll)

={r,....,. T vi
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where

&= [l Wose + 07 3 fxoex) ()

grere*e

(11} For CVEry §= (31, v :sm): (nl p= = :"m) (3! {HI‘)'
thfre exists fEK, . [*1,-..,%5] such that T(f) =
V=,

Proof i

(i) Let us consider a Fourier image (see eqn. 9) f of f over
C3:

If there exists # such that

He—1

fleogll = Z

i=0

W =5 41,

then
flw) = 0(w = (wy,...

because, for every j <n,,

» W), Wy € C71) (13)

2{(wt) = 0

if [[esell 27 + 1 (Reference 8, Section 3.5). Denote -

1

i
Y Wl se+ D if weV
Sg{w) =+ :
0 if wegV
(V = I v{n,s, +1) (14)
t=]
then
) m
f(@)be () = 6,027 X V(ng, s, + 1
t=1
2 [,y Xm) (15)
L X
(3. 0 = Kronecker-delta symbol).
From egns. 12 and 15 we have
(fed,) = 4, (16}
forevery x (7,

For 6,(x), we have, from eqn. 14, the definition of
Vi{n,,S; + 1) and (9)

5. (x) = [l,xE L (a7
0,x¢pl
and eqgn, 11 follows from eqns 16 and 17.
(i) Let
s stn) = % ehiten), e)>0,
and )
felxe) = a(t,0) +a(r, )%, +. .. +a(t, s )xit

t=1,...,m)

m i ot e o ow 1 - mnq = - 1 P —ml . = =




where
Xe = % —4Q2™—1), a(t,))>0 if j= 2k
and  q(£,/)<0 if j=2k+1.

Then, from Reference 8, Section 35,

hy—1
Xp = ), (“zn'-iql)wr;(xt)-

=0 ;I}
I.l = QD:'p-:DJI:nl--'!U): wli('rt) = (_l)x

and
= ¥ bt W)W, (x)
TR =N sk
where
b{t,w)>0, if j=2% and
Ht-l -
lll = ¥ w?<j; b(e,w)<0, if F=2k+1
i=0

and  flwll<j; 8(t,w) =0 if fof=j+1

forall ¢ = l,...,m; wECH,

Hence, t:y definition of £, we have |

flw1, ..y wm) >0, ol < 5, (t=1,...,m) (18)
and |

f(wl yeresWn) = 0, if there exists f such that

lcoell 2 5, + 1

Now, let 84 be the characteristic function of the subgroup

o Tof C3:

I, xeT

d =
r(x) [D,x%T

Then, from eqn. 9,

. IT1™ = 712", wert
dp(w) = {U, w & T (19)
where
™= {w = (ml,..*,ém), 6 o Wi = ¢
t=1 {=g
forall x = xr,...,x,)ET) |

If Tis a check set for £, then there exists the constant 4
such that {(fe 8 )x) = d for every x or, by eqn. 10,

F(w)br(w) = deoz0 -8 :027"d (20)

Because
V = IHI V(n,, S, + 1)

‘a maximal subgroup in the set {(cs, . _ .. y Wy )3 £ [feo [ =
we ¥ 1}, it follows from eqns. 18-20 that V= Ti(y),
- T{)= V%, and this completes the proof of theorem 2.
Theorem 2 generates a simple method of constructing
a check eqn. 2 for the given polynomial FEK, ...,

52

n n = e N NI L

¥m

[*t,...,%,]. This method reduces to the following
operations:

(2) Choose any error correcting codes ¥ (n,, s, + 1) with

the distance s, +1 in n,-dimensional space of binary '

vectors{z=1,...,m).

(&) Construct the corresponding  orthogonal codes
Vl(n,,s, +1) (¢=1,...,m). Methods for choosing
Vi, 5, + 1) and for constructing Vi, s, + 1} may be
found in Reference 9.

(c) Construct the direct product

m

I =¥ = T Vg, s + ).
- =1

(d) Compute by eqn. 12 the right-hand constand 4,
We note that the check set p1 fGIfEK,"__ P b TP
X,m] depends only on degrees sy,...,s, of ﬁ'but right-
hand constant d, of the check depends on coefficients of £,

For the estimation of check complexity of polynomials
from Ky . ..s Ix1,...,x.] one may use the following
corollary from theorem 2:

Denote

@ =2" iff 2 V'gg< (21)

Corollary 1
Forevery feX, .. [¥1....,x,)

m " lrp,—1
logy IT(F}I< 3. log, < IZ ( . )> - (22)
t=1 a0\ j _

Proof

From theorem 2 we have

m

[T < VL = 2 I [V{n,, s¢ + 1)1

=1

and eqn. 22 follows now from the Varshamov—Gilbert
bﬂund for IV(‘"!IS!' + .l)-g
We note that lower bounds for

max log, IT(N)

fEK:,,...,lm[xhn-rIm]

may be also obtained from theorem 2 by the Hamming—Rao
bound or Plotkin bound for [V(n,, se + DI,

