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Fourier Transform over Finite Groups for Error Detection
and Error Correction in Computation Channels

M. G. Karrovssy anp E. Al TRACHTENBERG
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and State University of New York af Dinghamion, N.Y., U.S. A

We consider the methods of errar detection and correction in devices and
programs caleuloting functions f+ G — K where (5 is a fimte group and K 15 a
field. For error detection anid correction we use Jinear rhecks generated by convo-
lutions in the fieid K of the original function f and some checking iderpotent
function §: & -+ [0, 11. For the construction of the optimal checking function &
we use metheds of harmonic analysis over the group (7 in the ficld K. Since
these methods will be the reain toels for the construction of optimal checks, we
consider the algorithms for the fast camputation of IFeurier Fransforms over
the group G in the field K. We solve the problem of crror detecting antl
correcting capability for our methods for tweo important classes of decoding
procedures (memeoryless and memeory-aided decoding) and censider the question
of syndrome computation for these methods, We describe also properfics of ervor
correcting codes generated by cotvolution checks.

l. STATEMENT OF PROBLEM

Development of universal methods for detecting and correcting errors in the
process of calculation of the given function realized with the aid of specific
devices, or with the aid of computer programs is a topical problen, The present
study, devated to a possibie solution of this problem, deals with the detection and
correction of errors in calculation of functions defined over finite groups {commu-
tative and non-commutative), an “‘error’” in this context being defined as cata-
strophic failure of the calculating device, or as an error in the text of the program.

Examples of the devices in question are: blocks of arithmetic units of a
computer, networks whose operation is described by two or many-valued
switching functions, linear control systems over fmite groups (Karpovsky and
Trachtenberg, 1977a), rearrangeable switching networks wlhose outpul depends
on permutation of input terminals (Opferman and Tsao-Wu, 1971), etc. We shall
refer to any device or prograimn calculating the given f as a computation channcl f.

Let f be a function defined over a finite group G of order | G| and {K;},

T

(f = 1,...,m) bec a set of fields, such that Im fC N,y K; (Im f is the range
of f).
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336 EARPOVSKY AND HTRAEHTENBERG

For detecting and COrrecting errors in channel J» we shall yse systems of

linear checks in the fields X:
| Co, ®f 2 Y S D)t © I = g 1) + A, (K)), (1)
{e&r -

forallte G, J = L., 1. Where ® is the operation of group convolution, () is
the group operation, {~! is the inverse of {eG,

Methods of error detection and error correction in computation channels by
means of linear checks of type (1) were considered by Karpovsky {(1977a) for
the case when G'is an Abelian group, m — | and K = C — the field of complex
numbers and in (Karpovsky and Trachtenberyg, 1977b) were given some results
(without proofs) about error detection and correction in computation channelg
for the case K=K =-. = m = ., Several examples of linear checks of
type (1) for such important computation channels ag counters, adders, sub-
tractors, multipliers, ete. were given by Karpovsky (19772) and Karpovsky and
Trachtenberg (1977b).
 We note that for the Important case Im JC N (N is the set of integers) the
transition, in (1), from the field O of complex numbers to the field GF(g) of ¢
elements (¢ > MaXees f(£), ¢ being 2 pritne number) results, generally speaking,
in. reduction of the complexity || Sﬂj {ESY) N SHj@} of check (1) (see Section 4).

We shall aleo consider in this paper, methods of error detection and correction
for system of functions defined on finite groups {Section 4; and methods of
network implementation of these checks (Section 5). .

In searching for optimal checks of type (1) in terms of | &y I, we shall apply
methods of harmonic analysis over group &' in the fields K (F=1,.., m}.
(The choice of I Eﬂj
An analogous approach, based on methods of harmonic analysis aver finite
groups, is described by Karpovsky (1976, 1977b).

Since harmonic analysis over finite group G in the field X will be the main
tool in this work we shall consider in Section 3 the algorithms of fast computation
of Fourier transforms for functions f: G —» K.

Methods of harmonic analysis yield simple and convenient from the computa-
tion viewpoint search procedures for optimal checks, but on the other hand have
the following basic disadvantages:

(i) For a given finite group, it is not in every field X that technique of

" Fourier transform may be used,

(i} Only checks where H; are norma] subgroups of G will be constructed,
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It should also be noted that checks of type 1, at gt} =0forallze G, A =0

and K, = GF(g) (j = 1,..., m}, are analogous to those used for syndrome

calculation in decoding procedure for g-ary linear error-correcting codes. The
properties of error-correcting cbdes generated by systems of checks of type (1)
will be considered in Section 7.

In addition to the present section, the paper contains six others:

The second section presents some prerequisites from harmonic analysis over
finite group G in a field K. The third section presents algorithms for the fast
computation of the corresponding Fourier transforms when G is a direct product
of some groups H;, G = T1;-1 H; . The fourth section deals with construction
methods for optimal checks of type (1). The fifth section deals with calculation
of error syndromes. The theorems of the sixth section solve the problem of the
correcting and detecting capability of systems of checks (1) for two different
methods of decoding. Section 7 is devoted to linear error-correcting codes
generated by a system of checks of type (1). '

2. Fourier TRANSFORMS OVER THE FINITE Grour G anp Figtp K

fet  be an arbitrary finite group with | G| elements and K any field of
characteristic char K. InthespaceLg x = {f : & — K} we shall use the elements
of the non-equivalent absolutely irreducible representations of G over the field K
as an orthogonal basis. |

Recall (Dornhoff, 1971) that representation « of degree 4, 1n 2 linear space V
{dim ¥V = d,)over K :« defined as 2 homomorphism w: G — GL{d,, , K, where

GL{d,, , K} is the group of all invertible (4, X d,,)-matrices over K. The value of

representation w at the point £€ ¢ will be denoted by [w, £] and the functions
generated by [w, t] when and # are fixed will be denoted by [w, -] and [, 7]
respectively. . .

Two representations ew; and w, of the same degree 4, = d,,, are said-to be
equivalent if there exists an invertible (d, X d,, )-matrix O over K such that

O Yy , t]Q = [ews , 2], (K) for every {1 € G

A representation w in linear space V over K is said to be irreducible if I has
no proper w-invariant subspaces, and is absolutely irreducible if it remains
jrreducible in any extension of K.

Henceforth it will be assumed that

(i) char K =0, or char K does not divide | &|. {Throughout this paper,
| A j denotes the cardinality of the set 4, and a | b (@ x b) signifies that a 1s {not)
a divisor of b.)

(i} K issuchthatifwisan irreducible representation of G in a linear space
V over K, then w is absolutely irreducible (i.e., K is the so-called splitting field
for G. See, e.g., Dornhoff, 1974).

L "'ri"ﬂ"l -.In...-'_- mRLL AN an mm RURELC =yl | T, [~ LT .

FL A L IR reL tl E LTH R H
o - "

AY o —aa's e m i Sk e ] T A G

- S TR T



338 KARPOVSKY AND TRACHTENBERG

Wenote that X = ¢ {(C,

the field of complex numbers) is the splitting field
for any G Conditions for

K to be a splitting field for 4 given group G, and
‘ construction methods for absolutely irredyci

are considered ip algebraica] literatyre for the great variety of groups G and fields
K (see, e.g., Dornhoff, 1971y,

Let G = {o} denote the se

el
Let /: G - M(a;, K) where M(a, , K)

» & }—the set of ali (2: X &;}—matrices gver
Kand ¢:C - 11 (44, , K) where for EVErY @ & (5 Piw) is a (d, x d_)-block
matrix over K with blocks .

