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LINEAR CHECKING EQUATIONS AND ERROR-CORRECTING CAPABILITY FOR
COMPUTATION CHANNELS

M. G. KARPOVSKY
Tel-Aviv University
Tel-Aviv, Israel

E. A. TRACHTENBERG
Technion-Ismael Institute of Technology
IQaﬂh,Ema:l

Detection and correction of errors of arbitrary multiplicity which may appear in the
input of computation channel (defined over an arbitrary finite group) or within the
channel itself are investigated. The problem of building optimal checks for the given
computation channel is sclved and Optimal checks are given for some important stan-
dard computer blocks (or standard subroutines).

Theorems are given for the soluticn of the problem of errer detecting and correcting
capability for a linear checke System by menmoryless and memory-aided decoding proce-
dures. This capability is ETOUp structure independent and grows exponentially when
a transition from memoryless to mermory-aided decoding is made.

1. ERROR DETECTION AND CORRECTION IN adder I with initial state -Q. After
COMPUTATION CHANNELS L elementary additions and subtrac-

tion of ¢(t), we obtain a result

Let & be a finite group. By a compu- ("syndrome") of the check.

tation channel f over § wne mean any
digital device or computer program
computing the function f : g - c,
where C is the field of complex num-
bers. Examples of such channels over
Abelian groups e the blocks of the

arithmetic unit of a cemputer, networks v
whose operation is described by two = e
or many =- valued switching functicons, .

etc. As examples of channels over non- -7 - COMPUTA-

Abelian groups we note rearrangeable trf---———-- TION “*EHH
switching networks, [1] programs for o CHANNEL
interconnecting telephone lines, [2)
linear control systems over non-Abelian
groups, [3) etc.
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°¥ an error in a channel f we mean 2 X
<atastrophic structural failure in s LINEAR NETWORK FOR SYWDROME -Q
device or an error in a text of a pro- I _ COMPUTATIDN_ _ J
Eram computing f : 6 ~ ¢ . ST
For error detection or corr ction in :]t 9;4
e e on i -1
8 channel { we uyse sSystems of linear L BLOCK COMPUTING GROUP OPERATION.
checks d t
: )
x i 1 1 d
LEG
{13} —4£J——L - STEP DELAY ELEMENT.

{i=1|21i--!k} +
where & denotes the group convolution ADDER-ACCUMULATOR WITH
in G_ and (O the group operation in INITIAL STATE -Q .
G ; L '€6 the inverse of FIG. 1
£327):9,: G+C are some "simple™ checking '
functions and‘QiEE (i=1,2,...,%).
o simplify the error detection and Lrror detection with the aid of one check
correction procedure, we confine our ©f the type (1) in channels over Abelian
discussion to the case a.{z) ¢ {0,1} Lroups was considered in (4). This werk is
for all (€6 and 121,2,...,k. # devoted to the general case of error detec-
network 1HTEPFFEEEt1ﬂh of one :h?:k tion or correctien in channels over arbit-
qf this type is illustrated in fig. 1. rary finite groups with the aid of systems
Here of linear checks.
algl=] iff (E{I:CJ---+‘{L} e attribute an error e(e: G = C) to a

_ _ _ channel £ |, if the latter Yields f + ¢
(I is the identity of G). instead of f .
In the network of fig. 1, sigrals cor- Definition 1.
rtiSFEdinE to f{t),f(0O "), ...,
f*f - ') are applied ar SuCCcessive A syndrome EEE:.:{EEE}"__‘S{E)] of an
instafits of tire to the input of the error e for a chafinel £ Fuith checks
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{1 is defined as follows-

EFE)={afaif+e}}-mi—Qi:afae,

2

{i=1‘2’iil ’.k] [ ]

Computation of the syndrome §

be implemented with the aid of the COmp~-

¥e shall considep two methods for detec-
tion opr f2yTrection of e by its syn-
drome § » hamely memoryless de-
coding and memory-aided decoding,

Definition 2.

(i) A set F of errors in a channel ¥
with checks (1) is detected by mem-
oryless decnding if, for any e€ff , it
follows from e{t} # 0 +that there
exists iE{l,...,k}such that

{ . .
SiE}(t}fﬂ. (ii) A set E of errors is

corrected by nemoryless decoding if for
any €1+€,€E, it follows from el{t]feztt]

that there exists iE{l,...,k} guch that
{ell {EEJ

Si (t)isi {1).

Definition 3.

(i) Aset E of €rrors is detected by

We resort to methods of abstract har-
monic arnalysis on @ » Which vyield

and correcting capability. Algorithms
of fast Fourier transforms over 65,63

grams. An analogous dpproach based on
harmonie andlysis over g was used,
for functions on finite groups, in
{2,7;8,9,107 .

2. LINEAR CHECKING EQUATIONS FOR COMPU-~
TATION CHANNELS

In this section we consider the problern
of finding, for a Eiven channel ¥ ,
optimal functions "a: G = {0,2}, ¢azp)
w: G =+ € and constant § € ¢ such
that aQ® f - P+ Q. It is natural to
use lall , the number of nonzere values
of the function a (or the Karring
welght of a) as the complexity eriter-
ion for the function a . The same
criterion will be used for estimating
the complexity of the function ¢ .
(liote that the Hamming weight as a cor.-
pPlexity eriterion for functions de-
fined on finite Eroups, figured also,
for example in Synthesis protlems—of
optinal linear contrcl £ysters for a
Eiven input/output pair {3).)

The protlem thug CONSists in finding

and wn such thrat

ac:pt Pt

. {
a®fz g+ qpt”

pin daltle=fa 4o
We impose a further natural constrain
on the class of checking funetions a
namely, a(y) = 1 iff cEGj' where

is any normal subgroup of € ,

Fourier and inverse Fourier transforms
may be defined for the function
f:6+¢C, as follows:

Flu) = d le]™* T fer) R (t71) (
teG

f€r) = ] trace(f(w)R (1)), (s
R €8 |

Bere [B] is the cardinality of G;

K (t) is the w-th irreducible unitar:

rgpresentaticn of G in a space of di.

mension d over the field ¢ {11);
for any * t€G, Rm{t} is a (dmldm]

unitary representations of @ . { Con-
Struction methods for all non-equiva-

[113. 1n (5) G is the set of all non-eq
valent irreducible representations of ¢
For the Fourier transform f+% on th
ETOup € defined by (4), (5) the usual
Properties of linearity, translation,

-convolution, Plancherel. Poisson, Wiene

Khinchine_thecrems, etc. are valid (5ee
E'g',‘ {33)'

A subsget FE G is eaia to be closed
(notation P=[P}) if for any R_¢P

{RMEGJ we have kern Rkaern P, where

kernP= n kernr = N {tiR (t)=F)
R €p “Rr ep w
Lo k!
and I ig an identity matrix.

Ve next denote

a® = aqrp)y | (6)
R €[P] ¥

(for any {P]Eé n([P]I*Ikern[PJE=IGIJ

and for a Eiven f:6 + and any Y€C,teg

ﬁf{T,T]={RmJf{m}=me'Gl-]Rme)]U{Rg}
{RD[t) * 1 for any treg ). {7)

Theorem j.