It follows from theorem 2 and corollary 1 that it is
expedient {o use linear checks over GF(2) in the case of
relatively small number m of arguments. We note also that
V1 is a check set for every )"t—:‘ﬁiﬁ‘,l ..... R - TN N
but, for some special £, checks may be considerably simpli-
fied. For example, it is easy to show that, if f depends only
on even {or only on odd) degrees of x, =x; —4(2" — 1),
then

m

' .l+ Z |
f‘(-xlr-—'sxm)-'*(_-l} t.l'tf(xl El!"'lxﬂ‘l Elijzﬂ

(23)
whered =(1,.. ., 1).

We shall now consider the case, important from the
practical point of view, of small-degree polynomials (s =
1,2,3;r=1,...,m). Let

ftxli'-*:Jan) =

D ey, . in)xy . . xtm (0 <x, €2 — 1)
Ire oy hefon,. ... x} .

" —-. TE Y A, 1] LA R L mermi e B F




We shall say that f depends on x, if there exist

iyeeusdtoy,Btery e im €40,...,58}

such that
a(fl:- '-rit—l:j:itd-l:--- :-'fm) ¥* Q.

The set of all polynomials which depend on all x{ (¢ =
1,...,myj=1,...,5)wedenote by K, [x;,...,x,.].

Corollary 2
(i) IffEKI [xl: ‘oo :Im}:then
log, IT()| = m - (24)
() IffEK;[xy,...,xpm], then
: m
log; 1T = :Zl log, {n;} (25)

(i) IffEKs[xy,...,x,], then

m

log, (n — 1) (26)
t=1

log; [T(f)| = m+

Proof
Note that,if fE K, [x,,...,x,,], then

flwi, ..., 0n) #0 iff lwd<s@=1,...,m)

Because
IT(F)| = IV = 27 ,Z (g, s+ DI 27
=1
m
(ﬂ = Z ﬂt)
$=1
and?®
lﬂgl V(H;,Z]l —_ Ht_l (2—8)
log, [V{ng, 3)| = n, —log, {n,;} (29)
log, |V(ng, 4)] = ng —logy {ny — 1) —1 (30)

we have eqns. 2426 from eqns. 27-30,

For polynomials of one argument f€ K, [x] (x€{0,..,
2" — 1) using the construction of Bose—Chaudhuri codes®
we have the following upper bound for the check complexity

togs IT(f )l <logy Vi(n,s + 1)
a log, {n), if s=2a
<

- (31)
alog,in—ND+1, if s=2a+1}

Check complexities |T(f)| and right-hand constants d;
for polynomials f€ K, [x] of one argument are given in
Table | (here, B, stands for Bernoulli numbers).

By the proof completely analogous to the proof of
theorem 2 one may obtain the following result:

Theorem 3
Let

0 -
O, . X0y =

n-1
2o+ 2 a(iy x9N + Y a(iy, ip)xWx¥) + |+
1, =0 0K, <h S n-1

LGB )x) | xUe) (32)

Z a(iy,..

0% § < ... <igan-1

xPe{0,1};i=0,...,n—1; s <n).

Then: .
(D) forevery x = (x,,..,x""1)
Y, fixern) =
rEVig as)
, n—1
WVi(n,s + 1][2"'[2"ﬂ‘ﬂ + 2270 Y ali,)
i =0
+oot Ea(n,...,f.)] - (33)
0K, <., .. < <n-1

@ If ao#0, a(i))#0,...,a(,,...,i,)#F0 for ali
i1,...,1, then the check set V{(n,s+ 1) is minimal, i.e.
T(f) = Vi(n,s + 1).

We note that checks constructed by theorem 3 for poly-

-nomijals of one argument coincide with checks constructed

by theorem 2, but, for polynomials of a small degree and of
a large number of arguments, checks constructed by
theorem 3 may be simpler. This may be the case when we
are dealing with matrix computations.

