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On the Weight Distribution of Binary Linear Codes 
MARK G. KARE’OVSKY 

Abstract-Let V be a binary linear (n,k)-code defined by a check 
matrixHwithcohmmsh,,~~~,h,,,andleth(x)=l ifxE(h,;..,h,),and 
h(x)=0 if x@{h,;.. ,h,}. A combinatorial argument relates the Walsh 
transform of h(x) with the weight distribution A(i) of the code V for small 
i(i< 7). This leads to another proof of the Pless ith power moment 
identities for i < 7. This relation also provides a simple method for comput- 
ing the weight distribution A(i) for small i. The implementation of this 
method requires at most (n-k+ 1)2”-k additions and subtractions, 5. 
2”-k mnltiplications, and 2”-k memory cells. The method may be very 
effective if there is an analytic expression for the characteristic Boolean 
function h(x). This situation will be illustrated by several examples. 

I. INTRODUCTION 

Suppose that the binary linear (n,k)-code V is defined by its 
(n-k) X n check matrix H with columns hi; . * ,h,,, so that x E V 
if and only if Hx = 0. Our code has a minimum distance at least 
d if h,,@ . . -CBhrdml#O for every I,<r,<... <r,_,<n, where 
the symbol @  stands for componentwise addition mod 2 of 
binary vectors. Here we assume d > 2, and so h,#O, and h,+ 
for r#j. 

We denote by A(i) the number of code vectors of weight i 
which belong to our code (A(O)=l, A(l)=O, A(2)=0). The 
problem of determining A(i) has been the subject of intensive 
study (see [ l]-[6]). 
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Let h(x) be the characteristic function for the set {h,, . . . ,h,}, 
I.e., 

Then h(x) is a Boolean functionA of n - k arguments 
x(I), . . . ,x(“-~). The Walsh transform h(w) of h(x) may be de- 
fined by the formula 

44 = ; h(x)wdx), (1) 

where w = (w(l), a. . , w(“-~)) is any binary vector with n - k com- 
ponents and 

n-k 

W@(X) = (- 1) ,z, X(‘)w(‘). (2) 
All the classical properties of the Fourier transform, such as 
linearity, translation of arguments, the convolution theorem, the 
theorems of Plancherel, Poisson, Wiener and Khinchin, etc., 
apply to the Walsh transform [7]. 

In this paper w,e shall establish the connections between the 
Walsh transform h(o), as defined in (l), and the weight enumer- 
ators A(i) (i < 7) by using combinatorial arguments. This will 
provide us with another proof of the Pless ith power moment 
identities [3] for i< 7 and with a method for computing the 
weight enumerators A(i) for small i (i = 3, 4, 5, 6). These A(i) are 
very important if we are trying to estimate the error-detecting or 
error-correcting capability of a code with a small code distance 
when channel errors are independent. 

For an arbitrary binary linear (n, k)-code this method needs at 
most (n - k + 1)2”-k additions and subtractions, 5-2”-k multi- 
plications, and 2”-k memory cells. Since the complexity of 
computations depends only on n-k, we may use this method 
for the important practical case when n and k are large but n - k 
is comparatively small. This method may be very effective also if 
we have an analytic expression for the characteristic Boolean 
function h(x). This situation will be illustrated by several exam- 
ples in Section IV. 

II. WEIGHT DISTRIBUTION OF BINARY LINEAR CODES 

Let V be a binary linear (n,k)-code defined by its check 
matrix H with columns hi; . . ,h,, and let Ci be the number of 
i-tuples of (not necessarily distinct) binary vectors from 
{h,,. *. , h,} such that for every i-tuple (h,,; . . ,h,,) we have 

1) h,,@ .. . @hri=O, and 
2) there exist (u,PE{~;.. ,i) such that h,, = h,@ and (Y #fi. 

(Note that any rearrangement of an i-tuple counts as a 
different i-tuple.) 

Theorem I: For any binary (n, k)-code with check matrix 
H=(h,;.. , h,), the weight enumerator is given by 

A(i)=~(2-(Ok)~Xi(~)-Cj), fori=3;*.,n, (3) 

where L’(o) is the ith power of L(U). 

Proof Let & be the number of i-tuples (h,,,. + * ,hJ of not 
necessarily distinct vectors such that 

6 h =O. 
j=* ‘, 

Then, by definition of A(i) and Ci, we have 

A(i)= i(Si- Ci). (4) 

0018-9448/79/0100-0105$00.75 01979 IEEE 
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Since, from (2), 

W,(x) W,(y)= WJX@Y) 
and 

we have from (1) 

P(w) = 2 h(q) * * * II W,(x,cB . . * @Xi) 
X,,..‘,X, 

and 

z &,4J)=2”-k x h(x,)- . * II( (5) 
x,cTs.. @x,=0 

By definitions of k(x) and Si it follows from (5) that 

q=2-(“-k)x Li(o), (6) w 
and from (4) and (6) we obtain (3). This completes the proof. 

