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Let ny,=0,n,21,...,n, 21 be given natural numbers,

=0 =0
and
H Eji= {{xm ..... x™). n= -Zl n, and if reJ;, then xef0, ..., ¢ - 1}}
i=1 i=
Aset Relli., Eyissaidtobe {my, ..., m, )-dense (1=m, <n,) if there exist I, < J; such that

\Li=m; (i=1,...,s) and |[PYXR)|=IF., g}, where P')(R) is the projection of R on the
coordinate axes whase indices lie in I=1J5_, L

In this paper we establish necessary and sufficient conditions for an arbitrary set R < [[{_; E
with given |R| to be (m,, ..., m)-dense.

1.

Given natural numbers n,=0,n,=1,. .., n =1, put

Ji=rfnt+1,...,t=iﬂm}

t=0

and let [[;_; E} denote the set of n-vectors (x'V, ..., x™), where n =3%7_, n, and
if ref, then x“e{0,...,q—1}. Let I<{l,...,n}. For any xe[fj_, Ey let
PD{x) denote the projection of x on the coordinate axes whose indices lie in I If
I =@ is the empty set, then P®(x)=(0,...,0) forall xe][}_, E;. If R<[f_, E5,
then PP(R)={P®(x):x e R}.

A set Re|li_, Ef is said to be (m,,...,m)-dense (Ism,<n,i=1,._ ., s}if
there exist I, < J; such that |L|=m(i=1,...,s) and |PPR)=1T;_, g™ where
I=Ji_; I (throughout, |A| denotes the cardinality of the set A).

In this paper we shall establish necessary and sufficient conditions for an
arbitrary set R<l[}_, Ej of prescribed cardinality to be (m,,..., m )}-dense.
Note that when s =1 and q, =2 this problem is equivalent to a problem suggested
by Erdds in the language of systems of subsets of a certain set and solved in [2]
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and also in [3]. (In {2] the maximum m for which R € E? is m-dense is called the
“density” of R.) |

We shall present a solution of the problem for arbitrary s and q,,..., 4. It
should also be noted that for the case s=1, when EJ is linear n-space over
GF (g), a necessary and sufficient condition was proved in {1] for an arbitrary set
Rc E} of given cardinality to contain a subspace E'(1=m=n) (such that
E7[=q™).

To clarify the exposition, we first consider the case s=1. Thus, let E]=
{x:x=0x" ..., x™), x2e{0,...,q—1}, r=1,...,n}, RcE}, 1sm=n Our
aim 1s to find necessary and sufficient conditions for an arbitrary set R< E; of
given cardinality |R| to be m-dense.

We shall say that M has property A,(n, m), writing M€ A_(n, m), iff for any
Icil, ..., n}such that |I|=m there exists x ¢ P*’(M) such that, for any y € EF, if
P(y)=x, then ye M.

Lemma 2.1. A set RC E] is not m-dense iff
R =E;—ReA,(n,m) (1=m=n).

Proof. A set R E] is not m-dense iff for any I'={l1,..., n} such that |[I|=m
there exists x € PP([i_, E7) such that P(y)# x for all y e R. It follows that if
P®(y}=x for some ye E7, then yc R° and so R ¢ A,(n, m).

Now let H (n, m) denote any minimal subset of E! such that H_ (n, m)c
A,(n, m) and put h (n, m)=IH_(n, m)|.

Lemma 2.2, For any n and l=sm=n,

H =M

h(nm+1)= ) (g—1 h(n—r,m) (1)

r=1

Proof. We fix H (n, m+1) and construct a set D{’]EE:I;_”{I'= 1,....n—m) as
follows: xeD" iff there exists " (x)e{0,...,q—1} such that for any
}’{”a - ey ]}(F_HE{U& S ]-}-.-

VP, Ly (X)), x) e Ho (n, m+1). | ' (2)

(Given x, there may be several (x) satisfving (2). In that case we fix one of

them arbitrarily.)
We claim that DY e A (n—r, m). Indeed, let us fix r,iy,..., L (r<i, < ' <

im =n) arbitrarily. Since H_ (n, m+1)c A (n, m + 1)}, there exist

x x® 0 xlm el ... g—1}

- 1 P e T T — e —— ———— e we e e e - - e
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such that, for any y=(y", ..., y") e E}, if

(i}

};m=xm,}; S _”?},m}_th

then ye I—Iq(n:r m+ 1). Consequently, by the definition of D%, we have for any
z= (z“} Lz with 26 =x®(t=1, ..., m) that ze D". Since i, <i,<
. < i were chosen arbitrarily, we obtain D e A (n—r, m) and

1D =h,(n—r, m). (3)
Now let T®(r=1,...,n—m) denote the set of all vectors {(y¥,...,v" Y,
&(x), x), where xED[”, and in addition

},{r—li +* &Er—l](lﬂfr)(}:)? x), (43}
if (P (x), x}e DY, and

yOFEHOETY, Ly (), x) =2, 1) {4b)
if (&0, . yY "(x), x}e D®. Then, by the definition of T,

TONTY =9 (5)

{where @ is the empty set), and since TV H (n,m+1) (r=1,...,n—m),
L__Jl T < Hy(n, m+1). (6)

By the definition of T*’ and D', it follows from (3), (4a and b} that
ITV|={D"l g -1 =(@— 1) he(n—r, m} (7)
In combination with (5) and (6), this inequality yields (1) and proves Lemma 2.2.