Let for a given f » [Pl g :.0y,1)
for some YEC , T€EG . Then

Haoptﬂ*nwbptﬂifl*fﬁignTl)Ikern£PJ] (8)

ffsignvl={ﬁ' i
» = L

For the proof of Theorem 1 jp suffices
te put

1, t€kern {P];
a{t1={ s o(t)eyaln); (9)
0, tékern {P).
and

Aarn



- Q={kern [PI] [G]™¥(] f(g)-vy). (10)
LEG
We note alsc that if Gi is the given
normal subgroup of & and f:G+C the given
channel then the check S F=pt(

1, tEGi
with a(t) = {
o, t¢Gi

and wlt)=val{¥®Dr) exists iff [kernGi] =
= {lenu{t}=E for all tEGi}Eﬂ {y,1).

- For the network implementation of
wlt)=y a(®Or) we can make use of the
fact that from (9)

(Or)zalOt) = J 5 -
@ E€kern[p] T 2t @4

(§-denoting the Kronecker delta).

For the important case of groups of
binary n-vectors with componentwise
addition mod 2 we have |G|=2",

dm=1 for all RuE G, Rm is the w-th
Walsh funection [B], R, (t)€{21} for al1
RNE G and tE€G; G is a multiplicative
group iscmerphic to 8; P=[P) iff P ig a
subgroup of G,
n(fPJ}=i[FJ|E{E',21,...,En}ﬁand we can
use the function ﬂf(T)={Rmff{m}=2-nT}u
U{RE} instead of nfiy,T} in Theorem 1.
Of special interest is the particular
case aPf=Q with ¢=0, Although the rela-
vant class of channels is relatively
smali, it will be seen below that a
large variety of standard computer
tilocks (or standard subroutines) have
-31rly simple optimal checks of this

vpe. Some important examples of chan-
21s f, checks a®f=Q and the complexi-

ties Jla]l of these checks are given in

table ].

Computation channel checkes are given in

the lower part
for € a group o

of table 1 (nos. 7-10)
f p-ary n-vectors with

compopnentwise addition mod p. 1In table
1, X={xu,...,xn_1) denctes both the ele-

ment XeEQG

GEXEpn-l

l1.e, x=_[

n=1

1

D

n-1-1
X.p

and the natural numbep

The upper part of table 1 (nos. 1-8B) is
devoted to the special case p=2.

In table 1,t=

distance 5+1 [12] and
I
vI:(II,E;+:l}:={'[=:{1]uiq--- 'Tllh]i]!

(1,...,1) , 0 = (0,...,0),

- P-l,...,;p=-1), J=(jl"'!jjl
J€{0,...,p-1); for definition of Ham-
ming's metrie dH[x,Y) and Lee's metric

dL{X,Y} see [12]; FP(n,5+1} is the maxi-

mal linear code in the n-dimensional
linear space over GF(p) with Hamming's

n-1
;EhTiRi:n

for all {xu,...,xn_l}E?P(n,s+l)l.

3. ERROR DETECTING AND CORRECTING
CAPABILITY OF SYSTEMS OF LINEAR

CHECKS.,

3

Let there be a system of k checks, con-
structed in accordance with Thecrem 1

for a given channel f

. B £
EJ p

. ¥

Qj Y 3

oy
-

1425000,k . (11)

(aj(t)=1 iff t€G,, G. is a normal sub-

group in G, IGjI > 1.)

Definition

> .

A system of checks (11) is said to Lbe

orthogonal if GjnGr

J.T

{(3#¢r;

threshold decodin

i1}

1:2,...,k). (An analogous
definition is used in the theory of

codes [12].)

E for error-correcting

By the multiplicity of an error e wa
mean fle|'. In a channel f:G~C this de-
finition is natural if the

. Tabla 1
Linear checkz for same in;nrtml CoRpUtaTion chanrtln
no Lharne] wti-nitien c7 Chesk i Looplexity
B - luaztion ’
Sunter n=1 1
fixds | o= X}ty )=n : 7
f:q '
“TIUp ard down n=J  he] .
Counter FiR, ¥ J x. - Ty AL SN TR T RYY.
\ imp 1 ig 4 . ?
4laesarator [ 1.7} '
H::.'f]nl C.E=Y AL SRS NS | IRTY FYY. 2
1 et L *
% |Adrer TEX % iexwy TR, Y eriral y@¥)a712" 7y 2
i sLtraz-ar Tin Yiza-¥ - YTeT el Y7 7
BRI ;T er Fla TAR-Y P T oY Y I+T1L, VTS .
I RS TSP R T
“Tllocputation o7 2
HaEming's met- FOEYivd (X1} I rixe! Yiemdp.1) P
rac J
M lorputetion of| fix_ Yied (X T ri Terdt n."‘;?? ——-1—_'"'”]?“ P
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l'l-i} 'i! 1
¥| Cuadra=ji¢ ferg|Fix,¥Yin 4 E® fixe)_ _var_ )
L HI Y P myweg ¥ o+ ¥ -'-‘..-.J;"n 1 7 *
K, 2,3 78
" g ip-12%2 1
vl i
[
Polyrrulyl ' ! ;
IJII Com;viation Fiz:s } '.t' * 4 T '
[ inl ¥ Ix m+3) P
" “ "‘
I | -I'I'Iin.--nl" I =amy pheee
i




I T P

errors in computing f{t) are indepen-
dent for different t - as, for example,
in the case f(t} is information stored
in a memory cell with address t.

The following theorem solves the problem
of maximal multiplicity of errors de-
tected or corrected by a system (11) of
k orthogonal checks in the case of mem-
oryless decoding {see Def. 2).

Thecrem 3.

For any f:G - C and any orthegonal
system of X checks, we have for mem-
oryless decoding:

(i) All errors with multiplicity at
most Xk are detected and all those
with multiplicity at most

[ 3 ) are corrected;
{ii) There exist errors with multg-

plicity k+l , [El + 1, which are not
detected and not corrected, respec-
tively.

Xy

(Here [%J is the greatest integer X 7

Thecrem 2 and Definition 1 yield a
method for error coerrection by memory-

less decoding, analogous to the majority .

logic appreach in error-correcting codes
[12]. Let X = 22+1 and Jlell < £; then,
for any t€G, there exist ilg---,it*l

such that 5 87(e)=...=5%%) (t3:ze(t). We
13 141

thus have a simple means of errcr corr-
ection by the "majority role" for a syn-

drome-vector {SEE){t},...,E;E}(t)).

In the parallel case of memcry—aidﬁd
decoding, let 1={11,...,1k}E{ﬂ,1] and

t, A. = 1
A.T ={ L . For a system (11) of
) I, 45=0
X orthogenal checks we denote
k _
hi={tec|t= A.t-, t.#I,t.€G.}. Sup-
M{x)={ y ;25 3Ty T3710T486, up
pose MA)NM{A') = @ {12)

(3 empty set; AfA'"; l,l'E{ﬂ,llk}.