We note that in order to compute I;(o) it is expedient to use 
the algorithm of *the fast Walsh transform. In this case the 
computation of h(w) requires only (n- k)Tpk additions and 
subtractions and 2”-k memory cells [7], [8]. 

III. COMPUTATION OF A(3), A(4), A(5), A(6) AND CONNECTION 
WITH THE PLESS-MACWILLIAMS IDENTITIES 

It follows from Theorem 1 that the problem of determining 
the weight distribution may be reduced to the computation of Ci* 
We shall now show that for small i (i=3, 4, 5, 6) this computa- 
tion may be carried out by simple combinatorial methods. 

Corollary I: For any linear (n,k)-code with check matrix 
H=(h,,* * * , h,) and with minimum distance d > 2, 

A(3)= ;2+-9 i3(w), (7) 

A(4)= $(2-@-i? h.4(~)-n(3n-2)), (8) 

A(5)= &(2-‘“-k); d’(w)-60A(3)(n-2)), (9) 

A(6)= &(2-(.-k)x R(w)-(n+15n(n-1)’ 

+ 120&4)(3.$. (10) 

Proof Letf(d) be the number of distinct components in a 
vector d==(d,,~~.,dJ, where dl,...,d,~{hl,,‘.,h}, and define 
D,(i) by 

D,(i)- d-(d,,~~.,~)lj~,4-0;d~,~~.,d~~{h~,.~~,h,}; 
( 

f(d)=r), r=l,***,i. (11) 

Then, by definition of C, and S,, we have 

St = r$l I W)l G = $1 WOI (12) 

where ID,(i)1 is the cardinality of D,(i). 
1) If i-3, then since h,#O, kr#k, (r#j; rj= 1,s~ * ,n), we 

have 

lD1(3)1=0, lD2(3)l=0, and C3-0. 
2) If i=4, then 

1&(4)l=n, /D,(4)1=;(;)+1), 

P3(4)1 =Q and C4=n(3n-2). 

3) For i=5 we have 

/D,(5)] =O, [D,(5)] -0, ID,(S)I=( @3)*3!, 

lD,(5)1=( i)A(3)3!(n-3), and Cs=60A(3)(n-2). 

4) For i=6 we have 

lW3l= n, lP2(6)l=(;)w~ 

lD3(6)l=(~)n(n-l)(n-2), 

lD4(6)1= f( 3. 4!4,4(4) = 120A(4).4, 

]0,(6)]=(~)4!,4(4)(n-4)=12OA(4)(3n-12), and 

c,= lwa +. . * +lw6)1 
=n+15n(n-1)2+120A(4)(3n-8). 

Expressions (7)-(10) may now be obtained from (4) and (6), 
completing the proof. 

If the all-ones vector belongs to our (n, k)-code, then 

A(i)=A(n-i), i A(i)=2k, 
i=O 

and by (7)-(10) we may immediately obtain the weight distribu- 
tion {,4(i)} (i=O; . . ,n) for every n < 16. 

Next we shall discuss the connections between Theorem 1, 
Corollary 1, and the classical Pless-MacWilliams identities [2], 
131. 

Let B(i) denote the number of vectors of weight i in the dual 
code, and let the Pless rth power moment identity [3] (r- 
Ql,* * . ) be expressed as follows: 

n r 
x i’B(i)=Q,(O)+ x A(i)Q,(i). (13) 
i-0 i-3 

Moreover, let 
Cr=S,-r!A(r). (14) 

Then we shall show that for r < 7 a(i) may be generated by 
i , * * * Qr- ,(i), and C Thus the Pless power moment identi- 

$ii {13) ior r <7 may $e obtained recursively from (7)-(10). 
Alternatively, it will be seen that expressions for C, may be 
obtained from the Pless-MacWilliams identities. This computa- 
tion of C,, however, becomes cumbersome for r > 5. 