For example, let F(X} = 4AX where A, X are matrices of
dimensions (k x m) and (m x r),and Xz €{0,...,2" —1}.
Then, every (F(X)}; may be considered as a linear function
of mn binary arpuments, and we have by theorem 3

FX)+F(X) = (2" —1)A (34)

where X; =Xy e(1,1,...,1).
By theorem 3, we may also construct checks for any
polynomial f(llx|l}, where

n-1

ixll = 2 x®

i=0

Table 1 Parameters of the optimal checks for polynomials of one argument

Degree of a Check complexity Right-hand constant dy
polynomial ¢ tT{n
1 2 23(0} + a(tH2" —1)
2 () {n} (a0} + F2(1N2" — 1} + Lai2){2" — (2" — 1))
3 2¢n — 1) 2(n — 1) (a0} + La(1H{2" — 1) + La(2i(2" —1){2"* —1)

| N + ta (322" —1)%)

7w
ol 1 1 i+ 1
s 2Win, s+ 10 Vims+ 107 3 ot ——= ) 2Uer-#ng,
rF=0 i

i=o
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-

is the Harnming weight of x.
We note that theorems 2 and 3 provide us with multiphi-
cative checks for exponential functions,

Corollary 3
Let

and
r
‘P(Ils - :xm) = fz ‘Iﬁ{xl '''' *m)
=]
(x,€{0,...,2"—1) - {35)
Then, for every x,,...,x,,,
I W(xlmrli*--:xmﬁrm) = dy (36)
PR, - 1 S vi
where
A
d‘a" - l_I ‘p(xl:*+':xm}}
; m
pl = l!T_I]l Vi, s; +1)
m a
A= 11 Wy, s + 1)
E=1 |
Proof
From eqn. 35 we have
Jug-,p(xl,...,xm] = Z ff(xlr-- - :xm) X
i=1
logg; €K, .. b 1X15 o0 3 X ] (37)
Then, by theorem 2,
zlﬂgﬂﬂ(xl EBTI: veoe gy Efm) =
..., i€ vl
AL loguley,. .., xm) (38)
Xiprsa,®m

and eqns. 36 and 37 follow from eqn, 38.

The network implementation of a multiplicative check
(eqns. 36 and 37) may be obtained from the network
implementations of an additive check (eqns, 1] and 12)
(see Figs. 1, 2 in the folowing Section) by the replace-
ment of adder accumulations by multiplier accumulators,

. S0 far we have supposed that every argument x, (¢ =
1,...,m) of the polynomial is represented in the binary
form

It = (x%{ul e ,Isnt-l:’] (ijl E {Ol‘ I})'

In the case where x, is represented in the q.-ary form
(qe==2,£=1,...,m) all the previous results remain valid,
but the check set

m

2 Vi, s +1)

=1

must be replaced by the set
H V{J]'-I(Hhst + l):
t=1

where ¥V (1,5, + 1) is the maximal linear code in n,-
dimensional space of g,-ary vectors with Hamming distance
sp+1% and

Vil se+ 1) = {00, y007)

np—1 g
s xWy =
i=p

(xtn}’ . ,x(‘"t"'ll}E Vqt(ﬂl’st -+ 1)]

where x® @ <o, ..., q,— i}, and the symbol &
stards for mod g, addition. (For the computations in the
finite field GF(p} we need the additional requirement that
the least common multiple of q,, ..., 4, will be a divisor
of p —1, because only in this case do we have convolution
theorem eqn. 10 for the corresponding Fourier transform?).

4 Network implementation of checks for pelynomial
computations

Error-detecting capability
We shall consider now the problem of the network imple-
mentation of checks constructed in Section 3.

Let us begin with the example of the cubic polynomial
of one argument f(x) = x* —95x? —52x — 60, when x €
{0,...,127}, x is represented in the binary form (n =7,
5= 3), and all the computations are carried out in the field

of real numbers. Then V(7,4) and ¥1(7, 4) may be chosen
as linear spaces over GF(2) with the bases

100 0111 011 1000
010 1011 and i01r (100
001 1101 110 0010

111 0001

respectively, and

T, ., 7Neviz, 4 i

7O = ;@) g () g (6
7V = g g O 4

Thus, by theorem 1 and Table 1, we have the following
check for f(x) = x* — 95x* — 52x — 60:

Y, flxer) = 56
revie, @

for every x € {0, ...,127}. The network implementation
of this check is given in Fig. 1. There are three blocks in the
check network Fig.' 1: a counter, generating the infor-
mation bits 7, 1™ 1} and 16 of the code, V1(7,4), a
coding network, generating the check bits 7, 7 and 7@
and a network for mod 2 summation of x and 7 € iz, 4).

Let us denote by L(f) a minimal number of 2-input
gates in a check network for f. The asymptotic behaviour of
L(f) may be described by the following theorem.