As will follow from Theorem 2.4(i) below, equality holds in (1) for any n and
l=m=n,
We shall need the following numerical identity:

Lemma 2.3. For any n and 2=m<n,

n—m+1 m—2

5T @ ()T @ (e e o @

pe=1

Proof. Setting i =n—r,j=t+1, we have
n—m+1 m—2 n—1 -
z Z (q 1)n (— 1( ) Z (q l}n t—1 Z (I)
r=1 i= t=0 i=m—1 !
FL—2 n—1 i m—2 i
-3 @ (L (-2 ()
t=0 i=t 4 i=t L

:m; (q-1)"" (;1) (q—1y Z (q=1" (m;_ 1)

=T @M grg -

i=0 J
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Theorem 2.4, (1} For any t such that

:;z (q-un—f(}‘) ©)

there exists R < E}; such that |[R| =t and R is not m-dense.
(ii) If RC E? and |

m—1 in
IR|> }. {q—l}"—’(j), (10)
=0 -
then R is m-dense.

Proof. (i) We construct R as follows. Let Sq.{n, n—m) be the sphere in E? of
radius n —im m the Hamming metric, i.e., the set of g-ary n-vectors with at most
n—m nonzero components. Then for any y € Si(n, n —m)=E} —S,(n, n—m) the
number of zero components in y is at most m—1, and so Si(n, n—m) is not
m-dense. Since

Se(n num)lzq“—z (g— 1) (;)

it follows that for any ¢ satisfying (9) there exists R < $5(n, n —m) such that |R]| =t
and R 15 not m-dense.

(i)} Suppose that (10) is true but R is not m-dense. Then by Lemma 2.1,
R® € A,(n, m) and by Lemma 2.2

H—m+1

Re|=h,(nm)= ) (q—1)""hy(n—r,m~1). (11)

We now show by induction on m that (11) implies

ha(n, m)=q" —mZ (g~ 1)"*1‘(?). (12)

Since |R®|= h, (n, m), this will contradict (10), implying that R must be m-dense.
Indeed, for m =1, we have h,(n—r,0)=g"" and from (11) we get

hy(n, 1)= ) G- 'q" " =q"~(g— 1"
r=1

Thus (12) holds for m =1 for all n==1. Let (12) holds for m—Hm=2) and all
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nz=m. Then by (11}, (12), using Lemma 2.3, we obtain

n-=m=+1

NEROED) (q“—’(q—l)f-l—z(q—n“-f—l(”; )

r=1

n—m+1m-2

=q"—q" gy - Y 2 {q—l)“*f‘l(”j._r)

r=1 =0
m—1 R

- F e (7)
i=0 ]

This proves (12) and completes the proof of part (ii).

Theorem 2.4 yields the following exact formula for the function h_(n, m):

i—m

hq(n, m)=q“—zl (q—l}““'(?)= 2 {q—l)f('})- (13)

j=0 J

Remark 2.5. It follows from the proof of Theorem 2.4 that S,(n,n—m) (the
sphere of radius n—m in the Hamming metric) is a minimal set with property
A,(n, m), and S;(n, m)< E7 1s 2 maximal set such that S3(n, m) 1s not m-dense.
However, S,(n, m) is not the omnly set with these extremal properties. For
example, for g=2, m=1, the set {(0,...,0), {0,...,0,1),
(0,...,0,1.1),....(1, ..., 1D} has the same properties.

Theorem 2.6. Let R be the set of infinite-dimensional g-ary vectors. Then, either R
is an n-dense set for any m or there exists M such that for any m > M and any

F=diy, . o bt (<iy<- - <i,)

Powl= Y, - 7): (14)

Proof. If there exists m such that R is not m-dense, let M denote the largest m
such that R is m-dense. Then if

POR)< Y. (g- 1)‘“*"('}*‘)

j=0

it follows from Theorem 2.4 that P'"{R) is (M + 1)-dense, so that R is (M+1)-
dense, contradicting the choice of M.

We now consider the case s > 1. In this section we shall establish necessary and
sufficient conditions for an arbitrary R<]fi_; E} of given cardinality to be
(Mmy,...,m)-dense (lsm=n,i=1,...,s).
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As before, let

I—1 i
Ii={z n+1,..., E n,} (no=0,n,=1,....n=1,i=1,...,5).
t=0 =40

Let McE. We shall wnte MecA,  ,(n,....¢n;my,...,m) iff, for any
I,...,I, such that LcJ and |El=m{i=1,...,s), there exists xc
PO(MNWI = Ui, L) such that for any yeJi_, EJ, if PP(y)=x, then ye M.