We note that L(U), as given in (l), is equal to n -2 wt (oH), 
where wt(x) denotes the weight of the vector x, and wH is the 
vector of length n obtained by multiplying the parity check 
matrix iY by the row vector o (thus oH belongs to the dual 
code). It follows that Si, as defined in (6), is equal to 

S,-2-(nmk),~oB(j)(n-2j)i. (15) 

Thus we have from (13)-(15), 

C,+ r!A(r)=2-(“-k) i B(i) i (- l)‘nl-IT( i)i’ 
i-0 r-0 

i--l 
,2-(n-k) ,x0(- l)$f--Qf ;) 

m 

Q,(O)+ ,i3A(OQt(i) ‘m 

+2-(n-k)+‘( - l)rigoirB(i), 
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and 

2 i’B(i) =( - 1)‘2”-k-‘C, 
i=O 

r-l 
+ tzo( - l)f--1+121-%-1( ;) 

. QtCO>+ ,i3ACi)Qt(i) 
( 1 

+( - l)‘r!2”-k-rA(r). 06) 

For any (n, k)-code, it follows from (6), (l), (2), h(0, . . * ,0) = 0, 
and the Parseval theorem for the Walsh transform, that 

so= 1, s,=o, S2=n, (17) 

and, since A(O)= 1 and A(l)= A(2) =O, we conclude from (6)- 
(10), (14), and (17), that 

co= c1=0, C2=n, c,=o, 
C4= n(3n - 2), C,=60A(3)(n-2), 

c6=n+15n(n-1)*+120A(4)(3n-8). (1’3) 

The Pless rth power moment identities for r =0, 1; . . ,6 follow 
now immediately from (16) and (18). Alternatively, we have by 
the MacWilliams identities 

A(i)=2-(“-k) i B(j)P,(j), (1% 
j=o 

where Pi(j) is a (Krawtchouk) polynomial of degree i in the 
variable j. Thus (15) and (19) imply that 

Si-2-(n-k) 5 B(j)((n-2j)‘-i!P,(j)) . (20) 

Pi(j)= s*o(-l)s(~)( r-i)= t*opi,,j: 

we have 

and 
Pj,i=(- l)‘(i!)-‘2’ 

Pi,i-l=(- l)i-‘((i- l)!)-‘n2’-’ 

and the degree of the polynomial (n - 2j)‘- i! Pi(j) is at most 
i - 2. Consequently we may obtain formulas (7)-( 10) from (20) 
by the Pless rth power moment identities for r =O; . . ,4. 

We note also that Corollary 1 generates necessary and 
sufficient conditions that the given (n,k)-code V be double- or 
triple-error-correcting. 

Corollary 2: Let V be a linear (n, k)-code with distance d(V) 
and with check matrix H= (hi,. . . ,h,,). Then 1) d(V) > 5 if and 
only if 

so= 1, s, =o, S2=n, s,=o, SS=n(3n-2); 

(21) 
and 2) d(V) > 7 if and only if (21) is satisfied and 

s,=o, s6=n+ 15n(n-1)2, (22) 

where Si is the ith power-symmetric function of K(U), defined by 
(6)6)T;)proof of Corollary 2 follows immediately from (7)-(10) 

For any function f(x(‘), . . . ,x(“-~)) of binary arguments, the 
convolution theorem for the Walsh transform [7] states that 
f*f=2”-kf^(where (f*fi(x)=Z,f(7)f(x@~)) if and only if f is a 
Boolean function. Thus, for example, Corollary 2 implies that 
for the construction of an (n,k)-code V with d(V) > 7 it is 
sufficient to find h(w) for all w such that h*h =2n-kh^ and the 
power symmetric functions Si (i=O,* . . ,6) satisfy (21) and (22). 

It should be pointed out that if we use the fast Walsh trans- 
form to compute h(w), then the computation of A(i) (i=3, 4, 5, 
6) using (7)-(10) 2 re uires at most (n-k + 1)2”-k additions and 
subtractions, 5.2”- multiplications, and 2”-k memory cells. 
This method of computation of A(i) (i= 3, 4, 5, 6) may be 
simpler for codes with a small distance than the well-known 
$eeytive of first computing the weight distribution. {B(j)} 

. . , n) of the dual code and then applying the 
MacWilliams identities (19). Indeed, the computation of wt(wH) 
for all w requires at least n.2”-k additions and, moreover, the 
computation of A(i) (i=3, 4, 5, 6) from B(j) (j=3;..,n) 
further requires at least 4n multiplications and 4n additions. We 
note also that if we have an analytic expression for the char- 
acteristic Boolean function h(x) =Ah(~(‘),. . . ,x(“-~)) of our code, 
then sometimes we may find h(o) and A(i) (i=3, 4, 5, 6) 
immediately (without application of the algorithm of the fast 
Walsh transform). This situation will be illustrated by several 
examples in the next section. Tables of h(w) for a large number 
of classes of Boolean functions h(x) may be found in the 
monograph [7]. 

