COORDINATE DENSITY OF SETS OF VECTORS

M.G. KARPOVSKY and V.D. MILMAN

Tel-Aviv University and The Institute for Advanced Studies, Ramat Aviv, Israel

Received 1 November 1976

Let $n_0 = 0, n_1 \ge 1, \dots, n_s \ge 1$ be given natural numbers,

$$J_{i} = \left\{ \sum_{t=0}^{i-1} n_{t} + 1, \dots, \sum_{t=0}^{i} n_{t} \right\} \quad (i = 1, \dots, s)$$

and

$$\prod_{i=1}^{s} E_{q_i}^{n_i} = \left\{ (x^{(i)}, \dots, x^{(n)}) : \quad n = \sum_{i=1}^{s} n_i \text{ and if } r \in J_i, \text{ then } x^{(r)} \in \{0, \dots, q_i - 1\} \right\}.$$

A set $R \subseteq \prod_{i=1}^s E_{q_i}^{n_i}$ is said to be (m_1, \ldots, m_s) -dense $(1 \le m_i \le n_i)$ if there exist $I_i \subseteq J_i$ such that $|I_i| = m_i$ $(i = 1, \ldots, s)$ and $|P^{(I)}(R)| = \prod_{i=1}^s q_i^{m_i}$, where $P^{(I)}(R)$ is the projection of R on the coordinate axes whose indices lie in $I = \bigcup_{i=1}^s I_i$.

In this paper we establish necessary and sufficient conditions for an arbitrary set $R \subseteq \prod_{i=1}^s E_{q_i}^{n_i}$ with given |R| to be (m_1, \ldots, m_s) -dense.

1.

Given natural numbers $n_0 = 0$, $n_1 \ge 1, \ldots, n_s \ge 1$, put

$$J_{i} = \left\{ \sum_{t=0}^{i-1} n_{t} + 1, \dots, \sum_{t=0}^{i} n_{t} \right\}$$

and let $\prod_{i=1}^s E_{q_i}^{n_i}$ denote the set of *n*-vectors $(x^{(1)}, \ldots, x^{(n)})$, where $n = \sum_{i=1}^s n_i$, and if $r \in J_i$, then $x^{(r)} \in \{0, \ldots, q_i - 1\}$. Let $I \subseteq \{1, \ldots, n\}$. For any $x \in \prod_{i=1}^s E_{q_i}^{n_i}$ let $P^{(I)}(x)$ denote the projection of x on the coordinate axes whose indices lie in I. If $I = \emptyset$ is the empty set, then $P^{(\emptyset)}(x) = (0, \ldots, 0)$ for all $x \in \prod_{i=1}^s E_{q_i}^{n_i}$. If $R \subseteq \prod_{i=1}^s E_{q_i}^{n_i}$, then $P^{(I)}(R) = \{P^{(I)}(x) : x \in R\}$.

A set $R \subseteq \prod_{i=1}^s E_{q_i}^{n_i}$ is said to be (m_1, \ldots, m_s) -dense $(1 \le m_i \le n_i, i = 1, \ldots, s)$ if there exist $I_i \subseteq J_i$ such that $|I_i| = m_i (i = 1, \ldots, s)$ and $|P^{(I)}(R)| = \prod_{i=1}^s q_i^{m_i}$, where $I = \bigcup_{i=1}^s I_i$ (throughout, |A| denotes the cardinality of the set A).

In this paper we shall establish necessary and sufficient conditions for an arbitrary set $R \subseteq \prod_{i=1}^s E_{q_i}^{n_i}$ of prescribed cardinality to be (m_1, \ldots, m_s) -dense. Note that when s=1 and $q_1=2$ this problem is equivalent to a problem suggested by Erdös in the language of systems of subsets of a certain set and solved in [2]

and also in [3]. (In [2] the maximum m for which $R \subseteq E_2^n$ is m-dense is called the "density" of R.)

We shall present a solution of the problem for arbitrary s and q_1, \ldots, q_s . It should also be noted that for the case s = 1, when E_q^n is linear n-space over GF(q), a necessary and sufficient condition was proved in [1] for an arbitrary set $R \subseteq E_q^n$ of given cardinality to contain a subspace $E_q^m (1 \le m \le n)$ (such that $|E_q^m| = q^m$).

2.

To clarify the exposition, we first consider the case s = 1. Thus, let $E_q^n = \{x : x = (x^{(1)}, \dots, x^{(n)}), x^{(r)} \in \{0, \dots, q-1\}, r = 1, \dots, n\}, R \subseteq E_q^n, 1 \le m \le n$. Our aim is to find necessary and sufficient conditions for an arbitrary set $R \subseteq E_q^n$ of given cardinality |R| to be m-dense.