{Note that from (12) we have
k £ log, & .)

Thecrem 4.

For any f : ¢ - C and any ¢rthogenal
system of k checks satisfying (12}
we have for memory-aided decoding

(i) All errors with multiplicity at

most Ek-l are detected, and all those

with multiplicity at most 2%"1.1 are

corrected.
(ii) There exist errors with multipli-

city Ek, ?kil, which are nct detected

and not corrected respectively.

Corollary 1.

Let, for a given syster (11} of k
orthogonal checks satisfying (12) ,

F = {flaj‘3 f=e.*Q (3=1,2,...,k}].
Then for any f,, f, €T, Hfl—f2ﬂ12k .

L

Thus, any system of k orthogonal
checks defines a code with Hamming dis-

tance Ek .

In conclusion, Theorems 3 and 4 indi-
cate that the error detecting and cor-
recting capability of a system of or-
thogonal checks is independent of the
structure of the original group € ,
and increases exponentially when re-
sorting to memory-aided decoding.

4. INPUT-ERROR CORRECTION IN COMPUTA-
TION CHANNELS

In this section we consider errors in
an input signal t€G for a channel
f{t). These are introduced by errors
in a message generator or in data tran
mission between the latter and a compu:
tation channel. -

Definition 6.

By an input error for a channel f:G6+C
we mean any ordered pair
ltl,tEJEGrG(tlﬁtz). An error (t,,t,)

is corrected by a channel iff
f[t1]=f(t2].

Let pf{.,.) be a metric on G such th

p{tlﬂt,tzﬂt)=p{tl,t2] for any T’tl'tEE

(1f, for example, € is a group of p-ar
vectors, g may be the Hamming or Lee
metric [12].) By multiplieity of an
error (tl'tE} we Mmean p{tl,tzi.

Let Hftt} be a pumber of errors witl

multiplicity at mest %, corrected by
a channel f. Set f (t)=6 s tThen
] fl(t),q

by the Wiener-Khinchine theorem for
G (see e.g.,L3]) we have

N (L) = ; } N, (2,1)=
f 0<p(I,7)<t q Iq (13)
- - ﬁ* - )
Jriga |G| f (w)f (w))})(T.

0<p(I,T)<tk g © 9 g

Here F ! 4is5 the inverse Fourier tra;
o

form (E) over G and fq{m} the complex

conjugate of the matrix fq(m}. Formul.

{(13) in conjunction with the algorith
of the fast Fourier transform over

G[5,6] yvields a simple method for ana
eiz of the error-correcting capabilit
Hfitl with reference to input errors.

(Such a method is useful when the num
ber of different values of f is rela-
tively small; in the case
m
= 1 Gj‘ the number of elementary
3=1 .
cperations required for determining

m
N, {t,r)is 2|¢] ] |6.1*|6]land the cc
fn =1 )

responding number of required memory
cells is TG].)

The lower bound for the erreor-correc-
ting capability is estimated as follc
Let ?t(r}={clp{t,c}ir}. v{r)=]?t{r}i

for any tEG,



Wir)=rmaxiV_(r)nv_(r)| and X =Tn_(4}).
t#y * ¢ tgf

Thecrem §.

Let F(A) be the class of all functions

£:6 + £ with at most A different valiues.

Then -

(i} min N.<[G|AT)(|g]-A) {iu4)
fEF(A)

and there exists anF{A] such that

Ne =lG|A™I(|6]-AY if A divides |G].
[

(ii) If W([0,521)>0 then for any L

min Hffll_i
fEF(A) {15)

- 22ACW(10,5¢00)70¢|GlAT V(0,52 - Jg[ )",

¥, x>0 ;
where x+ = |

0, x<0 .

The bound (15) is useful for small &, |
For example, if f is a function of a g-

valued logic (Azq) and 222, we have for

the Hamming metric [12]

V(1)=1+n(g-1), W(1l)=q, and by (15)
N (2)22¢" 1 (n-1) (g-1)

and for 32q<2n, nx? and Lee metric [121],

3, q=3
VflJ=1+2n. W{1)={2’ 3}3 3

s 3™ 1enqy, q=3

N (2}}{
£ _?qn{Zn—{q—ll), g>3

As for the overall error-cerrecting
capability (i.e. with reference to both
types of errors}, we have

Carﬂllagx 2.

Let f:G+C and p a metric on G.
Then for any system of k orthogonal
checks (11}, if

IGitvtill—li-

- - ﬂ* [ ]
¥ PF QLG f (w)f (9))) (1)
Deo(I,T)<2, q @ 9

+ 2, < B(K) (16)

then input errors with multiplicity at
most 11 Qﬂd channel errors with melti-

plicity at mest Y, are corrected by mem-
oryless decoding if B(k]=£%], and by
memory-aided decoding if the checks =at-
isfy (12) and B(k)=2%"1_7.

Note that a less refined but rore cone-
venient condition for correcting buth
input errors with multiplicity at rost
| § and channel) errors with rultj-
plicity at most 1 is cobtainzbie fron
corcllary 2 by {13; angd (1%). '
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ERROR DETECTION AND CORRECTION . 339

We consider now the iﬁpunant case of Abelian group G and Galois field
K = GF(g"). In this case G may be represented as a direct product of cychic
subgroups ‘

G=H, x - xH,, el €G, 1t = (f s ta) L0, 1o, | Hy b — I},

| H; | is a power of a prime number, the group operation is componentwise
addition mod | H; |, j = 1,.... n. Let u be the least common multiple of | #; |,...,
| H, | and “+/T € GF(g'}, i.¢. the equation x* = 1 is solvable in GF(g") or, in other
words, plg" — 1. Since p || G| then g1]{ G| and GF(g") is a splitting field
for G. In this case d, = 1 for all wel, G=52P % XP,, & is a multi-
plicative group of characters which 1s isomorphic to G and H; isomorphic to
P;, ik, w = (10 oy g}y @w; €{0, Loy | H;| — 1} and we have

[w, £] = Hl £, w;, 1, €40, 1oy | Hy{ — 1}, (GF(gN). (5
v .
Here £; = Hil/Te GF(g) (j = 1,.... B)-

For the case K — C, & = exp(2mif| H; ), i ="(—1pPandif | H, | = - =
| H, | then, [w, -] is known as Chrestenson functions and for g = 2 as Walsh
functions (see, e.g., Karpovsky, 1976).