IV. EXAMPLES 

Example 1: As the first example we consider the well-known 
Hamming (n, k)-codes with code distance d = 3, n = 2* - 1, and 
k = 2* - a - 1. For these codes 

h(x)= (?I x=o &4= -1 1 > 2”-k- 1, o=o 
XfO, o#O, 

and &,,&‘(~)=(2”-~-lI)i+(- l)i(2n-k- 1). By (7)-(10) we have 

1 
A(3)=31n(n-l), (23) 

1 A(4)= ,?n(n2-4n+3), (24) 

1 A(5)= srn(n3- lln2+31n-21) (25) 

A(6)= $n(n4- 16n3+86n2- 176n+ 105). (26) 

Example 2: We consider extended Hamming (n,k)-codes 
with n = 2*, k = 2” - (Y - 1. The check matrix 

0 
0 

H= : H’ 

0 
1 l***l 

of this code may be obtained by adding a row of ones to the 
check matrix H’ of the Hamming (2” - 1,2* - LY - I)-code. It is 
evident that for these codes A(2i+ l)=O, for all i. 

The characteristic function h(x) is defined by the formula 
h(x(‘), . . . ,x(“-‘+x(‘)a nus 

~(w)=h^(o(‘);..,w(“))= 
o=(O; . * ,O) 

-n;, o=(l,O ,..., 0) 
0, otherwise, 

zh^‘(w)=(l+(-I)‘)n’, 
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and by (8) and (10) we have 
1 A(4)= mn(n2-3n+2), 

A(6)= $n(n4- 15n3+70n2- 120n+64). 

(27) 

(28) 

We note that formulas (23)-(26) and (27) and (28) correspond to 
the more general and well-known results about weight distribu- 
tion of Hamming codes and extended Hamming codes (see [ 11). 

Example 3: Consider the (n, k)-codes with n = 2* - 2”-‘, k = 
2a-2a-‘La (t=2 )... ,(u), and d= 3, obtained by deleting from 
the check matrix for the 2* - 1,2* - cr - I)-Hamming code all 
columns h. = (h!‘) . . . \ ,hj”-k) for which hj(l)=h,W= a. - =h$‘)r:O 
(j= 1;. . ,ia-‘- i). Thus we have 

h(x) = j’, x@, 

where the symbol V stands for logical summation, and [7] 

&(w)= -;,-k-t, 

i 

w=(o;“,o); 
w(t+I)=... = 0(“-~)=0 and o+(O;. * ,O); 

0, otherwise. 
Hence 

~,i(w)=ni+(2’-1)(-1)i2i(n-k-‘), 
w 

and by (7)-(10) we have 

A(3)= +n(n-2”-kP’), (29) 

A(4)= -&n(22(“-k)-3n(2”kp’f1)+2), (30) 

A(5)= &n(n-2”-kp’)(n2+22(‘-k-‘)-10n+20), (31) 

A(6)= ~n(n4_2"k-'n3+2'("-k-')nz-230n 

+2‘W-k--t)L5(3n-8) 

.(22(n-k)-3n(2n-k-r+ 1)+2)- 15(n- 1)2- 1). (32) 

Example 4: Consider the (n, k)-codes with n =2a-‘(20L - l), 
k=2”- (2”- l)-2a, and d=3, generated by “nonrepetitive 
,quadratic forms over GF(2)” through 

h(x(‘), . . . ,x(2a))= ‘6 x(i)x(t) , (33) 
i,t= 1 

in which each of the arguments x@) (s = 1,. . . ,2a) appears 
exactly once. For the nonrepetitive quadratic form (33) we have 
171 

I 

2ap’(2a-l), w=(O;..,O), 
S(o)= T-1, h(w)= 1, 

-2a-1, h(w)=O,w#(O;..,O). 

Hence 

~h^‘(w)=2i’“-“((2”-1)‘+2”-‘(2”-1)+(-1)’2”1(2”+1)), 

and by (7)-(10) we have 

A(3)= $22”-2(2”- 1)(2*-l- I), (34) 

,4(4)= $2”-‘(2”- 1)(2+3-3.2+--22a+3.2a-‘+2), 

(35) 

A(5)=+,22”-2(2”-1)(2a-1-I) 

.(2+2-23~-1-g.22a-1+10.2~--+20), (36) 

A(6)=&(24a-6(2a-1)((2.-1)5+2”+l) 

-(n+15n(n-1)2+120A(4)(3n-8))). (37) 