B w) € M(s,, K)

(=1, 208 = I,..., dw).
Denote

irfde £ EZ; (A(?) ®fz(f‘1));

K. - @

= (. s) {x.7)
(P10 L ZG 2, (P (w) & $:"(w)).
WEL §, g=])

Here ® Kronecker product of matrices:

s fode € M(aya,, K);

Let [w, #]; ; denote (47}
(Dornhoff, 1971} the

<';31 3 i’ﬂ}G € M{&lbﬂ ? KJ'*

-th element of matriy {w, 8] (¢, § = l...,d,). We recali
urthcrgnnality relations for the ! G| functions {le, -1, 53

.‘([“’1 » ‘]fl.ﬁ > [“-‘2 3 ']ig.i,,)ﬁ" = [ dG I 3::,1..», 31'1.1'2 3:*1.:', ; [K) (4)

firy :

. a5 = 1,..., D3 ta s fp = I..., d, ; 8 is the Kronecker delta,
and [Gld, e K)

The character of

the representation ¢ is defined as
characters satisfy the

the trace [w, ‘). The
following orth ogonality relationg

Strace [uw, , ], trace [ew, , Pe = |G| Oy cug

. G (K)
(tl'aﬂ“f.‘ [': j'll_]!r trace {‘! i; ])'G' = vy 3&,1‘!1
1
where v, is the cardinality of the Conjugate class of G which contains ¢, (Dornhoff
1971) |
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ERROR DETECTION AND CORRECTION . 339

We consider now the i;npl:;nant case of Abelian group G and Galois field
K = GF(g"). In this case G may be represented as a direct product of cychic
subgroups ‘

G=H, x - xH,, el €G, 1t = (f s ta) L0, 1o, | Hy b — I},

| H; | is a power of a prime number, the group operation is componentwise
addition mod | H; |, j = 1,.... n. Let u be the least common multiple of | #; |,...,
| H, | and “+/T € GF(g'}, i.¢. the equation x* = 1 is solvable in GF(g") or, in other
words, plg" — 1. Since p || G| then g1]{ G| and GF(g") is a splitting field
for G. In this case d, = 1 for all wel, G=52P % XP,, & is a multi-
plicative group of characters which 1s isomorphic to G and H; isomorphic to
P;, ik, w = (10 oy g}y @w; €{0, Loy | H;| — 1} and we have

[w, £] = Hl £, w;, 1, €40, 1oy | Hy{ — 1}, (GF(gN). (5
v .
Here £; = Hil/Te GF(g) (j = 1,.... B)-

For the case K — C, & = exp(2mif| H; ), i ="(—1pPandif | H, | = - =
| H, | then, [w, -] is known as Chrestenson functions and for g = 2 as Walsh
functions (see, e.g., Karpovsky, 1976).

Let f: G — K. It follows by (3), (4) that the Fourier transforms Fg 2 f — f
and inverse Fourier transforms Fg f — f on the group G in the field K may be
defined as follows

d‘” .
f@) = B <h e des (©)

() =< [ the - - (7)

For the Fourier transform Fy y: f — f on the group G in the field K the usual
properties of linearity, translation of arguments, convolution, Plancherel,

Wiener-Khinchine, Poisson theorems are valid. -
Now let 2 C G and denote |

QLA (Y kemw = {} {t|[e 1] = E} E-the identity matrix.
Ll weld

A subset 2 C G is said to be closed (notation £ = ) if for any w ¢ £ we have
0L ¢ Kern w. Then for every normal subgroup i of G there is a unique 2 C G

such that 0+ — H. Moreover, any £2 is isomorphic to the dual object aﬁl of
the factor group G/3* and clements of the set 2 are constants on the cosets of G
module $2%; in addition if o{{J) & ¥ .o 4.2 then o(2)1] G|, {G) = | G| and
()3 =G|,

Exampie 1. Let f(f) = 2 — $70t — 35,1 {0,..., 2° — ]} and f represented
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ERROR DETECTION AND. CORRECTION 341

in the binary form ¢ = (8, ,..., £g), 1 € {0, 1}. Then f: €8 — € where (.8 1s the
group of binary vecters with eight components, and the group operation is
componentwise addition mod 2.

All the representations of C,3in C have degree one, and in 2 according with (5)

g E
[cw, £] = exp (ﬂ'(_l}m > ‘”ffi) = (__1}1,_1%-:3—; wy, 1;€{0, 1}.

L] J‘.=1

Fourier (Walsh) transform in this case defined by formula

flw)=2° % fl)—1)7mer

tel,?
For the polynomidl f(f) = £2 — 170t — 35 we have f(w) = 0 if || =
E?:l L :::" 2. ~ | ™
The dual object C,8 is isomorphic to C,8 and 2 = 2 C C8iff £ is a subgroup
of C,8.

Linear checks of type (I) for this polynomial will be constructed in Section 4,
and error-detecting and correcting capabilities of these checks will be considered
in Section 6.

ExamrLE 2. Let G be the multiplication group of the twelve (3 X 3})-
matrices £ = (¢; ;), i, = 1, 2, 3 over the field C represented in Table I. Note
that G is isomorphic to the direct product of the cyclic group C, = {0, 1} of
order 2 with generating element 1 and the symmetric group of permutations

i S, = {0, (132), {123}, (12}, {13}, (23)} (seec Table I). Table I lists also all absolutely
O irreducible representations for the given group G = C, X 8, in GF(11){GF(11)
| is a splitting field for C, X 55 .)
All closed subsets £2 C G with the corresponding «(£2) and £ are represented
for the given group G = €, X S m Table II.

TABLE 11 -
el af $3) el
ﬂ{l {“} l {D: 1} 2: 3: 4: 5: 6: T: 8: gr lﬂ, 1]}
2, {0, 1} 2 01,2 3,4, 5}
3, 0, 2} 2 {0,1,2,6,7, 8
a, {0, 33 2 {0,1,2,9,10, 11}
g, =~ {0,1,2,3) 4 {0,1,2
o {0, 2, 4} 6 {0, 6)
@, {0,1,2,3,4,5 12 {0}
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342 KARPOVSKY AND TRACHTENEERG
3. CGMPUTJ&TIDN_ OF FOURIER TRANSFORMS FOR FiNite Groop @ AND FIELD K

We consider methods of Computation of Foyrier Fe.x and inverse Fourier

F e x transforms. For the case when G i 4 EToup of binary (g-ary) n-vectars, the

Fourier transform on 7 in the field ¢ of tomplex numbers ig called the Walgh.
Hadamard (Chrestensan-Hadamard} transform, In gyeh Cases, there exjgt
algorithms of the Fast Walsh-Hadamard (Chrﬂstensun-Hadamard] lransforms,
which require 5 - 2% (m - g™ elementary operations, ‘and 2%{gm) memory cells to
Compute . . or File . Those algorithms are sencralized for the cage where G
is an arbitrary finjte Abehian goup and X — (' ip {(Apple and Wintz, 19713. In

{'Karpuvsk}r, 1977¢) these algorithms were given for G and arbitrary (nomAbeIian}

THEOREM 1. Lo (7 T H, . For WY [ G K set f— fou f=Fm
wnd for any w = (a, wn) denote by ( fim) (e ey ) the (., % d, )-block
MaLrixy recejued by partitioning of f ey ..., @) wwith blocks of dimensions

1 n-—1

=0 — <(,)f”'})g; L f_i}}ﬁ'_; {'.f- =mou— 1., I). ) U{”

(Here [fiiljp (‘Eﬂ:_v-u “is gy ey b)) B5 @ ['.:?’mj X dmj)-ﬁfﬂc:k ?mf'rrfx re;t'le'zred by
Parlitioning of f o TR o list gy Uy} with blpek of diinensions { I 4, X
IT.21d,). Then