Let f: G — K. It follows by (3), (4) that the Fourier transforms Fg 2 f — f
and inverse Fourier transforms Fg f — f on the group G in the field K may be
defined as follows

d‘” .
f@) = B <h e des (©)

() =< [ the - - (7)

For the Fourier transform Fy y: f — f on the group G in the field K the usual
properties of linearity, translation of arguments, convolution, Plancherel,

Wiener-Khinchine, Poisson theorems are valid. -
Now let 2 C G and denote |

QLA (Y kemw = {} {t|[e 1] = E} E-the identity matrix.
Ll

weld

A subset 2 C G is said to be closed (notation £ = ) if for any w ¢ £ we have
0L ¢ Kern w. Then for every normal subgroup i of G there is 2 unique 2 C G

such that 0+ — H. Moreover, any £2 is isomorphic to the dual object aﬁl of
the factor group G/3* and clements of the set 2 are constants on the cosets of G
module $2%; in addition if o{{J) & ¥ .o 4.2 then o(2)1] G|, {G) = | G| and
()3 =G|,

Exampie 1. Let f(f) = 2 — $70t — 35,1 {0,..., 2° — ]} and f represented

e l.rl"“"- o1, T = P T T T Rl i Tl T R W AT e P T . leﬂ-_ll,vﬁﬁ_nh.qu.q‘q .:,.;-..r-u'hmﬂl !lwqﬂ.qh N P Py eyl HeS e arperpial e el | 1 B L T E O
1 ) A i - "

e R e T P A e g e B
r
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ERROR DETECTION AND. CORRECTION 341

in the binary form ¢ = (8, ,..., £g), 1 € {0, 1}. Then f: €8 — € where (.8 1s the
group of binary vecters with eight components, and the group operation is
componentwise addition mod 2.

All the representations of C,3in C have degree one, and in 2 according with (5)

& 2
[m: t] = CXP (ﬂ-(_l}lﬂ Z mftj) = (__1}111_1&:!;!;; Wy, 1 €10, 1}'

L] J‘.=1

Fourier (Walsh) transform in this case defined by formula

Flw)y =25 T fy—1)5mests

tel,?
For the polynomidl f(f) = £2 — 170t — 35 we have f(w) = 0 if || =
E?:l L :::" 2. ~ | ™
The dual object C,8 is isomorphic to C,8 and 2 = 2 C C8iff £ is a subgroup
of C,8.

Linear checks of type (I) for this polynomial will be constructed in Section 4,
and error-detecting and correcting capabilities of these checks will be considered
in Section 6.

ExamrLE 2. Let G be the multiplication group of the twelve (3 X 3})-
matrices £ = (¢; ;), i, = 1, 2, 3 over the field C represented in Table I. Note
that G is isomorphic to the direct product of the cyclic group C, = {0, 1} of
order 2 with generating element 1 and the symmetric group of permutations

i S, = {0, (132), {123}, (12}, {13}, (23)} (seec Table I). Table I lists also all absolutely
O irreducible representations for the given group G = C, X 8, in GF(11){GF(11)
| is a splitting field for C, X 55 .)
All closed subsets £2 C G with the corresponding «(£2) and £ are represented
for the given group G = €, X S m Table II.

TABLE I1 T
v of ) i
ﬂ{l {“} l {D: 1} 2: 3: 4: 5: 6: T: 8: gr lﬂ, 1]}
2, {0, 1} 2 01,2 3,4, 5}
'ﬁl {ﬂ: 2} 2 {ﬂ: 11 2: 'ﬁ', ?: 8'}
2, {0, 3} 2 £0,1,2,9, 10,11}
g, = 10,1,2,3 4 f0,1,2
o {0,2, 4} 6 10, 6)
7, {0,1,2,3,4,5} 12 {0}
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342 KARPOVSKY AND TRACHTENEERG
3. CGMPUTJ&TIDN_ OF FOURIER TRANSFORMS FOR FiNite Groop @ AND FIELD K

We consider methods of Computation of Foyrier Fe.x and inverse Fourier

F e x transforms. For the case when G i 4 EToup of binary (g-ary) n-vectars, the

Fourier transform on 7 in the field ¢ of tomplex numbers ig called the Walgh.
Hadamard (Chrestensan-Hadamard} transform, In gyeh Cases, there exjgt
algorithms of the Fast Walsh-Hadamard (Chrﬂstensun-Hadamard] lransforms,
which require 5 - 2% (m - g™ elementary operations, ‘and 2%{gm) memory cells to
Compute . . or File . Those algorithms are sencralized for the cage where G
is an arbitrary finjte Abehian goup and X — (' ip {(Apple and Wintz, 19713. In

{'Karpuvsk}r, 1977¢) these algorithms were given for G and arbitrary (nomAbeIian}

THEOREM 1. Lo (7 T H, . For WY [ G K set f— fou f=Fm
wnd for any w = (a, wn) denote by ( fim) (e ey ) the (., % d, )-block
MaLrixy recejued by partitioning of f ey ..., @) wwith blocks of dimensions

1 n-—1

f”-”=<(f”wﬂ,[-,rﬂ>m (J=mn—1. 1, ~(10)

(Here (/) (e .. @is Gy ey 1) 05 g (4o, X d, )-block matriy recetved by
Parlitioning of f o CTR—— i1 et ey 1) with Block of diinensions (Hf:i 4, X
I1:21d,). Then

; d,

J(w) = Ta1 /el 8y = foy (K). (11

Proof. By (3), (6}, (8) we have for any w e ¢ and any t ¢ G
e o o m e (8
f{‘“):m_"<]‘:[m: Do = G <f:§i_?[;!fi.]>ﬂ

— T%T- < <<fr [m?l ’ '}>Hﬂ ¥ [‘ﬂ"'ﬂ-—l » -]>Hﬂ-! ey [ml * _-T>H1 » {K}

et e -.-\_,-1-,-.,..%—
P = .
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and in view of (9) f(w) = 4,/|.G | f®(w), (K). Similasly, in view of (3), (7), (8)
we have

10 = <Al e = (ALY

j=1

= { (‘((((fm}} P:.[‘: fn])ﬁﬂ)m s [ tu—11>}?ﬂ_1)p el H])’J’i‘] -

Hence, by (10), we have f(#) = fO1).

It tollows from {9}, (10) in view of {2) that cach of the functions Jun, fu-n
(j=nn—1,.,isdefined at | G| = 1"];;1 | £f; | points and the number of
memery cells for storage f4-1) or fU-1 equals | G [. For computation of any
specific value of 91 or f U~V we need | H, | multiplications. Consequently,
the total number of multiplications for computing f or f by Theorem | equals

|G |3, | Hy .

4. ConNsTRUCTION OF OpriMaL CHECKS

The number || 3, || of nonzero values of 8 for the check § ®f =9
MEYf, 91 G—=K, 84:G-—{0,1},Ae K) affects the number of additions
needed for checking the given f when fis calculated by a computer program, and
affects the network complexity when f is realized by a network (see Section 3).
Accordingly, we use the || 8, || as a complexity criterion for the function 8y -
Let, for the given f: G — Kand anyye K, 7€ G,

. 7) & Jolf(w) = gl 71| U 0}, (K), (12)

where [0, 2] = | forall e G.