Let H, _  .(n,....n;:m, ..., m) denote any minimal subset of [[}_, E
such that
qu ,,,,, qa(“l!"'ﬁn's;mli-"ﬂms)EAqi _____ qg{nla"*:ns; ml:"':m.s}:l
and put

hql ..... q,(nl*.r-* . :ns;ml:r-”:-ms)=|Hq1,..,,q:{nl:-* £y i’ls; mh...,ms)|.

Lemma 3.1. For any g, n, 1<m. <=n(i=1,...,s),

hqj....,q_,_(ﬂlrr*":ns;m1+1:! m!i“ oy ms}

=Y =1y, o=t R iy, ). (15)

r=1

Proof. We fix H, . (n,...,n:my+1,m,, ..., m) and construct

DOcEN" [ Ex (r=1,...,0,—m)

as follows: xe DY iff there exists ¢™(x)e{0,..., q,—1} such that for any
vy oy el g - 1}

(v, Ly ), e H, oy, oo ng m+ L my).

Then, as 1n the proof of Lemma 2.2, we can easily see that D"'c
Ag.  ami—rn., ..., my, ..., m). Therefore,

|D[rjl'3hq1,...,q_‘(nl_r: n21'+*:ns;m15- LI ms)-

Proceeding by analogy with (4), we introduce sets T (r=1, ..., n,—m,)

(T{”ﬂl’m-—‘ﬂ, U 1 TO<H,  ,(y,...,n; m1+1,m2,“.,ms)).
r=1

Then
[T =|D"(g, — 1y
and
Ra. iy msm+ Ly, m)= 3 (g~ 17D
=1

L Mt

= ]z (Q'l_l)r_lhqh...,q;(”l_r: Moy eeny Hsa g, .. ‘*mf)‘
r=1
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Theorem 3.2. (1) For any t such that

<Ia-11% G- (7) (16)

=1 j=

there exists RCHf i B3 such that |R|=t and R is not (m,,...,m,)-dense
(l=m,=n.;i=1 .S).
(i1) IfREl_[i=1 E;.- and

lRI}_lf[ 47— H Zﬂ' (a.— 1}‘( ) (17)
then R is (m4, ..., m)-dense.

Proof. (i) Let S, (n, n, —m;) be the sphere of radius n; —»; in Eg in the Ham-
ming metric and S,{n, n—m)=[1;_ S, (n, n; —m;). Then if

Si(m,n—m)=[1 Ex—11 8, (m, n, —m)
i=1 i=1

we see, as in the proof of part (i) of Theorem 2.4, that $S(n, n—m} 18 not
{m,,...,m)-dense. But

|Se(r, n—mﬂzgqr H z (4= HJ( )

i=1 j=0

Therefore, for any ¢ satisfying (16), there exists R € $2(n, n —m) such that |R|=1¢
and R is not (m,,..., m,)-dense. .

(ii) Suppose that R is not (m,,...,m,)-dense. Then by the defimtion of
_____ Ny, ..ongymy, . .,m), we see as in Lemma 2.1, that R°¢
Ay ary,...ommy, .., m) and by Lemma 3.1

lRE13hq1 _____ q_‘(ﬂ-l,...i,ﬂs;m],+..,nls)

2 Y (g =1 . - nhs..ongm—lmy, o mg). (18)

lllll

Bae .. atyy . ooong my, oo m) =] Bg(n, mo). (19)
im1

In view of {13), 1t will follow from {19} that

By By im ey m) =] ‘(qi—l)f(’f). (20)
i=1

Since |[R|=h,, . (M. .., 0 My, ..., M), inequality (20) contradicts (17) and
s0 R must be (m,, ..., m,)-dense.
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It remains only to prove inequality (19). We first observe that

R a0, ,00=]] qr=]] h(n,0). (21)
i==1 i=1
Thus (19) is true for ali n,,...,n, when m,=m,=---=m_=0.

Suppose now that (19) is true for all »,...,n, and some m,—

1, m,, ..., m;(m,=1). We claim that then (19} is true for all n,,...,»n, and
Mi, Ma, ..., M. It follows from Theorem 2.4 that

no—m i1

ho(mom)= Y (-1 hy(n—r m—1). (22)

r=1

Then, by (18), (19} and (22), we have

hq, ,,,,, q,("h'“-:ns:mh-”:ms)

n,—m,+1 % &
= Y (@ m—nmi= D [T by O, m) =11 by, m). (23)

r=1 i=2
We have thus proved (19) for arbitrary m, when m,= - - - =m, =0. But it follows
from the definition of h,, (1), ....n;m,, ..., m) that

Moy oa(Mis o5 B My, Lo M)
R T ..q.,.[,;(ﬂﬂ'{lh ey ni:r{s}; mﬂ‘[l]: “ -y mﬂ{;])

where (g(1),..., o(s}} is an arbitrary permutation of 1, ..., s. Therefore, inter-
changing the indices 1 and 2 and using (18), (22), we prove (19) for arbitrary
wy, My when my;=--- =m, =0, and so on. This completes the proof of part (ii)
and of Theorem 3.2.

We note that Theorem 3.2 implies the following formula for
he, o B My, ..., M)

FU (PR 8 PR N
=18,(n, nmmJ|=fI nf{ (qf—l)f(?). (24)

i=1 j=0
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