Discrete Mathematics 22 (1978) 273-280.
{© North-Holland Publishing Company

ON SUBSPACES CONTAINED IN SUBSETS OF
FINITE HOMOGENEOUS SPACES

M.G. KARPOVSKY and V.D. MILMAN

The Institute for Advanced Studies, The Hebrew Uhniversity, Jernusalem and Department of
Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

Received 22 April 1976
Revised 22 June 1977

ILet E(iDcE{+1)=---< E(n) be a system of finite sets and H(<= H{I+1)<---= Hin) be
a system of groups, where H(k) is a transitive group of automorphisms of E(k). Denote
Gk, E(n))={X < E(n): dh e H(n), h(E(k))= X}, We investigate the following problem: given
n, l=i=sk=n 0<A=<|E(k)|. What is the maximal cardinality L(n, k, A) of a set M< E{n)
such that for VX e G(k, E(n)), |X N M| < A? We shall establish an upper bound for Lin, k, A)
and prove that for some important cases it will coincide with the lower bound for L(n, k, A). We
shall consider the three special cases of our problem: linear spaces, Grassmann spaces, Turan’s
problem. For linear spaces, we obtain the exact formula for the maximal cardinality L{n, k, ¢* —
1) of a subset M in a linear n-space E] over GE(g) such that M does not contain any
k-subspace of E;. We shall consider also some applications of this result.

1. Introduction

Let E({}yc E(I+1)<- - -< E(n) be a system of finite sets and H{(I) = H(l1+1)c
-+ - < H{n) be a system of groups, where FI(k) is a transitive group of automorph-
isms of E(k). Denote G{k, E(n))={X < E(n): 3h e H(n), R{(E(k)) = X}.

We investigate the following problem: given n, 1slsk<sn 0<i=<|E(k)|
({E(k)| is the cardinality of E{k)), what is the maximal cardinality L(n, k, A) of a
set M< E(n) such that for ¥X e G(k, E(n}}, XNMj<A? We shall consider
particularly three special cases of this problem: Inear spaces, (Grassmann spaces,
finite graphs.

(i) For linear spaces, we let E(n)=E;—-0 be a linear n-space over GF(q)
without 0. Let {e;} (i=1,..., n) be some basis in E}, and E; be a linear span of
{e} (i=1,..., k). Then we set E(k)= Ef—0 and H(k)= GL(n, k) is the group of
linear automorphisms such that for Yhe H(k), hie)=e¢ (i=k+1,...,n). For
linear spaces, we are interested in the case I=1, A =¢"—~1 and denote for this
case Lin, k, q“—1)=L.(n, k).

(if} Using the same notations as in (i), let H(k}=GL(n, k) (k=1,...,n) and
E(k)=G(l, EY) be the set of all l-subspaces in E; (Grassmann space). For
Grassmann spaces, we set A =|G(l, E)| and denote L(n, k, |G(!, ES}=L,(n, k,I).
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(ili) Let G, be a complete n-graph with vertices e,,....e, and G (k=
I,...,n) be a complete subgraph of G, with vertices ey, ..., . Then Ek) 1s the
set of edges of G,, H(k) is the group of automorphisms of vertices of G, such that
for Yhe H(k), hie)=¢ (i=k+1,...,n;k=1 ..., n).

For this case, we set I=1 and Li{n k A)+1=fr(n, k, A). We note that
determination of fr(n, k, A) is the well-known problem of Turan and values of
fr{n, k, A) are known only for some special cases [2, 6]. For example, fr(n, 4, 4} is
an open problem [2].

In Section 3, we shall obtain an upper bound for L(n, k, A) for the general case
of homogeneous spaces which will coincide with lower bounds for L(n, k, A) for
linear spaces, Grassmann spaces with { =1 and some cases of Turan’s problem.
Since the case of linear spaces is the most interesting for us, we establish, in
Section 2, the exact value of L (n, k), and consider some corolaries from this
result, Here we use the direct and shorter proof of the upper bound for L, (n, k)

due to the referee of this paper.

We note that the main difference between our problem and analogous
“Ramsey-type” problems (see, e.g. [3]) is that we are looking for elements from
G{k, E(n)) in a given set M < E(n) and not in one of two scts (M and E(n)— M).