) d,

S (w) = Ta1 /el 8y = foy (K). (11)

Proof. By (3), (6}, (8) we have for any w e ¢ and any t ¢ G
e o o m e (8
f{‘“):m_"<]‘:[m: Do = G <f:§i_?[;!fi.]>ﬂ

— { gul < <<fr [m?l 1 '}>Hﬂ ¥ ['ﬂ"'ﬂ'—l » -]>Hﬂ—-! ey [ml * _-T>H1 ’ {K}

' R . i}
. _ag L T - - bk RY . CAe— - e e e ek T L T Y e mm il (R e __-.-.q,—..,p.""“-\.—l-.-_u___.l-.-l-.‘..-u_-_ -
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ERROR DETECTION AND CORRECTION 343

and in view of (9) f(w) = d,/|.G [ f®w), (K). Similarly, in view of (3), (7), (8)
we have

10 = <Al e = (ALY

j=1

= { (‘((((fm}} P:.[‘: fn])ﬁﬂ)m s [ tu—11>}?ﬂ_1)p el H])’J’i‘] -

Hence, by (10), we have f(#) = fO1).

It tollows from {9}, (10) in view of {2) that cach of the functions Jun, fu-n
(j=nn—1,.,isdefined at | G| = 1"];;1 | £f; | points and the number of
memory cells for storage f4-1 or fU~1 equals ! G |. For computation of any
specific value of 91 or f U~V we need | H, | multiplications. Consequently,
the total number of multiplications for computing f or f by Theorem | equals

|G |3, | Hy .

4. ConNsTRUCTION OF OpriMaL CHECKS

The number || 3, || of nonzero values of 8 for the check § ®f =9
MEYf, 91 G—=K, 84:G-—{0,1},Ae K) affects the number of additions
needed for checking the given f when fis calculated by a computer program, and
affects the network complexity when f is realized by a network (see Section 3).
Accordingly, we use the || 8, || as a complexity criterion for the function 8y -
Let, for the given f: G — Kand anyye K, 7€ G,

20,7 8 Jo | f(w) = 22 yw, 7]} U O], (K) (12)
. Ke 1

where [0, 2] = | forall e G.

TueoreM 2. Let f: G — K, K be any splitting field for G with char K = 0
or char K + | ' |. Then

| $2* |

(Bp: @S = 3.t O 1) + TG (Z (8 — :V), (K)forallte G (13)
. ez
I.ﬁ.ﬂ C Qf(?i T)'
Proof. Let £2* be a normal subgroup in . We first prove that if
L teft: ‘
%:(1) = 0, 1¢04 (14)
Wmnﬂ—m—m-—nrqu—__. — - e —— B e T ———
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344 KARPOVSKY AND TRACHTENBERG
_ _ then
(J * | —d—‘“—lﬁﬂﬂ, wel;

Ogulw) = { TG (K) (15)

0, w ¢

(Ois (d, X d,)-zero matrix}.
By (6)
d

By (w) = -]—GT‘;‘I— Y, fw, £, (R). (16)

1={31

If wefd, then bguw) = d ] G110 [ E, (K). If ¢ then w %= 0 since
0effor every {2 C G, Hence, by (3), (41 forw ¢ 2

d’ .
Sﬂl(ﬂu) = = Z [es, 1'_1] = L Z [e, I_IH'D, f] = 0, (K)
] G tefil F G te ol -

From (13) and ( 15) by the theorems of convolution and translation or arguments

for Fourier transform fe.x we have for any o c (7

T(%-zf(;:), o = 0;

Sy =191 (17)

and by (17} in 2 view of definition (I2) we have 2 C L4y, 7). Conversely, if
02 C Oy, 7), then (17) is satisfied for any w € £2 and (13) is also satisfied.
It will be shown in the next section that the complexity of a network implemen-
s tation of a check (13} for the given channej f: G — KX depends only on the
(./ complexity || §;, || = 21c6 85(2) of the function og: G — {0, 13.
. Thus, by Theorem 2 we have the following procedure for construction of the
best checking equation (13).

1. For the given f: G — K, compute by (6) or by (3), (11) £
2. By {12), construct the sets R4y, 1).

3. For the given group G, construct all closed subsets {3 of the dual
object (7,

4. Find yppi 6 K, Topt € G, $opt C G from the condition

4

TN A, D) & max o) 2 o) (18)
B 16 |
(ﬂ:(ﬂ} ——wgﬂ d: = -——-—IQJ_i )

5. Construct 8pi: G — {0, 1} by (14), for Y == Yopts T = 7opt, [ .Qgpt .
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We note that for any f, y, 7 the set £2,(y, 7} depends on K. Consequently, the
sét $2opt also depends on K. This poses and apparently quire difficult problem:
optimal selection of a field K minimizing the complexity of the check.

We note also that if Im f N then transition from C to any ficld GF{g}
(¢ — a prime and ¢ >> max, f(x}) may result only in the increasing of | 24y, 7)|
for all y, 7. Consequently, of Qopt), generally speaking, increases and the com-
plexity of the check is reduced. {See definition of a{2)} and £2* in Section 2 and
(14). See also Example 5.) .

ExampPLE 3. Let fi: Cy % C3— GF(11) is defined by Table 1. (see also

 Example 2; absclutely irreducible representations of Cy X C, in GF(11} are
' T

given in Table I; closéd subsets @ C C, % 8, , «(£2) and O+ are represented for
C, X Sy in Table 11.} |

We will find now by Theorem 2 the optimal checking equation for f; . Table I11
lists the Fouricr transform fi(w) in GF(11) clmputed by (6}. Then foreveryr€ &

— {0!1:-2;355}, 1f -};30;
fnlys 7 = 3{0}= if 4 = 0.

By (18)
Yoot — 0; Qﬂﬂi =0, = {D: 1,2, 3} ﬁé—ﬂt — {U: I, 2}

Since for our group 171 = 2, 271 = 1 we have by (13) the following checking
equation for f; .

filf) + HE O D+ £ O 2) = 1, (GF(11), for
and fe .

We now apply Theorem 2 in the important case of pseudoboolean channels.:
By “pseudoboolean channel” we mean any device or any program calcujating
a function from n binary arguments. For this case, G = C,* is a group of binary i
n-vectors with componentwise addition mod 2. 'E

If K is a finite field, the necessary and sufficient condition for existence of !
absolutely irreducible representations of C, in K is that | K| be odd. The
Fourier transform in this case is known as the Walsh-Galois transform and in
the case K = C as the Walsh-Hadamard transform (Karpovsky, 1976).

We denote for pseudoboolean channels

4 e LmTEr=e——— T E— s

Qy) & {w]flw) = y2 "}V {0} (19)

Then, since for pseudoboolean channels o{$2) = | 2| instead of (18), we have
for ﬁ.ﬂ‘pt
?

yeit SCi20vi SR (vony)

max _fnax [Ql — _ IN&EX 1Q1 — !ﬂﬂpt 1: (20}
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TABLE IIi
w (wy , a,) Ale) felw), (GF(11y) Selw), (O)
0 {0, 0) 4 3 5
I (1, 0) 0 0 ¢
2 0, ) 0 9 —
3 (I, 1 0 5 £
7 9 9 10 21 — 3
g o I 2 —v'3

6 243
0 10

To simplify this procedure we may replace vy, and Lot by Yopt and ‘Gc:pt
where

+

max [ 200 = 2650)  and max [0 = (1. (21)
¥ ﬁgs:-,wﬂm:-
{(Note that the complexity of the check constructed by (21} is, generally speaking,
higher than that of the check constructed by (20).)