TueoreM 2. Let f: G — K, K be any splitting field for G with char K = 0
or char K + | ' |. Then
s |9
(Bps W IX)E) = ¥o,5.(t © 7) + TG (Z F(y — }f), (K)forallte G (13)

e G

I.ﬁ.ﬂ C Qf(?i T)'
Proof. Let £2* be a normal subgroup in . We first prove that if

I, £ |
)=y epn * (14)
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344 KARPOVSKY AND TRACHTENBERG
_ _ then
(J * | —d—‘“—lﬁﬂﬂ, wel;

Ogulw) = { TG (K) (15)

0, w ¢

(Ois (d, X d,)-zero matrix}.
By (6)
d

By (w) = -]—GT‘;‘I— Y, fw, £, (R). (16)

1={31

If wefd, then bguw) = d ] G110 [ E, (K). If ¢ then w %= 0 since
0effor every {2 C G, Hence, by (3), (41 forw ¢ 2

d’ .
Sﬂl(ﬂu) = = Z [es, 1'_1] = L Z [e, I_IH'D, f] = 0, (K)
] G tefil F G te ol -

From (13) and ( 15) by the theorems of convolution and translation or arguments

for Fourier transform fe.x we have for any o c (7

T(%-zf(;:), o = 0;

fly= {161 & (17

and by (17} in 2 view of definition (I2) we have 2 C L4y, 7). Conversely, if
02 C Oy, 7), then (17) is satisfied for any w € £2 and (13) is also satisfied.
It will be shown in the next section that the complexity of a network implemen-
s tation of a check (13} for the given channej f: G — KX depends only on the
(./ complexity || §;, || = 21c6 85(2) of the function og: G — {0, 13.
. Thus, by Theorem 2 we have the following procedure for construction of the
best checking equation (13).

1. For the given f: G — K, compute by (6) or by (3), (11) £
2. By {12), construct the sets R4y, 1).

3. For the given group G, construct all closed subsets {3 of the dual
object (7,

4. Find yppi 6 K, Topt € G, $opt C G from the condition

4

TN A, D) & max o) 2 o) (18)
B 16 |
(ﬂ:(ﬂ} ——wgﬂ d: = -——-—IQJ_i )

5. Construct 8pi: G — {0, 1} by (14), for Y == Yopts T = 7opt, [ .Qgpt .
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We note that for any f, y, 7 the set £2,(y, 7} depends on K. Consequently, the
sét $2opt also depends on K. This poses and apparently quire difficult problem:
optimal selection of a field K minimizing the complexity of the check.

We note also that if Im f N then transition from C to any ficld GF{g}
(¢ — a prime and ¢ >> max, f(x}) may result only in the increasing of | 24y, 7)|
for all y, 7. Consequently, of Qopt), generally speaking, increases and the com-
plexity of the check is reduced. {See definition of a{2)} and £2* in Section 2 and
(14). See also Example 5.) .

ExampPLE 3. Let fi: Cy % C3— GF(11) is defined by Table 1. (see also

 Example 2; absclutely irreducible representations of Cy X C, in GF(11} are

T .
given in Table I; closéd subsets @ C C, % 8, , «(£2) and O+ are represented for

C, X Sy in Table 11.}
We will find now by Theorem 2 the optimal checking equation for f; . Table I11
lists the Fouricr transform fi(w) in GF(11) clmputed by (6}. Then foreveryr€ &

— {0!1:-2;355}, 1f -};30;
£, (v, T} = ;{0}, AT

By (18)
Yoot — 0; Qﬂﬂi =0, = {D: 1,2, 3} ﬁé—ﬂt — {U: I, 2}

Since for our group 171 = 2, 271 = 1 we have by (13) the following checking
equation for f; .

FE) 4 it O 1)+ £t ©2) = 1, (GF(11), for
and f e (7.

We now apply Theorem 2 in the important case of pseudoboolean channels.:

By “pseudoboolean channel” we mean any device or any program calcujating
a function from n binary arguments. For this case, G = C,* is a group of binary
n-vectors with componentwise addition mod 2.

If K is a finite field, the necessary and sufficient condition for existence of
absolutely irreducible representations of C, in K is that | K| be odd. The
Fourier transform in this case is known as the Walsh-Galois transform and in
the case K = C as the Walsh-Hadamard transform (Karpovsky, 1976).

We denote for pseudoboolean channels

Qy) & {w]flw) = y2 "}V {0} (19)
Then, since for pseudoboolean channels o{$2) = | 2| instead of (18), we have
fEI'I' 'ﬂ]]‘t
max max [2] = ﬂggg;{aimﬁm == | Qopt |- (20)
.
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TABLE III
w (wy , a,) Ale) felw), (GF(11y) S, (C)
0 (0, 0) 4 8 5
I (1, 0) 0 0 0
2 0, 1 0 9 —1
3 (I, 1} 0 5 4
' 7 9 9 10 21— 3
d @ I 2 —v'3

6 243
0 10

To simplify this procedure we may replace vy, and Lot by Yopt and ‘Gc:pt
where

max [ 200 = 2650)  and max [0 = (1. (21)

+

ﬂgﬂf{vﬂp-[_}

{(Note that the complexity of the check constructed by (21} is, generally speaking,
higher than that of the check constructed by (20).)

EXAMPLE 4. For the pscudoboolean chanpel f@) =12 170 — 35, f:
Co® — Cfrom the Example | we haveﬂ’m) = 0,]l wl = Z?ql ay = 5, | Q40 ==
28— (8 _ ) — (&) = 219, vo0e = 0 and £ may be chosen as a linear space
over GF(2) with basis {(1100 1000), (or1 103100), (007 16610y, (10010001}, Then
Hy 824 is a2 linear space with basis {(IGGU!O{H),({]IE}{] 1100), (001001 10),
(0001 0011)}. Since the for every ¢t e Cf 2 = 1 we have by (13} for M =
% — 170t — 35: Zreﬂl FEW ) = 120 (W stands for componentwise addition
mod 2}. Note that this check is not unique for 12 — 70 — 35. For example we
Mmay replace H| by the subspace H, with basis {1000 1110), (G100 1101),
{00101011), (0061 000 1)},

Let G = H % - x H, . In some cases It is important to know whether
there exists the check gencrated by the given subgroup H, for the channe] £
G — K. For ¢xample (see Section 2), in the case where H, 1s a cyclic group, the
network implementation of the check can be essentially simplified,

For every we & (G=H x - % .} we denote o ~ (1 5eey a), we

| w&{0, 1, | H, | — I}, r = L2, n (see Section 2}. Then, for the given

J:G— K there exists a check (8;;} ® i) = ySHJ_{t O r) 4+ | H; [f] G

me——wr—rs mauy Y meme -
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(Zeo f(£) — ¥), (K) generated by the normal subgroup H; iff for eVery w =

(""-'1 pemey Q5 4, U:r Wirl 3oy ‘Wn)r

w e Ly, 7). (22)

Indecd, (22) follows from the proof of Theorem 1, in view of

o lw; =0 = 1y, .