2. Subspaces contained in subsets of linear spaces

In this section, we shall obtain the exact formula for the maximal cardinality
L (n, k) of a set M < E3—0 such that M does not contain any Xf;-{J where X 2 1S
a k-subspace of E_.

Theorem 2.1. For 1ssk=n

Lin k)=q"—(q" """ —1}{g-1) "1 (1)

Proof. Lower bound. We fix X2™*** and M c E}—0 such that for VX, < X5 ",
| X NM|<q—1. Then

|M|£q“—(q"_k“—l}{q—l}"l—-l.

Now, let X, be a subspace of maximal dimension such that X;—0c M. If r=k,

then 3X} such that X;c X;NX" "' and this contradicts the choice of M.
Upper bound. We use induction on k. For k=1, the result is trivial as each

X1—0 has to contain an element that is not in M. Suppose, therefore, that

Link-1)<q"-(@"*-D{qg-1) -1
Suppose M contains no X5—0. If M contains no X} '-—0, we are done by
induction. Let, therefore V—0<c M, V is a (k—1)-dimensional subspace of E_.
Write Ef = V+ W. (Direct sum of V and W) For each 1-dimensional subspace T
of W, choose are T—0. Since M contains no X’;“{}, for each ar, there must be a
vr€V and are GF(g)—0 such that vr+aaré M If vrtagr=vptapar,
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Subspaces contained in subsets of finite homogeneous spaces 275

then vp— v =Qypap—0dy, Vr=Vy, apadpr=ardr, 1 =T . Hence, there are
(g" ' —1)(g—1)"" distinct elements vy +eararé M and since 0¢ M, we have (1).
This proof implies the following result.

Corollary 2.2, Let M< E;—0 and M contains X; ' —0.
If
IM|>q"—(g" """ —D(g—-1)"" -1,
then there exists X,’;, such that XE—UE M and Xf;"l EXE.
IftM,cM,c---cM<E?—0, we say that M =(M,,..., M) is an r-flag of
sets and if X¥1c---c X%, we say that XV =(X, ..., X is an r-flag of spaces.
We write X -0c MV if Xs—-0c=M,(i=1,...,7r).

Corolary 2.3. If M =(M,, ..., M) is an r-flag of sets and
IM! = qn _(q“-k‘-"l_ l)(q_ 1}—1 _ 1?
then there exists an r-flag of spaces X = (X5, ..., Xk such that X -0 MY,

The proof follows immediately from Corollary 2.2.

Let E; be a linear infinite-dimensional space over GF(q) consisting of all
the finite sequences Ej={o,,...,a,0,0,...): «,€GF{q); 1=1,...,n; n=
1,2,...), and Ef={oy,...,,0,0,...): a,€GF(q); i=1,...,n} be an n-
dimensional subspace of E_.

Corollary 2.4. If M. E7 is such that 0e M,, and lim, .. y,=1, where y,=
q " |IM.NEY (n=1,2,...), then there exists an infinite-dimensional space E such
that E< M.,

Proof. It is sufficient to prove that there exists a sequence of numbers n, (1, <
n+1) and a sequence of subspaces X< E; (k=1,2,..), such that X<
(M.NEP) and X;< X;*". Then we may put E=J_, X;. We construct {n, } and
{X%} by induction on k. Choose n, such that ¥, >1—(g—1y " +gq ™{g-1)".
Then by Theorem 2.1, there exists X such that X, c(M,N E}:). Suppose we
have found n;<n,<---<m_; and Xic---c X3! such that X, = (M.N EY)
(i=1,...,k—1). Choose nm >m_, from the condition

Yo > 1—q =D +q (g1
and by Theorem 2.1, there exists X such that X} ' < X% and X< (M.NEZ}).
Let us note that no analogue of this corollary for the case of fields R or C is

known though it is of a great interest in functional analysis; while Ramsey
analogues of Theorem 2.1 are well-known for these fields [4, 5].