EXAMPLE 4. For the pscudoboolean chanpel f@) =12 170 — 35, f:
Co® — Cfrom the Example | we haveﬂ’m) = 0,]l wl = Z?ql ay = 5, | Q40 ==
28— (8 _ ) — (&) = 219, vo0e = 0 and £ may be chosen as a linear space
over GF(2) with basis {(1100 1000), (or1 103100), (007 16610y, (10010001}, Then
Hy 824 is a2 linear space with basis {(IGGU!O{H),({]IE}{] 1100), (001001 10),
(0001 0011)}. Since the for every ¢t e Cf 2 = 1 we have by (13} for M =
% — 170t — 35: Zreﬂl FEW ) = 120 (W stands for componentwise addition
mod 2}. Note that this check is not unique for 12 — 70 — 35. For example we
Mmay replace H| by the subspace H, with basis {1000 1110), (G100 1101),
{00101011), (0061 000 1)},

Let G = H % - x H, . In some cases It is important to know whether
there exists the check gencrated by the given subgroup H, for the channe] £
G — K. For ¢xample (see Section 2), in the case where H, 1s a cyclic group, the
network implementation of the check can be essentially simplified,

For every we & (G=H x - % .} we denote o ~ (1 5eey a), we

| w&{0, 1, | H, | — I}, r = L2, n (see Section 2}. Then, for the given

J:G— K there €XIsts a check (8;;} ® i) = ySHJ_{t Q)+ H | G

me—w—s mauap L u
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(Zeo f(£) — ¥), (K) generated by the normal subgroup H; iff for eVery w =

(""-'1 pemey Q5 4, U:r Wirl 3oy ‘Wn)r

w & Ly, 7). | (22)

Indecd, (22) follows from the proof of Theorem 1, in view of

o lw; =0 = 1y, .

ExamrLE 5, Let channel Jo: G — GF(11) {where ¢ — Cy X 8,) is defined
by Table I. The indexing of the elements 1€ G by vectors (7, &), heC,,
12€5; Is given in Table I. In this case w = {a, w), (w;€C,, w, € §,),
w €40, 1}, w,€{0, 1, 2). The indexing of the representation o & (- by vectors
@ = {ew, , wy) is given in Table I1]. |

From this table it follows that 2. = {(0, 0), (0, 1), (0, 2)} = 2 (2, 4). Hence
by (22) C, is the subgroup of G, generating the cyclic check . -

JO THt© 6) = 2t © 4) + 1, (€, = (0, 63, (GF(11),

1t follows from Tables II and I that if we consider foas f5: G — C, then a
non-trivial cyclic check fro J» does not exist.

We consider now construction of linear checks for a device or a computer
program calculating the system of functions AN S N 1P~ TN K(f =0,
Lo, s — 1). Let G be come group with s elements. The system { ), fls-1n
may then be considered as A computation channel f: G ¥ G > K over the
group G¥! X @, and the methods described in this section may be made of use
in finding the checks for f {and consequently for the given system { f0
SE). In this connection we have an apparently quite difficult problem of
optimal selection of a group G of the given order 5 — | G | minimizing the
complexity of the check,

5. IMPLEMENTATION oF LINEAR CHEeckIng EQuAaTIONS
FOR THE COMPUTATION CHANNEL

We attribute an error ¢ (6:G-—> K)toa channel f: G - K if the latter yields
J -+ ¢ (K) instead of /. (In other words, we use the additive method to describe
the influence of errors in the channel.)

The procedure of error detection or correction is divided in two steps, as is
usually done in coding theory: first, we compute the results of the checks (1),
calied the error syndrome; secondly, we detect or correct errors by the computed
syndrome. We give now the formal definitions, o

Let X; be some chosen fields and f: G — (", K, be the given channel with
the system of checks Ou, ®f =@ + M, (K). Let e: ¢ — N;-: X; be an error




JIFI '
. »r darn n
- ) - . e — e o Soompms Tl A e P e e e oA —_— - =l e W | m oy

348 KARPOVSKY AND TRACHTENBERG

in the channel f. By the syndrome St of an error e, we mean the systcm of
functions §}* G — K; defined as:

S AS, ®(fte)—p—A = 8. @ e, (K, (7= 1,m,m).  (23)

In this section we consider methods for syndrome computation. In practice,
computation of the syndrome .§**) may be implemented with the aid of the
computer program or the hinear discrete network contzining only the delay
clements, the adder in the field X and elements realizing the group operation (.

In the first case the quantity Z;-H:l | 04, il {see preceding section) is the number

of elementary addition in computing the syndrome S, In the second, it deter-
mines the complexity of the corresponding discrete network, i.e. the number of
elements needed for its realization and the time for computing the syndrome
(see Fig. 1, below).

Let { f®,..., f1=-13} be the given system of functions f: G — K, (i = 0,...,

error a
r— = — —r
R L
! I B i
l flis-rIr ..lﬁiiﬁ-lll
d d 4 — e e N el =
¢ I | \ ;
ILinear network for syndrome
computation " e 2 [-hek
I o=
F i
T
Y LI T

v
Syndrome S L

JO'S
(%)——;'i Block computing gFronp operation.
|
""rd__}"'* One-step dolay element.
J
\ i/ |
-~ ¥ b Adder-aceumnlator with initial state -relK,
_"'@—" Block multiplying by the constant yaK. s
| g )
| E =5 g Block computing Erooecker delta.
T =pn f," .

Fra, 1. Network implementation of one check for the systemn {f19,...., f1-1),

L " P T e T
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s —1). We consider {f%} as a function f: GY' X G — K, where G
£0,..., s — 1}. The network implementation of ene checking equation 3y ®Ff
w - A, (K) is given in Fig. 1. |

Here

I

. __ 1: }-E HP = {{J:'": ¥ — 1}: gE i = {0! g] LREE giH!-‘]};
onl)s £} = 0, otherwise

H being a normal subgroup of G and H a normal subgroup of G the jth
right coset of GV with respect to HP is {jr, jr + 1,..., (J + 1)y — 13, (r = | HP|;
§=0,..,sfr — 1}]. As previously in Theorem 1, we suppose that (i} =

yoult O 1), (K).

In the network of Fig. 1. signals corresponding to

f{f}, f{t @ gil):-'-:f{f E} g!_fh-l) and 8-;-_1,,1! ¥ 1-—1,:{3.4‘:;1 L af_i,tE}E]_ﬁ-t_l

are applied at successive instants of time to the input of the adders in the field
K with initial state — € K. For generation of (1) = y84( O 7), we make use
of the fact that, by definition of & , we have

|71

St O =8, + Y 8101y (K)
§=1

_error e

t ]
¥ L 'I|' ¥ Y
fI[l::ll]I f[r—nl fEE-*-'} f*liﬁ-l]l_
\+ / \+/
15 1 s L
» ]
N
t )
L™ -

Y ate)
Syndrame 5 hiny

e T { - step delay €lemcnt.

d;

Fic. 2. Network implementation of a check for channel F={f9__ ft-"in case H
contains the subgroup H' = {0, §; ,---, L1k

r - L e s = i e = [

Tl VR ML T PTLRAEETC. te



] {1 Fe-ry {E—l

= v be the number of right
with representatives 0, ..., Mv-1 - The follow;

ng block diagram (see Fig. 2} is
then equivalent o that of Fig. |,
To implement this

» (K} can
velic Subgroup of the orio:
network implementat;

(K} () = 1 i1 e H,
18 given in Fig. 3.