We shall say that M has property $A_q(n, m)$, writing $M \in A_q(n, m)$, iff for any $I \subseteq \{1, \ldots, n\}$ such that |I| = m there exists $x \in P^{(I)}(M)$ such that, for any $y \in E_q^n$, if $P^{(I)}(y) = x$, then $y \in M$.

Lemma 2.1. A set $R \subseteq E_q^n$ is not m-dense iff

$$R^c = E_a^n - R \in A_a(n, m) \quad (1 \le m \le n).$$

Proof. A set $R \subseteq E_q^n$ is not m-dense iff for any $I \subseteq \{1, \ldots, n\}$ such that |I| = m there exists $x \in P^{(I)}(\prod_{i=1}^s E_{q_i}^{n_i})$ such that $P^{(I)}(y) \neq x$ for all $y \in R$. It follows that if $P^{(I)}(y) = x$ for some $y \in E_q^n$, then $y \in R^c$ and so $R^c \in A_q(n, m)$.

Now let $H_q(n, m)$ denote any minimal subset of E_q^n such that $H_q(n, m) \in A_q(n, m)$ and put $h_q(n, m) = |H_q(n, m)|$.

Lemma 2.2. For any n and $1 \le m \le n$,

$$h_q(n, m+1) \ge \sum_{r=1}^{n-m} (q-1)^{r-1} h_q(n-r, m).$$
 (1)

Proof. We fix $H_q(n, m+1)$ and construct a set $D^{(r)} \subseteq E_q^{n-r} (r=1, ..., n-m)$ as follows: $x \in D^{(r)}$ iff there exists $\psi^{(r)}(x) \in \{0, ..., q-1\}$ such that for any $y^{(1)}, ..., y^{(r-1)} \in \{0, ..., q-1\}$,

$$(y^{(1)}, \dots, y^{(r-1)}, \psi^{(r)}(x), x) \in H_q(n, m+1).$$
 (2)

1

(Given x, there may be several $\psi^{(r)}(x)$ satisfying (2). In that case we fix one of them arbitrarily.)

We claim that $D^{(r)} \in A_q(n-r, m)$. Indeed, let us fix $r, i_1, \ldots, i_m (r < i_1 < \cdots < i_m \le n)$ arbitrarily. Since $H_q(n, m+1) \in A_q(n, m+1)$, there exist

$$x^{(r)}, x^{(i_1)}, \ldots, x^{(i_m)} \in \{0, \ldots, q-1\}$$

such that, for any $y = (y^{(1)}, \ldots, y^{(n)}) \in E_q^n$, if

$$y^{(r)} = x^{(r)}, y^{(i_1)} = x^{(i_1)}, \ldots, y^{(i_m)} = x^{(i_m)},$$

then $y \in H_q(n, m+1)$. Consequently, by the definition of $D^{(r)}$, we have for any $z = (z^{(1)}, \ldots, z^{(n-r)})$ with $z^{(i_r-r)} = x^{(i_r)}(t=1, \ldots, m)$ that $z \in D^{(r)}$. Since $i_1 < i_2 < \cdots < i_m$ were chosen arbitrarily, we obtain $D^{(r)} \in A_q(n-r, m)$ and

$$|D^{(r)}| \ge h_a(n-r, m). \tag{3}$$

Now let $T^{(r)}(r=1,\ldots,n-m)$ denote the set of all vectors $(y^{(1)},\ldots,y^{(r-1)},\psi^{(r)}(x),x)$, where $x\in D^{(r)}$, and in addition

$$y^{(r-1)} \neq \psi^{(r-1)}(\psi^{(r)}(x), x),$$
 (4a)

if $(\psi^{(r)}(x), x) \in D^{(r-1)}$, and

$$y^{(i)} \neq \psi^{(i)}(y^{(i+1)}, \dots, y^{(r-1)}, \psi^{(r)}(x), x) \quad (i = r-2, \dots, 1)$$
 (4b)

if $(y^{(i+1)}, \ldots, y^{(r-1)}, \psi^{(r)}(x), x) \in D^{(i)}$. Then, by the definition of $T^{(r)}$,

$$T^{(i)} \cap T^{(j)} = \emptyset \tag{5}$$

(where \emptyset is the empty set), and since $T^{(r)} \subseteq H_q(n, m+1)$ $(r=1, \ldots, n-m)$,

$$\bigcup_{r=1}^{n-m} T^{(r)} \subseteq H_q(n, m+1). \tag{6}$$

By the definition of $T^{(r)}$ and $D^{(r)}$, it follows from (3), (4a and b) that

$$|T^{(r)}| \ge |D^{(r)}|(q-1)^{r-1} \ge (q-1)^{r-1}h_q(n-r,m). \tag{7}$$

In combination with (5) and (6), this inequality yields (1) and proves Lemma 2.2.