3. Subspaces contained in snbsets of finite homogeneous spaces

In this section, we investigate L{n, k, A} for the general case of homogeneous
spaces (see Section 1).
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Lemma 3.1. For any Mc E(n) and 1=<t<n

M| 1
B xXnM|. 5
IE(H)l IG(I, E(HD! 1E(ﬂ| XEGEE(H])I | (2)

Prﬁni. In the sum on the right side of (2), each element of M is counted as many
times as there are XeG(t, E(n)) which contain this element, 1e.

|E()|E(n)[™" |G{t, E(n))| times,
We note that left and right sides of (2) are equal 1o the invariant normalized
measure of M < E(n); and (2) follows from uniqueness of this measure on E(n).

Corollary 3.2. For 1<k=<n, 1<) =|E(k)|
L{n, k, A} (A — 1) |[E(n)| |E(k)| . (3)
The proof follows from Lemma 3.1 with t=k.
By N(m, k, A), we denote’ a number of Xe G(k, E(n)) such that for any

Mc E(n) with |M|=m, we have [XNM|=A and we denote u{m, k A)=
N(m, k, \) |G(k, E(n))[™".

Corollary 3.3. For 1=m=<|E(n)|, 1sk=n, 1=A<|E(k)
(E(k)| |JE(m)| 7 m — A + 1)< pu(m, k, Ay<|[E(k)| {E(n)]"'mA ™" (4)

Proof. By definition of u{m, k, A} and (2) with t=k,

Aulm, k, VY<|Gk, Em)[™ ) |XNM|=m|E(k)| |[Em)|™

XeG(k E(n))
<(1—p(m &, A)A—D+Ap(m k) (5)

and (4) follows from (5).
Theorem 3.4. If for some function f(n, k, A)

HE®) | E(k+ 1)1 - - 1| E(n— DHE®)| " f(r, k, AN - - - [[= A, (6)
then

L(n, k, Ay f(n, k,A)—1. 7

(la[ denotes the least integer =a).

Proof. Let Mc E(n) and [M}=f(n, k, ). Then by Lemma 3.1 with t=n-1,
AX* e G(n—1, E(n)) such that

NE{n—1)| |[E(m)} f(n, k, A <|X""' N M. (8)
Next, using (8) and Lemma 3.1 for n—1, M, =X""'NM, t=n-2,AX"*c X"’
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(X" ?e.G{n—2, E(n))) such that

JE(n—2)| |E(n— D[ E(n — )| |E()[ 7 f(n, k, A)[[
SE(m -2 |E(n—1)|7" M| {<|X"2nMf=|X" 2N M.

Continuing this procedure for all ¢ down to =k, we find that IX* e G(k, E(n))
such that

NEGHEG+D[]- - -HE@m =D |[E@) 7 f(n, k, A)- - -[[<]XEN M.

Hence by (6) and definition of L(n, k, A), we have (7).

We note that the upper bound from Theorem 2.1 immediately follows from
Theorem 3.4 in a view of

k_-l u—]_l 1 s
e R e G K| S T

(g=2, iskz=n—1)

For the case (ii) of Grassmann spaces E(n) = G(I, E}) (see Section 1), we have
the following bounds for L (n, k, {).

Corollary 3.5. Forany 1=l<k=n
|G, EP - |G, EF* )<L, (n, k, ) <|G(, EY|— |G, ED|G( EQ|™
(9)
where |G(l, E)|= [, is the g-binomial coefficient,
1—-1 ) )
|G(L EY|= Ll =[] (a'—a')g' —g) " (10}
i=0 '

Proof. Define M= G(l, EJ)— G, E;7*"). Then dim{(X;NE} ™ "} =, for every
Xte Gk, EJ). So there exists X, E; ™", X, c Xk. But then X2 M and we
have the lower bound from (9). Upper bound follows from Corollary 3.2 with
E(k)=G(l, E}) and A =|G(l, E;)|.