ﬂnufacheckﬂﬂ@f:gu+ﬁ

#f being 4 cychic group with generator o)

Syndrome SEE:'“]

=S50 i case of the check,
'ith generator X,
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" triviat normal subgroups H,, H, of group G, and et 34 (£) = 1, iff {eH,

r == |, 2. If moreover,
SSH — aHl @ BHE 3 b e K: | (24}

18 1 > 1,118y, | > 1) then we need |8y, 1+ 11}l <3| clementary
additions to compute S, It is readily seen that (24) holds iff H is the smallest
normal subgroup of G containing H, and /I, and ® = | H, N H, |.

6. Error-DETLECTING AND CorrecTING CAPABILITY
OF A SysTEM OF LiNearR CHECKS FOR A CoMPUTATION CHANNFL

Let there be a system of m checks in some chosen fields K; (j = L,..., m)
constructed in accordance with Theorem 2 for the given channel f: G — ﬁ?;l K;:

E'HJ- @f = @; + A; {Ki).'- .- (7 = I m)' ' (25)

Here 8,(2) =t iff Te H;, H; being normal subgroups in G, | H;| > 1,
Imeg; L h?ﬂ K, for all j = 1,...,m.

We shall consider two methods for detection or correction of an error e by the
syndrome S (see (23} 1n Section 5) namely memoryless and memory-aided
decoding.

Tn memoryless decoding the value (1) is. computed for the every 1€ G by
St)(f); in memory-aided decoding e == ({0}, e(1},..., e} G1— 1)) 1s computed
by S = (50}, S“”(l),...,' S| G| — 1)) (We suppose that clements of G
are numbered by integers, G = {0,..., 1 G| — 1})- We note that the procedure
of error detection and correction is simpler with memoryless decoding, but as
will be shown in this section, the error-correcting capability of the given checking
system (25} is reduced in this case.

We give the formal definitions. Let for any sct F or errors, the error e = 0
belongs to E.

A set E of errors in a channel f with checks (25} 1s detected by memoryless
decoding if, for any e € E and for every given ¢ € G, it follows from e(2) ( that
there exists 7 €{1,..., m} such that S$;{#) # 0. |

A set E of errors is corrected by memoryless decoding, if for any &, , &€ E
and for every given t € G, it follows from ey{1} 7 e,(1) that there existsy € {l...., m}
such that Sii(t) = Si*=(¢}.

A set F of errors in a channel f with checks (25) is detected by memory-aided
decoding if, for any e € E it follows from ¢ 0 that there cxist j € {1,..., m} and
t e G such that (1) # 0. .

A set E of ervors is corrected by memory-aided decoding if, forany e, , &2 € E

it foliows from e, ¢, that there exist j&{l, 2,.., m} and ¢ € G such that
Si(e) # S,

Rl T
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Defining:
e(th = I e t) = = &t ot = — 1 () = 0 ifte 0, 21
E::U{nwi]:—l) R s U B I elt} —= O ¢ & ol forls
(t;€ H; 8, + 0. = {,..., m), wehave g = (mi2) + Llley, = m -~ . 2] <

ni2] 4+ 1, (0 & 2,0} but

. i
, QO! 3 - l:-"-: 2_]:
S§70(0) = $,4(0) - o

-

_ Ml _
F.. [—2— S R T

and errors e, , £5 with multipheity (mj2] + 1 are not corrected.

Note that for correction with memoryless decoding, use may be made of a
methad analogous to the majority logic approach in error-eonrrecting codes (see,
e.g., Massey, 1963). Let m == 2+ landfiel < L Then for any ¢ € G, there are
at lease { = 1 components with the same value e{t) in a vector Sty =
(S, .., ST} Wethus havea simple means of error correction forasyndrome
vector {870, SIEHEY).

We now consider the maximal multiplicites of errors detected or corrected
with memory-aided decoding.

For a given system (25) or orthogonal checks, we denote Moy oy O} @8 the
<ct of all £ € G such that there exist £;€ H;, 1, 0,and '

™
) , ) f‘ o= 1
I = 'r‘F]_rl "::-' UEFE O T CJ {J’!hfm f—i G' "::_I;rji 1 ﬂj 2 {0; 1}: gjfj i E; . UJ 1-
i-1 10, P 0
j=1,..,m We also resuire that for any o — (@) o Op) and &7 = (o) on a.)s
(@ # o)
M M{e') = & (3 is the emply seth. (27)

(Note that by setting

o (0,.,0,1,00,0), o= (0,:00.1,0.,0)

iy r——
i 3

e —_

we have by (27), H, N H; = {0}, (f 5= §).) If for a system {25) of checks the
condition {27) helds, then the number m of checks satisfies

m < log, | G L. (28)

Condition (27} cssentially implies  that H, X =~ X H, is isomorphic to 2
subgroup of G and this 1s a very strong cestriction on the system {25) of checks.
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4 R 1 -

FHEGREM 4. Fyy any channel f. G _, (Yo K. and @il systemt of mt checly
Sﬁj Bf = A (== Fyeey 1) i fying (27), e hape for memory-aided
decoding.

OTing:

(1} Al errers goig MULPICIyY gt ost 2™
Wt piiers Sl viosf 2= p corvected.

(1} There pyrs EXFLES Trith BTty Do g 2L ehich are nol detected
and not coirectod L respertvely

£

— | ave detected, and ajl Those

Proof. (i} Let ¢fr)

0 for some e (7 We
ot detected,

then for ANV Vector o
least  gne L.et flf{.:rj{f (o Af{ay
£(Z.} # 0. Since from (27 1

el T 2m

The proof will be by induction on Yol = Z;ﬁj oy .
Let e{t) -4 0 and ot @ = (0,..., 0). Ther i

Y€1 M(o) and ef,} == 0,
Let it further he 2S511

med that efsy =
thar " 5 Lo I = b, m -
et gL = 1. By the definition of Y(5), the
subgroup /7, (re{1,2

zhall gshow that if the ErT0r ¢ |g
= (g, ,.... &) {o; 6

U, 1}) there exists st
={{i{=1rp Y €M o)) such  that
o H{a)i 22 2m then it follows fram the shove that

all == 0, an SCHINE 7, o2 1 we have
Qe 1s not deteerod and
= 1) there gyivs R Me"y wich

-

fUr any ¢ such
thit £t) 70,
T CNst g and

SCIH NGN-trivial
r %y B suich thay @' = ] and
ﬁf{ﬂrj = U M’y - £ (29}
iEH:_iﬂj

Since by the ASSumption ez, .y o« 0, and if ¢ i3 pors detected then

Z oy & '::_l) = f{rﬂr'} N Z

;‘.EH.-

e O LY =0, (K.},
{EHz-h{U}
and there eXI5ts at least one {e i, _ {0} such that if we ser fo = £, O -
then e(2.) == 0. But et & AH(a"), and in View of (29 vwe have L, =1, (71 ¢
£ M(a). C(Jﬂﬂﬁqllfﬂﬂ}-‘:, all e such that @ < el

Iet now ! e, =7 2

£i 512" ] e deteered.
il = FH "
¢ 70, el there exists 7 e ¢

— ]* .I.! e, :Ii: 1“:':; T} .I:. e -+
FE0, 200, m) such that
Sy — SN — ST £ 0 Consequently,

€. Then ¢ o &,
< 2™ eis detected and
all errors muluplicity at Tiost
P A
2m-1 g are corrected.

(i) We now construct the non-detceted CITOr £, with
et us fix arbitrary Le H (1, # 0h7 =1,., mand set

multiplicity 2m,
L

TR g S

M
(1) (--1) if there €XIStS ¢ = (g, 1=+ Op,) such that § — OR-FR
E{} _— .

P (30} .

.

bl B o

0, atherwgse.