ExamrLE 5, Let channel Jo: G — GF(11) {where ¢ — Cy X 8,) is defined
by Table I. The indexing of the elements 1€ G by vectors (7, &), heC,,
12€5; Is given in Table I. In this case w = {a, w), (w;€C,, w, € §,),
w €40, 1}, w,€{0, 1, 2). The indexing of the representation o & (- by vectors
@ = {ew, , wy) is given in Table I1]. |

From this table it follows that 2. = {(0, 0), (0, 1), (0, 2)} = 2 (2, 4). Hence
by (22) C, is the subgroup of G, generating the cyclic check . -

JO THt© 6) = 2t © 4) + 1, (€, = (0, 63, (GF(11),

1t follows from Tables II and I that if we consider foas f5: G — C, then a
non-trivial cyclic check fro J» does not exist.

We consider now construction of linear checks for a device or a computer
program calculating the system of functions AN S N 1P~ TN K(f =0,
Lo, s — 1). Let G be come group with s elements. The system { ), fls-1n
may then be considered as A computation channel f: G ¥ G > K over the
group G¥! X @, and the methods described in this section may be made of use
in finding the checks for f {and consequently for the given system { f0
SE). In this connection we have an apparently quite difficult problem of
optimal selection of a group G of the given order 5 — | G | minimizing the
complexity of the check,

5. IMPLEMENTATION oF LINEAR CHEeckIng EQuAaTIONS
FOR THE COMPUTATION CHANNEL

We attribute an error ¢ (6:G-—> K)toa channel f: G - K if the latter yields
J -+ ¢ (K) instead of /. (In other words, we use the additive method to describe
the influence of errors in the channel.)

The procedure of error detection or correction is divided in two steps, as is
usually done in coding theory: first, we compute the results of the checks (1),
calied the error syndrome; secondly, we detect or correct errors by the computed
syndrome. We give now the formal definitions, o

Let X; be some chosen fields and f: G — (", K, be the given channel with
the system of checks Ou, ®f =@ + M, (K). Let e: ¢ — N;-: X; be an error
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in the channel f. By the syndrome St of an error e, we mean the systcm of
functions §}* G — K; defined as:

S AS, ®(fte)—p—A = 8. @ e, (K, (7= 1,m,m).  (23)

In this section we consider methods for syndrome computation. In practice,
computation of the syndrome .§**) may be implemented with the aid of the
computer program or the hinear discrete network contzining only the delay
clements, the adder in the field X and elements realizing the group operation {-.

In the first case the quantity Z;-H:l | 04, il {see preceding section) is the number

of elementary addition in computing the syndrome S, In the second, it deter-
mines the complexity of the corresponding discrete network, i.e. the number of
elements needed for its realization and the time for computing the syndrome
(see Fig. 1, below).

Let { f®,..., f1=-13} be the given system of functions f: G — K, (i = 0,...,

error a
r— = — —r
R L
I -1 J J’ ¥ l
l gls-r) ..lﬁiiﬁ-lll
d d 4 — e e N el =
¢ I | \ ;
ILinear network for syndrome
computation . E [C-hek
N B Sy ol
an
T
Y LI T

v
Syndrome S L

JO'S
(%)——;'i Block computing gFronp operation.
|
""rd__}"'* One-step dolay element.
J
\ i/ |
-~ ¥ b Adder-aceumnlator with initial state -relK,
_"'@—" Block multiplying by the constant yaK. s
| g )
| E =5 g Block computing Erooecker delta.
T i f," .

Fra, 1. Network implementation of one check for the systemn {f19,...., f1-1),

-
L " P T e T

.....
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s —1). We consider {f%} as a function f: GY' X G — K, where GV =
£0,..., s — 1}. The network implementation of ene checking equation 3, ®f =
w - A, (K) is given in Fig. 1. |

Here

5 ( . g) __ 1: }-E HP = {{J:'": ¥ — 1}: gE i = {0! g] LREE giH!-‘]};
B = 00, otherwise

H being a normal subgroup of G and H a normal subgroup of G the jth
right coset of GV with respect to HP is {jr, jr + 1,..., (J + 1)y — 13, (r = | HP|;
§=0,..,sfr — 1}]. As previously in Theorem 1, we suppose that (i} =

yoult O 1), (K).

In the network of Fig. 1. signals corresponding to

f{f}, f{t @ gil):-'-:f{f E} g!_fh-l) and 8-;-_1,,1! ¥ 1-—1,:{3.4‘:;1 L af_i,tE}E]_ﬁ-t_l

are applied at successive instants of time to the input of the adders in the field
K with initial state — € K. For generation of (1) = y84( O 7), we make use
of the fact that, by definition of & , we have

|71

St O =8, + Y 8101y (K)
j=1

_error e

t ]
¥ L 'I|' ¥ Y
‘[{O} dm. f[I:'—I] “ e fl:E""r} e T{S'll _
\+ / \+/
15 1 s L
[ 1 |
N
t ¥
. S

Y ate)
Syndrame 5 erin

e T { - step delay €lemcnt.

d;

Fic. 2. Network implementation of a check for channel F={f9__ ft-"in case H
contains the subgroup H' = {0, §; ,---, L1k

r - L e s = i e = [

Tl VR ML T PTLRAEETC. te



] {1 Fe-ry {E—l

= v be the number of right
with representatives 0, ..., Mv-1 - The follow;

ng block diagram (see Fig. 2} is
then equivalent o that of Fig. |,
To implement this

» (K} can
velic Subgroup of the orio:
network implementat;

(K} () = 1 i1 e H,
18 given in Fig. 3.

ﬂnufacheckﬂﬂ@f:gu+ﬁ

#f being 4 cychic group with generator o)

Syndrome SEE:'“]

=S50 i case of the check,
'ith generator X,

gt
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" triviat normal subgroups H,, H, of group G, and et 34 (£) = 1, iff {eH,

r == |, 2. If moreover,
68y = 8y, D8y, €K, | (24)

18 1 > 1,118y, | > 1) then we need |8y, 1+ 11}l <3| clementary
additions to compute S, It is readily seen that (24) holds iff H is the smallest
normal subgroup of G containing H, and /I, and ® = | H, N H, |.

6. Error-DETLECTING AND CorrecTING CAPABILITY
OF A SysTEM OF LiNearR CHECKS FOR A CoMPUTATION CHANNFL

Let there be a system of m checks in some chosen fields K; (j = L,..., m)
constructed in accordance with Theorem 2 for the given channel f: G — ﬁ?;l K;:

E'HJ- @f = @; + A; {Ki).'- | (7 = I m)' ' (25)
Here Sﬂj(.t) — 1 iff re H,, H; being normal subgroups in G, | H;] = 1,
im P g ﬂ:’tl K:r' for all }' == 1., ML

We shall consider two methods for detection or correction of an error e by the
syndrome S (see (23} 1n Section 5) namely memoryless and memory-aided
decoding.

Tn memoryless decoding the value (1) is. computed for the every 1€ G by
St)(f); in memory-aided decoding e == ({0}, e(1},..., e} G1— 1)) 1s computed
by S = (50}, S“”(l),...,' S| G| — 1)) (We suppose that clements of G
are numbered by integers, G = {0,..., 1 G| — 1})- We note that the procedure
of error detection and correction is simpler with memoryless decoding, but as
will be shown in this section, the error-correcting capability of the given checking
system (25} is reduced in this case.