The difference between the lower and upper bounds (9) is not very large. For
example, in the case k — o, h — k — e from (10} follows that for a large { and ¢

lim |G EQIIGU EQI™ |G, B3|

B 11 (1-g ") =~exp(—(g—1)7". (A1)

We note also that by the lower bound (%) and the upper bound from Theorem
3.4, we can establish sometimes the exact value for L (n, k, I). For e:_!:ample

L(n, k, 1)=|GQ1, E)|-|G(1, E; N =(¢"—¢" " Ng—1)7". (12)
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We consider now the case (iil) when E(n) is the set of edges of a complete
n-graph (problem of Turan, see Section 1). Turan {6} proved that if n=
clk—D+r(cef0,1,...}, rei0,..., k—2}), then

f-,-(n, k, (;)) =0.5(k— 2k -1y '(n*—r+ (;) +1. (13)

We note here that the exact upper bound for fr(n, k, (5) follows immediately
from Theorem 3.4 since

1G0T 106) G- Cl--6)

(14)

Other examples are given by formulas [4]:
frn, k, [0.25k2)+u)=[0.25n%]+u (u=<[0.25(k + 1)]), (15)
fr(n, &, [0.25k2]+[0.5(k — 1)]) =[0.25 n2}+[0,_5(n ] (k>4 (16

([a] the greatest integer =<a). The exact upper bounds from (15) and (16) also
follow from Theorem 3.4.

We shall give now one more corollary from Theorem 3.4 which may be useful
for determination of fr{n, k, A).

Corollary 3.6. Lef f(n, k, A)=L(n, k, A)+1. For dny 1sssk=n, Q<A =<|E(s)

fin, k, f(k, 5, A))=f(n, 5, A) (17)
and, if for all te{k+1,..., n}

NEG—=1)EW)|™" f(t, s, A =ft—1, 5, A), (18}
then

f(n, k, f(k, s, A\))=f(n, s, A). (19)

Proof. Formula (17) follows from the definition of f(n, k, A). Let M < E(n) and

|M|=f(n, s, A). Then as it was shown in the proof of Theorem 3.4, 3X"*¢
G(k, E(n)) such that

IE(R)| |Ek + D7) - -)|E(n = D] |E®m)| 7 fln, s, D)L - - - [ <[X* N M]|
and in a view of (18)

f(k, s, Ay<<|X* N Mi.
Hence,

f(n, k, f(k, s, A))=<f(n,s, 1)

and by (17) we have (19).
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By Corollary 3.6 with s =4, A =6 and (13) we have, for example,

foln, 5, 9) = fuln, 6, 13)= fr(n, 7,17) = 3" H(n2— 1) + (2’) +1 (20)

where 0<r=<2, n=r{(mod 3).

4. Sufficient conditions for existence of linear error-correcting codes with given
parameters

Let p(x, y) be a metric in Ej. A linear (n, k)-code with base g and distance 4 in
the metric p is defined as a a subspace X, such that min,; x p(a, b)=d.

Theorem 4.1. For any n, k<n, and any Q< E}(0c Q), a sufficient condition for
the existence of an (n, k)-code Xf; with base q, distance d in the metric p, such that
Xic Q, is that

|Q—{a:|all,<d}j=g¢"—{g-1"Hg" """ -1) {lal, =pla O). (21)

-

Proof. A subspace X, is an (n, k)-code with distance d m the metric p Iff
Xin{a:|aj, <d}=0. We therefore set M= Q—{a:0<|al,<d}. Then |M|=
1+|('jI {a:||a|, < d}, and by Theorem 2.1, if {21) holds, there exists an (n, k)-
code X< @ with distance d.

Theorem 4.1 yields sufficient conditions for (n, k)-codes X satisfying con-
straints of the type X*< Q. For example, let Q ={a: |\a|, < d + &}, where p is the
Hamming metric {1].

Corollary 4.2. For any n and k <n, a sufficient condition for the existence of an
(n, k)-code X%, with base q and distance d in the Hamming metric p, such that

- =
,max lal, —lbl) <.

is that

d+E

)3 ( )(q 1) =gq"—(g" """ - Dlg- 1) (22)

=
Proof. Set Q={a:|a|,=d+¢}; then

0—{a:lal, <d)|=Ha: d=<lal, =d+eH= ¥, (7 )a-

i=d

and by Theorem 4.1 there exists an (n, k)-code X = O with distance d, such that
for any a € X;; we have d<lja|, <d+e=

Note that in the case e =n—d the condition {22) is very close to the well-
known Varshamov-Gilbert bound [1].
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Note added in proof

It came to our attention that the upper bound for L,(n, k) also appeared in the
paper by M. Deza and F. Hoffman, TEEE Int. Trans. (July 1977) 517-518.
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