'!-fl'"h_'l'"- I.'ll_| L]
R N T T
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It fullows by (30) that e, || = 2% We show now that forany e Gand;

SUN1) = Sien, et @ L) = 0, (K.

I for some fe & and some £ c H; | ey)(2 7 I = 0 then in view of (30)

therc can be found e such that 7 10 {71 = 7_, 5,4, and

il

$h.., mih,

' o y C R
‘S‘Eph}(?) — z E{](T D g_l) = E:l,t [ "l::: {'_n':,-f:;) 23 E EI’]( i: G"}-f?- G' g_l]
1 :

IEEHJ: . gEHJ—-'l[]: =1 R
™ % I TH
= P [ £ -1 T -
- EE*1’.1 ( P I:-';rr_'f.r'J - Z ‘{Jﬂ (L'_.f H:'rr C '::- 1:} .-’U Urrz'): {I‘;‘J} (31 }
S : JeH 10} §=1 S T :

{Ifere we use the fact that M, and H,,, x -+ X H,, are normal subgroups of G
with onlv the wdentity in common.) New, if o; = 0, then in view of (30), (27,

b 1
Fu(::} ol; HE O cr!-f,-) #= 0 i 1 =1,

and by {30) we have

J FHl -
Z €4 (G ":'a"f:' :_-} g._l ﬁ G U‘-rf) — (__}) ”:.+I? {Ki}'

LeHf— 1 i1 Fizitd
Hence, by (31}, {30)

Sy = (=1 + (0" =0, (KW (= 1, m).

Analogically, f o; == 1 then in view of (30), (27) we sce that

J ot
E'“(I'::) D-frf G' ‘:_I O C) {]éf,-) __-_rr_ D Iﬂ- g_l - r.n'_l ¥

and

i rRE -
Z €y (E ct; OLVO O 'Tl‘:'ff) = (1) -, (&)

s T i=1 Pt 1

{(Note that [l ¢ ' > 1 since o; = 1.} Consequently, by {31}, (30)

Sy = (= A (= = 0, (K, (= L m)
and g, 1s not detected.

To conclude this proof, we note that existence of non-corrected errors with
multiplicity 277 follows from the fact that otherwise any error with multiplicity
2™ would be detected.

Thus, it follows from Theorems 3 and 4 that the error-detecting and correcting
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capabilitics of 4 SrErem af m orthogonal checks do not depend on field & and
INCrease EXPenentiall

MInavanation from memorvless to EINCTy-3ided decoding.

EXAMPLE 6. For she pEeucobeolean channel J#) =2~ 170s 35, f:
Cof -> 7 from fample 4, Section 4 e
eer fEW ) v 120 (7 o j oy gy

1.
It is easv to verify thae

have constructed  tug checks
, 11, have heen dereribed in Example 4,

hese chocks are orthogonz! and the condition (27) is
satisfied. Thus fram Thevrems 2 and 4 these two checks detect alk do
and correct al] smgle errars for m trraryless decoding, detect al

-

uble errors

triple crrors and
correct all single errors fur niemory-sided decoding.

7. OE{THDIHCIEAL CHECKS FoR {TGMPUHTI(}}{ {UHANNELS
AND ERRDR—CDEREETING CoDEs

We consider in thie section properties of error Correcting codes senerated
by systems of orthogonal checks for computation channels.

We recall some hasic definitions. Let Ve.x be a linear Space over the field £
of dimension £ ("5 ) being

the Hamming ntetric in V, &, Le for any f,

Js€ oo s d'[_?(;;fz} = f - fol

s il ~ the number of RON-Zero Camponents in the
Vector f — £, A set LV, & is called the CITOr-correcting code oyver & with
distance J(F), if 17::|£nf1.f2 dfi1f) = ¢(F}. Tt is called a linear (g, B)-code over & if
i is an A-dimensional sihspace of Vo & . in which case it may 2ls0 be defined by
s {(g — A} x £) check matriy (£} over K f.e.fEFiff{Fﬁjf = 0, (K}. (32) The
density of partty checks for the (g, #)-code Fis defined as

B = e Ty LU

1.3
The coding and decoding procedures may be sim ,
but this Ieads also 1o reduction of a transmission rate R(F) == gh1 of 2 code F
(see, eg., Gallager, I1963). 3¥e denote by f{t) the rth component of the code
veetor fe F (¢ = p ey @ — I}
A function o- {0, lo.,g — i} — {0, L, g-- 1} is called an automorphism
of a code F if for any feF we have fle}eF, where ( /(o)) Z f(ef2), t =
0,...,8 — I. The set of a]] automorphisms of F js 3 Eroup Aui(F} which affects

WILLIAMS,

tions of vectors from F, then we have an Important class of cyclic codes. Analysis
of Aui(F) and construction of codes with the gtven Aut(F) is an Important and
difficuelt problem in coding theory (MAC WILLIAMS, 1964).

We consider now the errgr correcting codes generated by systems of orth cgonal
checks for computation channels.

e L L
LERC T

Y TR Y
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PHECREM 5. For g given system of m checks i ihe field K aftsfring (27) e
denoite

FoaJf! o, (5 f = ®i = A (K); B normal sibgroups of (7 =T, 2. (33)
Flien

(1) for anmy 7G> K, ek Fi TTOr correcting code orer K uith
Hammeng distance A(F} = 2m.

(i} forgq; =0, A =0, (K), {7 — L r;:j} Fisa bnear (@ b G R(FR-
code with d(F) = 2m, RE)=TI,0— H, ') and G C Aut(F),

Proof. (i) For any f1, o€ F we sot o =N — 1. (K). Then Sy Te =10
(K){(j=1,.., #}, e is not detected by memory-aided decoding and, b} Theorem
4, e = 27 and a(fy = 2m

Un the other hand there exists the error ¢y Such thatlig, Il = 2m 59 €y 18 not
detected by memary-aided decoding (see Theorem 4, (i1}). Hence, if feF then
freceF (K}, and d(FYy = 2m.

()} Tfe, =0,1 = (7 =1,..,m), then F is linear space over X By (27)
i x H s 1zomorphie 0 some norral subgroup of G and for any
ordering elements of subgroups H, we have ¢ :(Il}m,rm,rmﬂ} where
GEWO- T H  — 1 (=1, m), b €40, Gl H 1. Then feF
iff

?H}'::—'I
> . iy 1y, 4 oy baslpad) =0 (= b, m)
1, <0 |
tor ali 7. €{0...,! G ]_]ml A1 Hence if G =g, R(FY = gh™? then
i 1 il ol 1 ‘ | ™ | |
.ﬁ:—:dimF::jG|R(FJ :Hm JIJT H( Hil — 1) == GZH (1 - 7171,
F=1 1577 51 i=1

Forany feFand re ¢ We set fi{f) - (1 O ththen f,e Fand G C Aut(F),

We note that for 2 code F generated by a system of orthogonal homogeneous
checks with ® =0, 4, =0 (; — Li..m) if feF then for any : G- K
FROR =¥ 2/ B FeFand Fisa two side 1deal in the greup algebra of the group &
over tnec field K. We note also that code F is a special case of the lgw density
parity check codes considered by Gallager (1963} and one IN&Y cunstruct by
Theorem 5 lnear codes F over the given field K with the fixed Hamming
distance d(F) —= 2™, with transmission rate R{F) asymptotically {{ G oc )
equals to onc and with the density of checks w(f) asymptotically equals to zerg.
For example, we may set 7 = Hf_l Hy |H = - | H..1 = | H), then
by Theorem 5 we have 2 linear (‘i (1H — [)™) code F over K with d(F) =
27andif | G| — O, then | H | — oo, iy, R{F) = My (1 — A Om =
I and for w ] “I‘I‘ini__Llu.(F} == HI‘ﬂ_iH!_,I I.-![ir i_{ﬁ'_” =