As will follow from Theorem 2.4(i) below, equality holds in (1) for any n and $1 \le m \le n$.

We shall need the following numerical identity:

Lemma 2.3. For any n and $2 \le m < n$,

$$\sum_{r=1}^{n-m+1} \sum_{t=0}^{m-2} (q-1)^{n+t-1} \binom{n-r}{t} = \sum_{j=0}^{m-1} (q-1)^{n-j} \binom{n}{j} - q^{m-1} (q-1)^{n-m+1}.$$
 (8)

Proof. Setting i = n - r, j = t + 1, we have

$$\begin{split} \sum_{r=1}^{n-m+1} \sum_{t=0}^{m-2} (q-1)^{n-t-1} \binom{n-r}{t} &= \sum_{t=0}^{m-2} (q-1)^{n-t-1} \sum_{i=m-1}^{n-1} \binom{i}{t} \\ &= \sum_{t=0}^{m-2} (q-1)^{n-t-1} \binom{n-1}{t} \binom{i}{t} - \sum_{i=t}^{m-2} \binom{i}{t} \binom{i}{t} \\ &= \sum_{j=0}^{m-1} (q-1)^{n-j} \binom{n}{j} - (q-1)^{n-m+1} \sum_{j=0}^{m-1} (q-1)^{m-j-1} \binom{m-1}{j} \\ &= \sum_{j=0}^{m-1} (q-1)^{n-j} \binom{n}{j} - q^{m-1} (q-1)^{n-m+1}. \end{split}$$

Theorem 2.4. (i) For any t such that

$$t \leq \sum_{j=0}^{m-1} (q-1)^{n-j} \binom{n}{j} \tag{9}$$

there exists $R \subseteq E_q^n$ such that |R| = t and R is not m-dense.

(ii) If $R \subseteq E_q^n$ and

$$|R| > \sum_{j=0}^{m-1} (q-1)^{n-j} {n \choose j},$$
 (10)

then R is m-dense.

Proof. (i) We construct R as follows. Let $S_q(n, n-m)$ be the sphere in E_q^n of radius n-m in the Hamming metric, i.e., the set of q-ary n-vectors with at most n-m nonzero components. Then for any $y \in S_q^c(n, n-m) = E_q^n - S_q(n, n-m)$ the number of zero components in q is at most m-1, and so $S_q^c(n, n-m)$ is not m-dense. Since

$$|S_q^c(n, n-m)| = q^n - \sum_{j=0}^{n-m} (q-1)^{n-j} {n \choose j}$$

it follows that for any t satisfying (9) there exists $R \subseteq S_q^c(n, n-m)$ such that |R| = t and R is not m-dense.

(ii) Suppose that (10) is true but R is not m-dense. Then by Lemma 2.1, $R^c \in A_q(n, m)$ and by Lemma 2.2

$$|R^c| \ge h_q(n, m) \ge \sum_{r=1}^{n-m+1} (q-1)^{r-1} h_q(n-r, m-1).$$
 (11)

We now show by induction on m that (11) implies

$$h_q(n, m) \ge q^n - \sum_{j=0}^{m-1} (q-1)^{n-j} \binom{n}{j}.$$
 (12)

* •

Since $|R^c| \ge h_q(n, m)$, this will contradict (10), implying that R must be m-dense. Indeed, for m = 1, we have $h_q(n-r, 0) = q^{n-r}$ and from (11) we get

$$h_q(n, 1) \ge \sum_{r=1}^n (q-1)^{r-1} q^{n-r} = q^n - (q-1)^n.$$

Thus (12) holds for m = 1 for all $n \ge 1$. Let (12) holds for $m - 1 (m \ge 2)$ and all

 $n \ge m$. Then by (11), (12), using Lemma 2.3, we obtain

$$\begin{split} h_{q}(n,m) & \geqslant \sum_{r=1}^{n-m+1} \left(q^{n-r} (q-1)^{r-1} - \sum_{j=0}^{m-2} (q-1)^{n-j-1} \binom{n-r}{j} \right) \\ & = q^{n} - q^{m-1} (q-1)^{n-m+1} - \sum_{r=1}^{n-m+1} \sum_{j=0}^{m-2} (q-1)^{n-j-1} \binom{n-r}{j} \\ & = q^{n} - \sum_{j=0}^{m-1} (q-1)^{n-j} \binom{n}{j}. \end{split}$$

This proves (12) and completes the proof of part (ii).