We give the formal definitions. Let for any sct F or errors, the error e = 0
belongs to E.

A set E of errors in a channel f with checks (25} 1s detected by memoryless
decoding if, for any e € E and for every given ¢ € G, it follows from e(2) ( that
there exists 7 €{1,..., m} such that S$;{#) # 0. |

A set E of errors is corrected by memoryless decoding, if for any &, , &€ E
and for every given t € G, it follows from ey{1} 7 e,(1) that there existsy € {l...., m}
such that Sii(t) = Si*=(¢}.

A set F of errors in a channel f with checks (25) is detected by memory-aided
decoding if, for any e € E it follows from ¢ 0 that there cxist j € {1,..., m} and
t e G such that (1) # 0. .

A set E of ervors is corrected by memory-aided decoding if, forany e, , &2 € E

it foliows from e, ¢, that there exist j&{l, 2,.., m} and ¢ € G such that
Si(e) # S,

Rl T



FRROR DETECLION AND CORRECTION 353
Defining:
e(0) = T eft) = = &) = — 1 eyft) = 01t ¢ 2 {0, f0ns fee 21t
E::U{nwi]:—l) R s U B I elt} —= O ¢ & ol forls
(t;€ H; 8, + 0. = {,..., m), wehave g = (mi2) + Llley, = m -~ . 2] <

[1/2] + 1, &(0) = ex{0) but

QO* Rt

"'{"' “1hn

SYP(0) = S§7(0) - E

I, =15 S I 72
2

and errors e, , £5 with multipheity (mj2] + 1 are not corrected.

Note that for correction with memoryless decoding, use may be made of a
methad analogous to the majority logic approach in error-eonrrecting codes (see,
e.g., Massey, 1963). Let m == 2+ landfiel < L Then for any ¢ € G, there are
at lease { = 1 components with the same value e{t) in a vector Sty =
(S, .., ST} Wethus havea simple means of error correction forasyndrome
vector {870, SIEHEY).

We now consider the maximal multiplicites of errors detected or corrected
with memory-aided decoding.

For a given system (25) or orthogonal checks, we denote Moy oy O} @8 the
<ct of all £ € G such that there exist £;€ H;, 1, 0,and '

™
) , ) f‘ o= 1
I = 'r‘F]_rl "::-' UEFE O T CJ {J’!hfm f—i G' "::_I;rji 1 ﬂj 2 {0; 1}: gjfj i E; . UJ 1-
> 0. o =0
j=1,..,m We also resuire that for any o — (@) o Op) and &7 = (o) on a.)s
(@ # o)
M M{e') = & (3 is the emply seth. (27)

(Note that by setting

o (0,.,0,1,00,0), o= (0,:00.1,0.,0)

[R— ey ——
i b

we have by (27), H, N H; = {0}, (f 5= §).) If for a system {25) of checks the
condition {27) helds, then the number m of checks satisfies

m < log, | G L. (28)

Condition (27} cssentially implies  that H, X =~ X H, is isomorphic to 2
subgroup of G and this 1s a very strong cestriction on the system {25) of checks.
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channel . G _, Ny K

i=t Bpand any systen of »t chechs
ST Rl I (IR B ) salisfying (27), e lape for memory-aided
decoding:

(1} Al errers goig MULPICIyY gt ost 2™
Wt piiers Sl viosf 2= p corvected.
(1} There oxies EPrurs o

it GEI T IO Ry <" which are no deteciod
and not coiverted. respectively,

— | ave detected, and ajl Those

Proof. (i} Let ¢fr)

0 for some e (7 We
ot detected,

then for ANV Vector o
least  gne L.et flf{.:rj{f (o Af{ay
£(Z.} # 0. Since from (27 1

i &l 2”“_

The proof will be by induction on Yol = Z;ﬁj oy .
Let e{t) -4 0 and ot @ = (0,..., 0). Ther i
Y€1 M(o) and ef,} = 0,
Let it further he 2S511 Qe s not deteetod and
that ' v . f(I =

= 1, m—_ M othere pxings f.oet ,'lf{r:') =ich
et g L g = 1. By the definition of Y(5), the

zhall shoy: tl

= (G, ,.... & ) {o; €0, I3} there exists at

={{il=10u,c Mo} such  thar
o H{a)i 22 2m then it follows fram the shove that

@t 1if the error » 1S

U Illl - D! EI‘]L_‘ Si’tfilﬂg f.:'_r o= _il' 1'.4'{-: }-Ja-.'llrt:

med that (1) = fUr any ¢ such

thit £t) 70,
e eNist g angd

SCIH NGN-trivial
subgroup /7, (1e{1, 2, mi) such thar B S
M{o) .- U Mey oo (29}
iEH:_iﬂj

Since by the ASSumption ez, .y o« 0, and if ¢ i3 pors detected then

Z oy & '::_l) = f{rﬂr'} N Z

Vo O LI =0, (&),

LEH - R

and there ex1sts at least one

(e H, — {0} such that if «
thene(r ) =< 0, Bute . er o

CREL A, =,

o L
> A (e}, and in view of (29 we have L, =1, (71 ¢
£ Mo). Cfnnsﬁqlzenti}-‘J all e such that @ L L R T, deteered.
Let now ¢ €0 =5 2mer 1, "

Dyl Doy L, e, . e, Then e fe

¢ 7= 0, Jelt 2™ e ig detected and there exists 7 e G is
Tedeay _ oote s (e}

S;1) = St - se

S0, 2., m) such that
(1) = 0. Consequently, aj] ¢rrors mulupl
2" T are corrected,

—_ 1:32 .

ICItY at most

(i) We now construct the non-detceted CITOr £, with
et us fix arbitrary Le H (1, # 0h7 =1,., mand set

multiplicity 2m,
L

TR g S

Hr
{f) (——IJ-“E'E!] 1f th{frﬂ" f-'xi-EtS T — (g—l . ﬂ-m} such I—hat i — ﬂ .l ..
E{} _— .

o 270y

.

bl B o

0, atherwgse.

'!-fr"\-_‘l-"- I.'ll_| -
L R R T
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It fullows by (30) that e, || = 2% We show now that forany e Gand;

SUO(1) = Seew ot O L) = 0, (K,
I for some fe & and some £ c H; | ey)(2 7 I = 0 then in view of (30)

therc can be found e such that 7 10 {71 = 7_, 5,4, and

il

$h.., mih,

S = Y et O LY = ft,[f':- ﬂ-,.f,.) F. fn(.:: ad, O g—l]
1 .