RECENVER: June 17, 1977: revisen: July 24, 1978
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Hence, using (34) and Lemma 2 with 8

IGél’wjikl,...,ks)] > (1-o

Summing over € {0,1}° and using (33), we obtain

, (1)
(L0 k)] > (25-1)|& Lk, s k)] (H0)

| Gy

eE(0,1}°

We shall now show that

(L,C),
n MRV (K L.,k ) *+ D (41)
¢efo,135 ™ 2 3
By (40) ]

|0 Gél’t?kkl?;;.;ké)il <

(L.¢) | (
< % [EMAAA TR SR TR B (e yeeeaky)|
R —
(where the bap denctes the complementatiqgn: Gé1‘¢)(k1,...!ksl=ﬂ
(1)

6 ey yunnsky) - Gé1’¢)(k1,u..,ks)
and -

(1.¢) _ AL, E)

| 2 Gy’ (kl,...,ks)l = | g Gy ¢ (kl,...,ks)l > 0

which implies (41).
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Thus, there exists & €& G(kl,...,ks) such that

5(1)6 n G(l’a)(kl,...,ks). I+ then follows from (35) that

gef0,1}5
for this &, £(¢) E;H(¢) for all ¢ € {0,1}°, and so, in view

of (22), (23), we have £ < M, completing the proof of the theorem.

Note that, since @ € M, we have lH(ﬂ)I = [G(ﬂ)| = 1,
u(“)(M(“}) = 1; throughout the sequel, therefore, when using Theorem

3 we shall always assume, in accordance with (33), (34), that

u(n) = 0.
Theovem 3 gives us sufficient conditions for the existence
| s k. '
of a subgroup £ with |E| wm qil in Mc G. To state corress
i=1

i

ponding conditions when, say, X.

s 0, we need only apply Theorem

3 to the group [ E(ni).
1#]

4.3. We now turn to the guestion of linear codes in finite

Abelian groups. Let F £ G Dbe a set of errors and put
8(F) = {e&f|e,fEF}

where © denotes componentwise subtraction of vectors
g = (el,...,es) and £ = (fl""’fs) (ei; fi € E(ni), subtraction
of each £, from e, being performed mod qi(iﬂl,.‘.,s)l

S
Theorem 4. Let Rg6 = 1 E(n;), F &6 (0EFNR), and suppose
' i=1

there exist u(¢)(¢=(cl,...,cs) E'{O,l}s, ¢ +#0; 0 < u(w} < 1)
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such that
oy Wy
¢+
| o
5 | C. N
I (q,*-1) * < o (O ( (B R TE) o (8 5y, -] (42)
L i=1 |

for all @ # @. Then there exists a linear code £ in G which

corrects the error set F and satisfies the conditions
= k.
|E| = T q.> and & < R.
A 1
1%=]

Proof. A linear code § 1in G corrects a set - iff

£ n o(Fy = {8}. Set M= (R-&(F)) U {@#}. Then & £ R and
¢ corrects the set I 1iff ¢ Q;M. For any ¢ ¥+ @, we have

M(Q) _ R(G)_E(G)(F) and

(® ((®y = (8- 12®e® 5y 31e® | -

1= (M

(43)

- ](G(a)-R(¢))U8(¢)(F)]JGiwjl-l = uce)th@?Ue{Q)(F)).

Applying Theorem 3 and using (%3), we obtain the sufficient
conditions of Theorem 4.

When using Theorem Y4 to look for the parameters k . 3K

l’.-

of a linear code E & R correcting an error set E, we must check

=

s . :
2%_1 conditions (42)3; this shows the advantage of using Theorem.

4 when the number s of distinet primes in the direct-product
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decomposition of G is small.

The number of elements |E] of a code & found with the aid
of Theorem 4 depends on the choice of the parameters u(m) for
211 € € {0,1}°. This motivates the following corollary, which
gives a sufficient condition that is more convenient, though .

coarser.,

Corollary 3. A sufficient condition for the existence of a

S s K.
code £ & R, where R &G = T F({n.), |&] = T q.% (lgk.<n.),
i—q 1 soq 2 i1
correcting the error set F (§ERNE), is that
s k5 % 8 Ic,, (8) (€Y, 5(E) -1
m (q, 21y L o< (Syz-y™ Mt @y et (EY) (Ly)
i=1

S

for all ;& = (Cy,...,Cg) € {0,1}° (g#8), where 1¢1 = } C;-
| i=l
Proof. The corollary follows from Theorem U with

a . .
a{ ) = (E/ﬁ—l)HQH, in view of the fact that

S IE i 5 .5 1,5

y (7vV2-1) = ¥ (°/2-1)-(J) = 1.
) j=1 ]

L. L4 We now consider the determination of a linear code §

correcting a given error set and satisfying constraints of the

type & & K.
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S
Theorem 5. Let R, FecG= T E(ni), @ ¢c RnNTF. Let NE be the

=1
nunber of linear codes § in @ that correct the error set F and
s k.

satisfy the condiftions [g[ ==i£lqil (1£ki€ni) and £ < R.
Let P(E) ﬂ=N€~lG(kl,...,ks)l"l. C
I there exist a‘®)(@=(C,,...,C) € (0,1}, ¢ # 8, o B0y

and DéPﬂél such that

Z=u(m) = 1 — P (45)

dvk0

1 s kG (@), (§),-(F7, (8 -1

I (qil-l) Lo o ¥ (u (R U0 T(E))) (46)

qme]

then .
P(E) > Py . (L4L7)
(1,8

Proof. As before, define G (kl""’ka) by (35) and let

M
M = (R-8(F))U{@8}. In this situation, it follows from (43) that

(

conditions (34) and (46) are equivalent; hence |GM1’¢)(k1,...,k ) |

S
satisfies inequality (3%). From (38) and (45) we have

(L,¢) s (L)
¢£ﬂ_|GM Gegoe v kg [2(25-14PQ) 67 Ky 5eneskeg) e (W8

From (u48) we obtain, prmceediﬁg as in the case of (40), (41)

(4,0 1
| n GMl (kl,...,ks)| > PDIG( )(kl,.,.,ké)l* (49)
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Next, it follows from (49) in view of (22), (23), (35) that if
g (1) EﬂGé1’¢)(k1,...,k5)
¢+0 -

then £ & M. Hence, for M = (R-8(F) U {0}, we obtain

— (L8 . x)].
NE [¢£“ Gy (kl,. yX |
' £ 0 (i-1 y et (x k)] = 16 (kypeeek )l
SlnGE fCJI" ki 1_ L ,S l,t . 4y E l:. y E

inequality (49) finally implies (U7).

Corollary 4. A sufficient condition for a code £ 1n the

S s k.
group G = T E(n;) correcting an error set T (lg] = I qil,
i=1 -  mm]

tEc R, 8 € RN TF) tTo satisfy the inequality P(E) > Po 1g that

S k. C. -

T (q.T-1) T < (5J§:F;~1_“¢"(u(¢}thﬁﬁu & mn Tt o
j=1

for all & = (Cy,...5C.) € {0,1}° (§+8).