Theorem 2.4 yields the following exact formula for the function $h_q(n, m)$:

$$h_q(n, m) = q^n - \sum_{j=0}^{m-1} (q-1)^{n-j} \binom{n}{j} = \sum_{j=0}^{n-m} (q-1)^j \binom{n}{j}. \tag{13}$$

Remark 2.5. It follows from the proof of Theorem 2.4 that $S_q(n, n-m)$ (the sphere of radius n-m in the Hamming metric) is a minimal set with property $A_q(n, m)$, and $S_q^c(n, m) \subseteq E_q^n$ is a maximal set such that $S_q^c(n, m)$ is not m-dense. However, $S_q(n, m)$ is not the only set with these extremal properties. For example, for q = 2, m = 1, the set $\{(0, \ldots, 0), (0, \ldots, 0, 1), (0, \ldots, 0, 1, 1), \ldots, (1, \ldots, 1)\}$ has the same properties.

Theorem 2.6. Let R be the set of infinite-dimensional q-ary vectors. Then, either R is an m-dense set for any m or there exists M such that for any m > M and any $I = \{i_1, \ldots, i_m\}$ $(i_1 < i_2 < \cdots < i_m)$

$$|P^{(I)}(R)| \le \sum_{j=0}^{M} (q-1)^{m-j} {m \choose j}.$$
 (14)

Proof. If there exists m such that R is not m-dense, let M denote the largest m such that R is m-dense. Then if

$$|P^{(t)}(R)| \le \sum_{j=0}^{M} (q-1)^{m-j} {m \choose j}$$

it follows from Theorem 2.4 that $P^{(I)}(R)$ is (M+1)-dense, so that R is (M+1)-dense, contradicting the choice of M.

3.

We now consider the case s > 1. In this section we shall establish necessary and sufficient conditions for an arbitrary $R \subseteq \prod_{i=1}^{s} E_{q_i}^{n_i}$ of given cardinality to be (m_1, \ldots, m_s) -dense $(1 \le m_i \le n_i, i = 1, \ldots, s)$.

As before, let

$$J_i = \left\{ \sum_{t=0}^{i-1} n_t + 1, \dots, \sum_{t=0}^{i} n_t \right\} \quad (n_0 = 0, n_1 \ge 1, \dots, n_s \ge 1, i = 1, \dots, s).$$

Let $M \subseteq E$. We shall write $M \in A_{q_1, \ldots, q_s}(n_1, \ldots, n_s; m_1, \ldots, m_s)$ iff, for any I_1, \ldots, I_s such that $I_i \subseteq J_i$ and $|I_i| = m_i (i = 1, \ldots, s)$, there exists $x \in P^{(I)}(M)(I = \bigcup_{i=1}^s I_i)$ such that for any $y \in \prod_{i=1}^s E_{q_i}^{n_i}$, if $P^{(I)}(y) = x$, then $y \in M$.

Let $H_{q_1,\ldots,q_s}(n_1,\ldots,n_s;m_1,\ldots,m_s)$ denote any minimal subset of $\prod_{i=1}^s E_{q_i}^{n_i}$ such that

 $H_{q_1,\ldots,q_s}(n_1,\ldots,n_s\,;\,m_1,\ldots,m_s)\in A_{q_1,\ldots,q_s}(n_1,\ldots,n_s\,;\,m_1,\ldots,m_s),$ and put

$$h_{q_1,\ldots,q_s}(n_1,\ldots,n_s;m_1,\ldots,m_s)=|H_{q_1,\ldots,q_s}(n_1,\ldots,n_s;m_1,\ldots,m_s)|$$

Lemma 3.1. For any q_i , n_i , $1 \le m_i \le n_i (i = 1, ..., s)$,

$$h_{q_1,\ldots,q_s}(n_1,\ldots,n_s;m_1+1,m_2,\ldots,m_s)$$

$$\geq \sum_{r=1}^{n_1-m_1} (q_1-1)^{r-1} h_{q_1,\ldots,q_s}(n_1-r,n_2,\ldots,n_s;m_1,\ldots,m_s). \quad (15)$$