V. GENERALIZATIONTONONBINARYCODES 

The results of the previous sections may be easily generalized 
to the case of linear codes over GF(q), where q is a prime. TO 
this end we need only make two changes in the basic definitions. 
First, we replace the check matrix H with columns h,; . . ,h, by 
the “extended check matrix” with columns h,, 2h,;.. ,(q- 1) 
.h,;..,h,,, 2h,;.. ,(q - l)h,. (All the multiplications are carried 
out in GF(q).) Second, we replace the Walsh functions w,(x) by 
the characters x,(x) of the group of q-ary vectors (Chrestenson 
functions [7]) 

x,(x) = exp ( 28 .n-k 4 I x x(%(‘) , 
r=l ) 

where x@), o(‘) E { 0, . . . ,q- l}, and i= m. Theorem 1 may 
now be modified to yield 

but in this case,-C, depends on q. 
To compute h(w), it is expedient to use the algorithm of the 

corresponding fast Fourier transform [7], [8], which requires only 
(n - k) qnmk operations and qaPk memory cells. The computa- 
tion of C, for small r may be carried out by the method 
described in the proof of Corollary 1. Thus we have, for exam- 
ple, for ternary (n, k)-codes 

A(3)= :(33(“-*)? R(w)-2n), 

A(4)= &(3-‘“*)c i4(w)- 12n2+6n-36A(3)), 
w 

A(5)= -&(3-(“-*)~ P(w)-40n2+30n 

-3OA(3)(4n:3)-24OA(4)). 

We note also that, analogous to the binary case, the Pless rth 
power moment identities may be obtained if we know C,. for the 
given q and, alternatively, the expressions for C, follow from the 
Pless-MacWilliams identities for linear codes over GF(q). 
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On a (21,11,6) Binary Code 
TAKE0 KANAI AND YAW0 SUGIYAMA, MEMBER, IEEE 

Ahwc-It is shown that the (21,114) binary linear code obtained 
from BCH codes and a single parity check code by consbwtion X is 
equivalent to a difference-set cyclic code. 

Let us consider construction X which has been proposed by 
Sloane, Reddy, and Chen [I]. This scheme provides a new code 
by combining three codes. When applied to BCH codes, the 
parity check matrix H of the new code is given by 

H= /+--$j 

where 

HI i 1 H2 
parity check matrix of BCH code C,(n,,log, M,,d,), 

HI parity check matrix of BCH code C,(n,,log, bM,,d,), H3 [ 1 H4 
nonsingular matrix, 

H4 parity check matrix of C,(n,, log, b, A), 

H parity check matrix of the new code C,(n, + ns, log, 
bM,,min[d,,d2+A]). 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
1 3 21 8 15 7 16 9 13 11 10 18 5 17 4 6 20 2 19 14 12 1 

We use this result without proof. Let the code C, be a (16, 7, 6) 
extended BCH code which is majority-logic decodable [2], let C2 
be a (16, 11,4) extended BCH (or Hamming) code, and let Cs be 
a (54, 2) single parity check code. The parity check matrix H of 
the (21, 11,6) code C, obtained from codes C,, C,, and C, using 
construction X is given by 

One of the reviewers has pointed out that this result can be 
generalized in terms of PG codes and EG codes [3], [4]. A PG 
code can be shortened to obtain an EG code. This fact was 
stated without a formal proof in [3]. 
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H= 

1111111111111111 
1 11 1 1111 

1 11 1 1111 
1 11 1 1111 

1 1 11 1 111 
1111 1111 1111 1111 

1 1 1 1 1 1 1 1 
11 11 11 11 

1 11 11 1 1 1 
11111 

109 

Fig. 1. Parity check matrix of (21, 11, 6) majority-logic decodable code 
obtained by construction X. 

where CI~,(Y~,. . . ,(Y,~ are distinct elements from GF(2’). The 4 X 5 
submatrix A satisfies the restriction that any four of its columns 
are linearly independent. 

We define the following symbols: 

e, ith error bit, 
Si 5 x21 composite parity check matrix which is orthogonal 

on e,, 
S/ 5 X 16 submatrix of Si, 
Sy 5 x 5 submatrix of Si, 
Pi 5 x 10 matrix which generates Si from H. 

With this notation we have the relations 
si=[s;si”] 

and 
Si = P,H. 

As each S/ is a composite parity check matrix for the code C,, 
S: is orthogonal on e, for i= 1,2; . . ,16. Therefore, C, is also 
one-step majority-logic decodable if the weight of each column 
in S,” is one or less for all i, i = 1,2; . * , 11. An example of the 
parity check matrix is shown in Fig. 1. 

Furthermore, this code is seen to be equivalent to the (21, 11, 
6) difference-set cyclic code by applying the following permuta- 
tion of columns from C, to the difference set cyclic code [2]: 
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