The proof of Corollary 4 follows from Theorem 5 with

2lt) = (5/22?;;1)“¢" and the identity zﬂtsfz-ﬁm-l)!¢"-=1—Pﬂ.
¢

Comparing Theorem 4 and Theorem 5, and also Corollaries
3 and U4, one sees that {as in the case of codes 1n linear spaces)
a relatively small reduction in the numbers kif=1,...,s) of

information digits (in such a way that the transmission rate




 This implie

- 720 =

S s :. » -
z k./ Z n. does not change as ns; 7 ©) will bring the proba-
1 1 |

im=] i=1 . o
bility P(E) close to unity, where P(E) 18 the probabilitTy

that any subgroup from G(El,...,ks) ie the desired code ¢&.

s a very simple procedure for searching for linear

ndes in subsets of finite Abelian groups, yielding codes which

are sufficiently cleose To optimal.

ups

that a necessary
tGdE-iﬁ a sub-

be sufficiently
on fails to

1 that the cocde

sces by the weaker

) assume that each 7

E.{D-’-li,q'l_'l}}
OIl s

L (51)

denote the

dices lie in

5. Partially Linear Codes in Subsets of Abelian Grx

5.1; I+ follows from Themreﬁ 4 and Corollary 3

condition for therexistence of a nontrivial linear
set R € 6 1is that the measure u(¢)(R(¢)) should
close to unity for all @ E'{U,l}s. If this condit
hold, we have no choice but To relinquish the deman
be linear, replacing it as in the case of linear sC

condition of partial linearity.
s
If x € G = 1 E(ni) +hen, as before, we shal
i=1
of the first n, components of x 1s an element c

each of the next n, 1s in {O,...,qz-l}, and so©
| i1 i
Let Il E,{l,...,nl}, Iici.z :nj+l,...,:E n.
j:ul :|=l -
) (I 500051
(i=2,...,8), and let P (M) (where McG.

projection of M onto the coordinate axes whose i1
S
u 1..

jem1 *
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s
Definition 3. A code & in 6= B E(ni) is said to be
- ie=]

(ml,...,ms)-linear {miini; j=1,...,8) 1ff there exlst Ii

satisfying (51) such that \Iil = m. (3=1,...58) and .
(T, 4c0e31.)
P 1 S (£) is a linear code in G.

In order to find an (ml,..*,ms)nlinear code E satisfying
the constraint § & R, where R 1s a prescribed subset of G,

we first find 1 ""’Is such that \Iil'ﬂrmi (i=1,...38)
(Il,...,Is s M.
and P (R) 1is a subgroup of G, of order I q;73 we
i=1
then try tco find a code in this subgroup possessing the desired

correcting capability.
Let p be a metric in the above group G, such that for
X = (xl,...,xs) € G, v ='(y1,...,y5) € G (xi,yi € Eiﬁi), i=Ll,.0095)

the distance between x and ¥ is

S

p(x,y) = L p:(x:5y4)
i=1

where each p; is a metric in the linear space E(ni) (e.g., the

Hamming or Lee metric). We say that a code £ & G has distance

d 1iff min plx,y) = 4.
X Y3 X,¥€&

s

Theorem 6. Let R < I E(n;) and suppose that for some
1=1

l,...,ms (lﬂmiﬁ:ﬂi, i=154--15)

m

o

5 n. 8 ni-mi ., N
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Then there exists an (ml,...,ms)-linear code £ & R with distance

4 in the metric p, such that

s Py
5] = I B T (m;,d). = (53)
jem1 9%
01 | . ,
(As before, Bq (mi,d) denotes the number of elementis 1n & maximal
i

1inear code with distance d in the metric pss in the space

E(ni) cver GF(qi).)

Proof. It was shown in [7]1 that if condition (1) holds there

exilist
i1
T ;‘{l""’nl}’"}Ii c{)})n

1
1 +1lyeeasy z n.r
=l '

J 32y A
such that 1,0 = mlrﬂlIi| =m, (i=2,...,8) and.

-

(Il,...,IE)

5
P (R) = 1 E(ni}. Let Ei be a maximal linear code

Jmee]

with distance d in the metric N in the space E(ni); we

¥

Fi
have |g&,| Bq (m;,d). Then

s
11 gi is a code with distance d,
i o i

1

s
which may be extended (by adding ) (n.-m;) coordinates to each
i=1

vector of the code) to an (ml,...,ms)—linear code £ &« R satis-
fying condition (53).

5.2. We are now interested in the asymptotic behavicr

(ni+m, i=l,...,8) of the data-transmission rate of a maximal

s
(ml,...,ms}—linear code in the group G = 1 E(ni), with distance
=1
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d in the Hamming or Lee metriec p. That is to say, for

X - (xl,...,xa) €6 and y = (yl,...,ys) €E & we have

S | _
p(x,y) -'iélpi(xi,yi) where p; 18 the Hamming or Lee metric

for all i € {1,...,s}.

The transmission rate v(g) of a code & €6 with

s k.
g = _quil, is defined as
lﬂl
8 S _1
v(g) = (] k() ng) ™.
Jua] =l
Let vo (nys..csn_ 3 |R|,d} be the transmission rate of a
qlit*':qa 1 S

maximal (ml,...,ms)-linear code in R c G with distance d 1in

the Hamming or Lee metric p.

Corollary 5. If n,>w, q; are fixed (i=l,...,8), d is

s =N,
. S N
fixed, and 0 < g4 € | R| iilqi * ¢ g, <1, where. g8, and g,
are constants, then
5 S
0 . -1 -1
vqlg_._’qs(nl,...,ns, IRI,d) 2 (izqniqi )Ciilni) (54)

(where a > b means that. Xim (a/b)hl)ii
r-»>om : |

Proof. Let ﬁl,...,ﬁs satisfy (52) for the given |R],

q; Ny (i=1,...,8), and assume moreover that if miaﬁi (1=1,...,8)
and (ml"'f‘ms} # (ﬁl,...,ﬁs), then My,e.. B, do not satisfy

(52) for the same |R], q;»n; (i=l,...,s). Then, Dby (52),



n.-f. o
5 L 1 n.- Il =] -TI1.
107 (1-qt1H3 g TG v a-RI T gt
. - 1 1 J I"=:|_
ju=l =0 1
and | 1
-1, ., -1, &1 -2;&.

i i . n.-Jj n; 5 =I.
' -1.] i 1 _ ST
< _2 (1~q; )" a; (j ) £ 1-|R| T q
J=0 1=1
| p —12/2
(where Qﬂ(x} = J e dzt ).
T ¥
) s -n. _ |
Now if 0 < g € |Rli£1qit < €, < 1, then it follows from
(55) that | |
-1 - . } | ‘
n.q: % ﬁi . (i=l,...,8). (56)
By the definition of" vP ' (N, 5ee.slt ;3|R[,dd, it follows from
Qqs+ v vs9g 1 8 .

Theorem ©& that

P ( RL,4) » () log = Boich.,d)) (] n,)"L.(s7)
) L B ; ; .. . * 'k_ . -
JETETRRRT Faue i Rl 12 %Bay oy TN

We know [1] that when P; is the Hamming or Lee metric, theh for

P .
any fixed d, 1Ggq' Bq% (ﬁi,d) " ﬁi as ﬁi+m; thus (54) fellows
i i '

from (56) and (57}, cmmpleting the proof.

Note that if n; ™ n. {i,j=l,...,s), then from (54)

o 18 1 .
vql,...,qE(“1='“=“si [R[,d) 2 s iilqi" (58)
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As a concluding remark, wWe note that (54) and (58) imply

that, if n; (i=1,...,8) ape sufficiently large, there exist nonﬁrfv'
ubsets of small

trivial (ml,...,ms)-linear codes in arbitrary s

measure.
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Tndex terms:

Codes in subsets of linear Spaces, codes in subsets of finite

Abelian groups, partially 1inear codes in subsets of spaces and of

gYOUPS s data-transmission rate of codes in subsets of spaces and

of groups.
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