IEEHJ: . gEHJ—-'l[]: =1 R
™ % I TH
= P [ £ -1 T -
- EE*1’.1 ( P I:-';rr_'f.r'J - Z ‘{Jﬂ (L'_.f H:'rr C '::- 1:} .-’U Urrz'): {I‘;‘J} (31 }
I-1 ; -',.'EH_.I,—{{EI} -i=1 i-a2l :

{Ifere we use the fact that M, and H,,, x -+ X H,, are normal subgroups of G
with onlv the wdentity in common.) New, if o; = 0, then in view of (30), (27,

¥ "
Fu(::} o, GO O cr!-f,-) = 0 it 71 = I
i.=1 t=j1
and by {30) we have
J FHl -
Z €4 (G ":'a"f:' :_-} g._l ﬁ G U‘-rf) — (__}) ”:.+I? {Ki}'
LeH 10 i1 ij4l
Hence, by (31}, {30)
S:_fﬂ"(f} — (_1}5 _;- (.“ !;'f:.-;' 21 -— {:}:‘ (KI'}‘ {_F e I’_"’ m}

Analogically, f o; == 1 then in view of (30), (27) we sce that

j; ¥t
E'“(I':D D-i"r‘.l' G‘ ‘:_I O r::J Uaf,') __:I.-f_ D iﬂ- g_l - f.n'_l ¥
=1 Feirl '

and

i rRE -
Z €y (E ct; OLVO O 'Tl‘:'ff) = (1) -, (&)

i ff,— {1 1==1 W |

{(Note that [l ¢ ' > 1 since o; = 1.} Consequently, by {31}, (30)

Sy = (=1 (=1 = 0,(K), (= L m)
and g, 1s not detected.

To conclude this proof, we note that existence of non-corrected errors with
multiplicity 277 follows from the fact that otherwise any error with multiplicity
2™ would be detected.

Thus, it follows from Theorems 3 and 4 that the error-detecting and correcting
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capabilitics of 4 zv

-

ter af m'thug-:ma!

checks do not depend on fReld & and

TRTanation from memorvless to EINCTy-3ided decoding.

I

Fa
.

INCrenes CNDPOTCntin

EXAMPLE 6. For she pEeucobeolean channel J#) =2~ 170s 35, f:
Cof -+ ' from Fximple 4, Seerion 4 we have tonstructed two checks
er__—ﬁrfjr{z W)= 420 (o= 1,2, H,, 1, have beer dexcribed in Exaniple 4,
It is easv to Verifv that thege checks are orthogonz! and the condition (27) is
satisfied. Thus fram Thevrems 2 and 4 these two checks detect alk do
and correct al] smgle errars for m trraryless decoding, detect al
correct all single errors fur niemory-sided decoding.

uble errors
triple crrors and

7. OE{THDIHCIEAL CHECKS FoR {TGMPUHTI(}}{ {UHANNELS
AND ERRDR—CDEREETING CoDEs

We consider in thie section properties of error Correcting codes senerated
by systems of orthogonal checks for computation channels.

We recall some hasic definitions. Let Ve.x be a linear Space over the field £

of dimension £ (5 ) being the Hamming nietric in V. x, Le for any f, |

Js€ oo s d'[_?(;;fz} = f - fol

2 il = the number of RON-ZEro components in the
VECTOT fy — f, L A set £ O Voon Is called the CHTOr-carrecting code over K with

distance J(F), if minfl.f2 dfi1f) = ¢(F}. Tt is called a linear (g, B)-code over & if
i is an A-dimensional sihspace of Vo & . in which case it may also be defined by

s {(g — A} x £) check matrix (£} over K f.e.fEFiff{Fﬁjf = 0, (K}. (32) The
density of partty checks for the (g, #)-code Fis defined as

B = e Ty LU

1.3
The coding and decoding procedures may be sim ,
but this Ieads also 1o reduction of a transmission rate R(F) == gh1 of 2 code F
(see, eg., Gallager, I1963). 3¥e denote by f{t) the rth component of the code
veetor fe F (¢ = p ey @ — I}
A function o- {0, lo.,g — i} — {0, L, g-- 1} is called an automorphism
of a code F if for any feF we have fle}eF, where ( /(o)) Z f(ef2), t =
0,...,8 — I. The set of a]] automorphisms of F js 3 Eroup Aui(F} which affects

tions of vectors from F, then we have an Important class of cyclic codes. Analysis
of Aui(F) and construction of codes with the gtven Aut(F) is an Important and
difficuelt problem in coding theory (MAC WILLIAMS, 1964).

We consider now the error c(}rrectiﬂg co

e L L
LERC T

Y TR Y



C

ERRGR DETECTION AND CORRECTION 357

PHECREM 5. For g given system of m checks i ihe field K aftsfring (27) e
denoite

FoaJf! o, (5 f = ®i = A (K); B normal sibgroups of (7 =T, 2. (33)
Flien

(1) for anmy 7G> K, ek Fi TTOr correcting code orer K uith
Hammeng distance A(F} = 2m.

(i} forgq; =0, A =0, (K), {7 — L r;:j} Fisa bnear (@ b G R(FR-
code with d(F) = 2m, RE)=TI,0— H, ') and G C Aut(F),

Proof. (i) For any f1, o€ F we sot o =N — 1. (K). Then Sy Te =10
(K){(j=1,.., #}, e is not detected by memory-aided decoding and, b} Theorem
4, e = 27 and a(fy = 2m

Un the other hand there exists the error ¢y Such thatlig, Il = 2m 59 €y 18 not
detected by memary-aided decoding (see Theorem 4, (i1}). Hence, if feF then
freceF (K}, and d(FYy = 2m.

()} Tfe, =0,1 = (7 =1,..,m), then F is linear space over X By (27)
i x H s 1zomorphie 0 some norral subgroup of G and for any
ordering elements of subgroups H, we have ¢ :(Il}m,rm,rmﬂ} where
GEWO- T H  — 1 (=1, m), b €40, Gl H 1. Then feF
iff

?H}'::—'I
> . iy 1y, 4 oy fustn)) =G (f =1 1)
1; -0 |
tor ali 7., «{0,.., FGOTT ;7% Hence if G =g, R(FY = gh™? then
i 1 il ol T ‘ | ™ | |
.ﬁ:—:dimF::jG|R(FJ :Hm JIJT H( Hil — 1) == GZH (1 - 7171,
F=11°%5 0 i1 i=1

Forany feFand re ¢ We set fi{f) - (1 O ththen f,e Fand G C Aut(F),

We note that for 2 code F generated by a system of orthogonal homogeneous
checks with ® =0, 4, =0 (; — Li..m) if feF then for any : G- K
FROR =¥ 2/ B FeFand Fisa two side 1deal in the greup algebra of the group &
over tnec field K. We note also that code F is a special case of the lgw density
parity check codes considered by Gallager (1963} and one IN&Y cunstruct by
Theorem 5 lnear codes F over the given field K with the fixed Hamming
distance d(F) —= 2™, with transmission rate R{F) asymptotically {{ G oc )
equals to onc and with the density of checks w(f) asymptotically equals to zerg.
For example, we may set 7 = Hf_l Hy |H = - | H..1 = | H), then
by Theorem 5 we have 2 linear (‘i (1H — [)™) code F over K with d(F) =
27andif | G| — O, then | H | — oo, iy, R{F) = My (1 — A Om =
I and for A | “I‘I‘ini__Llu.(F} == HI‘ﬂ_iH!_,I I.-![ir i_{ﬁ'_” = {

RECENVER: June 17, 1977: revisen: July 24, 1978
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