Proof. We fix $H_{q_1,\ldots,q_s}(n_1,\ldots,n_s;m_1+1,m_2,\ldots,m_s)$ and construct

$$D^{(r)} \subseteq E_{q_1}^{n_1-r} \times \prod_{i=2}^s E_{q_i}^{n_i} \quad (r=1,\ldots,n_1-m_1)$$

as follows: $x \in D^{(r)}$ iff there exists $\psi^{(r)}(x) \in \{0, ..., q_1 - 1\}$ such that for any $y^{(1)}, ..., y^{(r-1)} \in \{0, ..., q_1 - 1\}$

$$(y^{(1)},\ldots,y^{(r-1)};\psi^{(r)}(x),x)\in H_{q_1,\ldots,q_s}(n_1,\ldots,n_s;m_1+1,\ldots,m_s).$$

Then, as in the proof of Lemma 2.2, we can easily see that $D^{(r)} \in A_{q_1,\ldots,q_s}(n_1-r,n_2,\ldots,n_s;m_1,\ldots,m_s)$. Therefore,

$$|D^{(r)}| \ge h_{q_1,\ldots,q_s}(n_1-r,n_2,\ldots,n_s;m_1,\ldots,m_s).$$

Proceeding by analogy with (4), we introduce sets $T^{(r)}(r=1,\ldots,n_1-m_1)$

$$\left(T^{(i)} \cap T^{(j)} = \emptyset, \bigcup_{r=1}^{n_1-m_1} T^{(r)} \subseteq H_{a_1,\ldots,a_s}(n_1,\ldots,n_s; m_1+1, m_2,\ldots,m_s)\right).$$

Then

$$|T^{(r)}| \ge |D^{(r)}|(q_1-1)^{r-1}$$

and

$$h_{q_1,\ldots,q_s}(n_1,\ldots,n_s; m_1+1,m_2,\ldots,m_s) \ge \sum_{r=1}^{n_1-m_1} (q_1-1)^{r-1} |D^{(r)}|$$

$$\ge \sum_{r=1}^{n_1-m_1} (q_1-1)^{r-1} h_{q_1,\ldots,q_s}(n_1-r,n_2,\ldots,n_s; m_1,\ldots,m_s).$$

Theorem 3.2. (i) For any t such that

$$t \leq \prod_{i=1}^{s} q_i^{n_i} - \prod_{i=1}^{s} \sum_{j=0}^{n_i - m_i} (q_i - 1)^j \binom{n_i}{j}$$
 (16)

there exists $R \subseteq \prod_{i=1}^s E_{q_i}^{n_i}$ such that |R| = t and R is not (m_1, \ldots, m_s) -dense $(1 \le m_i \le n_i; i = 1, \ldots, s)$.

(ii) If $R \subseteq \prod_{i=1}^s E_{q_i}^{n_i}$ and

$$|R| > \prod_{i=1}^{s} q_i^{n_i} - \prod_{i=1}^{s} \sum_{j=0}^{n_i - m_i} (q_i - 1)^j \binom{n_i}{j}, \tag{17}$$

then R is (m_1, \ldots, m_s) -dense.

Proof. (i) Let $S_{q_i}(n_i, n_i - m_i)$ be the sphere of radius $n_i - m_i$ in $E_{q_i}^{n_i}$ in the Hamming metric and $S_q(n, n - m) = \prod_{i=1}^s S_{q_i}(n_i, n_i - m_i)$. Then if

$$S_q^c(n, n-m) = \prod_{i=1}^s E_{q_i}^{n_i} - \prod_{i=1}^s S_{q_i}(n_i, n_i - m_i)$$

we see, as in the proof of part (i) of Theorem 2.4, that $S_q^c(n, n-m)$ is not (m_1, \ldots, m_s) -dense. But

$$|S_q^c(n, n-m)| = \prod_{i=1}^s q_i^{n_i} - \prod_{i=1}^s \sum_{j=0}^{n_i-m_i} (q_i-1)^j \binom{n_i}{j}.$$

Therefore, for any t satisfying (16), there exists $R \subseteq S_q^c(n, n-m)$ such that |R| = t and R is not (m_1, \ldots, m_s) -dense.