Theorem 4
If ng—2es, sp<ny (t=1,...,m), then for every fE

mﬂ\...,lm[-rlr"'rxm]

L) < tg ([;—‘} + 1) n, (39)
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" boheck network - 1
for ¢ counler I i
I B
T T : E
L ] |
_ T - |
coding | |
network for | ,J
vi(7.4) | I
| ||
I o l
| | :
i |
I I
! .
I
I
r'[I} T'Ill' .r{f-} TI’E} rIE}L-
l
- |
{b error
@—_ sigral
Fig. 1 Network implementation of the check for polynomial " /= = L
fix)=x> —95x* —52x — 60 h | courterm | frem 10 foounter 1 . : .
I Om-Km bitslmer coxter 2[ny Ky bits I
trigger S i m-1 I
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fEX, ., [*x1,...,Xm] may be implemented by the
network of IFig. 2. Here, every coding network 7 is a net-
work linear over GF(2) with n; — K, inputs and K, outputs.
If 5, > 1 then® n, — K; - 0, as nn, = °°, and the coding net-
work t may be realised by the method described in
Reference 8 Section 3.2 with the complexity

(1 — K¢ )K¢
log, K,

L, (40)
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(f 5,=1, then m;—K,=1, Vin,2={0,...,0),
(1,...,1}} and L, =constant). Because n, — K, = log,
\Vi(n,, s, + 1) and n; ~ K; (Reference 9), we have from
eqns. 31 and 40

¥y
— | log, n, K
IZI LTS

log; K,

Ly

A

55




‘We note also that there exists C; such that the complexity
of the counter ¢ with n, — K bits is no greater than

5
CE (ﬂr _Kt) E Ct [ Et} IGE; ;.
Thus, we finally have

m (1 | )
L{f) < Z( %t nt+(‘,}[§“lngint+m)

=1
m s-‘

-_Z i R ",
=i 2

Thus, for a polynomial f of degree § which is defined in 27
points, the network complexity L{f) of the optimal check
increases at most linearly with increasing s or with increasing
n

We note also that upper bound eqn. 32 for complexity
L(f) may be decreased if ¥{(n,, s, + 1) and V(5 + 1)
are cyclic codes, and coding networks in Fig. 2 are imple-
mented by linear sequential networks,? but this results in
an increase in the time required to implement the check.

We shall describe now an error-detecting capability of
linear checks over GP(2). We consider three classes of
stuck-at errors: errors in coefficients; errors in arguments;
and errors in values of the polynomial.

We assume also that every coefficient a(f;,...,i,)
[argument x,, value f(x,,...,x,) of the polynomial] is
stored in a corresponding K-bit memory cell (K=n; =. ..
=Ny ).

By an Ifold error in coefficients (arpuments, values of
the polynomial) we mean any error resulting in the replace-
ment of I coefficients (arguments, values of the polynomial)
by some constants Cy,...,C; [binary representation of
C, (r=1,...,1) contains K bits]. We denote the relative
frequence of /-fold errors which cannot be detected by our
check for the above three classes by 5,(I), n. (D), n; (D),
respectively,

The result of an error e{x,,...,x,) is to replace the
given polynomial fix,,...,x,) by flx;,...,x.)+
E(I] porono ,.I'm].

Corollary 4
For every

¥

--m 't - &
fGrsooyxm) = 8 3 aG, .. in) i xip
b=l =0

we have

=}

<1 —-6.,)0* -1 (O{IQ ﬁs,) 41)

=) <27% maxs, <K2°K  (0<i<m) (42)
r

(< =8, )" -~ (O<Ig2K™) (43j |

Proof

An [fold error in coefficients e, {x;,...,x,) [in argu-
ments e, (x,,...,X,), in values of f e/(xy,...,x,)]
may be represented as

Eﬂ("rl t B :xm)

i
[ - i f
= Y (G —alii,- . rim )Xy xmr
r=1

(i:,€10,...,5},C # 0) (44)
(ex(Xy,.-sXm) = flxi = Ci,..0xy = Q)
—f(x1,. .0 Xm)
A <iy <...<i < m)45)

fxy, =Cy,...,x;, =) is the function of m—1 argu-
ments obtained from f(x,,...,X,) by the replacement of
X, by G (r=1,...,0

@G xm) =3 (GG X))

re)

J:.;fh,. .- -"m;'-m.r

(fi;,€10,...,2% —1};C. # 0)

(46)

If an error e is not detected, then by eqgn. 11

L e texer) = di(x = (x1,...,%m),
reyl

T= (Ty,.0e,Tm))

and

Yelxery =} elx;,...,xXn) =0 (47)
rEVl Xiveas, X

" We have from egns. 44, 45 and 47, 1,{1) = n(1) = 0. Next,

from eqns. 4446, for every Cy,...,Croy, Crayy..., G
there exists at most one C, such that eqn. 47 is satisfied for
errors in coefficients a. ' values of the polynomial, and
there exist at most 5, diftferent values of C, such that eqgn.
47 is satisfied for errers in arguments. This completes the
proof of corollary 4. Thus, for E‘-’E]} polynomial f(x,,...,
xm) which is defined in 2" =2%™ points, if K is big
enough, then by a check network having a complexity of
about n(fs/2] + 1) 2-input gates we may detect almost all
stuck-at errors in coefficients, arguments and values of the
pelynomial,
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