(ii) Suppose that R is not (m_1, \ldots, m_s) -dense. Then by the definition of $A_{q_1, \ldots, q_s}(n_1, \ldots, n_s; m_1, \ldots, m_s)$, we see as in Lemma 2.1, that $R^c \in A_{q_1, \ldots, q_s}(n_1, \ldots, n_s; m_1, \ldots, m_s)$ and by Lemma 3.1.

$$|R^{c}| \ge h_{q_{1}, \dots, q_{s}}(n_{1}, \dots, n_{s}; m_{1}, \dots, m_{s})$$

$$\ge \sum_{r=1}^{n_{1}-m_{1}+1} (q_{1}-1)^{r-1} h_{q_{1}, \dots, q_{s}}(n_{1}-r, n_{2}, \dots, n_{s}; m_{1}-1, m_{2}, \dots, m_{s}). \quad (18)$$

We now show that (18) implies

$$h_{q_1,\ldots,q_s}(n_1,\ldots,n_s;m_1,\ldots,m_s) \ge \prod_{i=1}^s h_{q_i}(n_i,m_i).$$
 (19)

In view of (13), it will follow from (19) that

$$h_{q_1,\ldots,q_s}(n_1,\ldots,n_s;m_1,\ldots,m_s) \ge \prod_{i=1}^s \sum_{j=0}^{n_i-m_i} (q_i-1)^j \binom{n_i}{j}.$$
 (20)

Since $|R^c| \ge h_{q_1, \ldots, q_s}(n_1, \ldots, n_s; m_1, \ldots, m_s)$, inequality (20) contradicts (17) and so R must be (m_1, \ldots, m_s) -dense.

It remains only to prove inequality (19). We first observe that

$$h_{q_1,\ldots,q_s}(n_1,\ldots,n_s;0,\ldots,0) = \prod_{i=1}^s q_i^{n_i} = \prod_{i=1}^s h_{q_i}(n_i,0).$$
 (21)

Thus (19) is true for all n_1, \ldots, n_s when $m_1 = m_2 = \cdots = m_s = 0$.

Suppose now that (19) is true for all n_1, \ldots, n_s and some $m_1 - 1, m_2, \ldots, m_s$ $(m_1 \ge 1)$. We claim that then (19) is true for all n_1, \ldots, n_s and m_1, m_2, \ldots, m_s . It follows from Theorem 2.4 that

$$h_{q_i}(n_i, m_i) = \sum_{r=1}^{n_i + m_i + 1} (q_i - 1)^{r-1} h_{q_i}(n_i - r, m_i - 1).$$
 (22)

Then, by (18), (19) and (22), we have

$$h_{q_1,\ldots,q_s}(n_1,\ldots,n_s,m_1,\ldots,m_s)$$

$$\geq \sum_{r=1}^{n_1-m_1+1} (q_1-1)^{r-1} h_{q_1}(n_1-r,m_1-1) \prod_{i=2}^s h_{q_i}(n_i,m_i) = \prod_{i=1}^s h_{q_i}(n_i,m_i). \quad (23)$$

We have thus proved (19) for arbitrary m_1 when $m_2 = \cdots = m_2 = 0$. But it follows from the definition of $h_{q_1, \ldots, q_s}(n_1, \ldots, n_s; m_1, \ldots, m_s)$ that

$$h_{q_1, \ldots, q_s}(n_1, \ldots, n_s; m_1, \ldots, m_s)$$

$$= h_{q_{\sigma(1)}, \ldots, q_{\sigma(s)}}(n_{\sigma(1)}, \ldots, n_{\sigma(s)}; m_{\sigma(1)}, \ldots, m_{\sigma(s)})$$

where $(\sigma(1), \ldots, \sigma(s))$ is an arbitrary permutation of $1, \ldots, s$. Therefore, interchanging the indices 1 and 2 and using (18), (22), we prove (19) for arbitrary m_1, m_2 when $m_3 = \cdots = m_s = 0$, and so on. This completes the proof of part (ii) and of Theorem 3.2.

We note that Theorem 3.2 implies the following formula for $h_{a_1,\ldots,a_s}(n_1,\ldots,n_s;m_1,\ldots,m_s)$:

$$h_{q_1,\ldots,q_s}(n_1,\ldots,n_s; m_1,\ldots,m_s)$$

$$=|S_q(n,n-m)| = \prod_{i=1}^s \sum_{j=0}^{n_i-m_i} (q_i-1)^j \binom{n_i}{j}.$$
(24)

References

^[1] M.G. Karpovsky and V.D. Milman, On subspaces contained in subsets of finite homogeneous spaces, Discrete Math. 22 (1978) 273–281.

^[2] N. Sauer, On the density of families of sets, J. Combinatorial Theory (13) (1972) 145-147.

^[3] S. Shelah, A combinatorial problem; Stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1) (1972).