1028

Fast Fourier Transforms on Finite Non-Abelian Groups .

M G KARPOVSKY

Abstract—-—-Reeent works [l]—[9] were devoted to the properties
and application of Fourier transforms over finite Abelian groups

and fast Fourier transforms for calculation of the corresponding
- spectra. In this correspondence we describe Fourier transforms
on finite. non-Abellan groups and approprlate algorlthms of fast. o

Fourier transforms

Index Terms——Fast Fourier transforms and fast inverse Fourier

and fast Hadamard——Chrestenson transforms, Fourier transforms
on finite non-Abelran groups, 1rrednc1ble representatlons of
gr oups o 5 S B | |

I INTRODUCTION _
Several authors have consrdered the propertles and applrca—
‘tions of Walsh and Chrestenson functions and their generaliza-

tions on arbitrary finite Abelian groups, and fast Fourier trans-
forms (FFT) for calculation of the corresponding spectra [1]-{9].

In this correspondence we describe Fourier transforms on finite

non-Abelian groups and appropriate FFT. The main difference
between these transforms and the Hadamard-Walsh or Hada-
mard—Chrestenson transforms is that instead of Walsh or
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there exists a @ € GL(V) such that R, (x) =
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o Chrestenson functlons Wthh are group characters 1rreducrble
- _"-_representatlons of the approprlate groups must be used.

‘The transforms discussed in this correspondence are gener-

= alizations of the Hadarnard—Walsh and Hadamard—-Chrestenson

transforms. They may be used in the problems mvolwng func-

- tions that depend on permutations, on matrices over finite field,

etc. As examples of such problems we note an assignment prob-
lem for automata, a traveling-salesman problem, a problem of
pattern recognition for two- colored ‘pictures, which may be
considered as a problem of realization of a function defined on
the group of binary matrices; a problem of interconnecting tele-
phone lines [10], and a problem of synthesis of rearrangeable
switching networks whose outputs depend on the permutation
of input terminals [11], {12]. Another example of a problem of this
type is a problem of approximation of the linear system by the
system whose input.and output are functions defined on group.
In the case of the dyadic groups this problem was solved in [9].
The replacement of the dyadic group by some non-Abelian group

~ may result in considerable simplification of the apprommatmg
: system ThlS problem wrll be conmdered in [13]

If. FOURIER TRANSFORMS ON FINITE NON ABELIAN
| GROUPS -

Let G be a (non-Abelian) groUp of order 8; V be a vector space.__

- of dimension d over the field C of complex numbers; and GL(V)
~ be the group of all nonsingular d X d matrices wrth elements in

- C. A'representation of G with representation space V is a ho-
~momorphism R:G — GL(V); thatis, R(xy) =

R(x)-R(y),x,y €
G. A representation R is irreducible if there are no nontrivial
subspaces of V which are mapped into themselves by all matrices
R(x), x € G. Two representations R, and R, are equivalent if
Q IR, (x)Q for all
x € G. Every representatlon is equivalent to some unltary rep-
resentation (i.e., a representation R such that R{x) is a unitary
matrix forallx € G [14 p. 3]). Methods for constructlng the

- representations of a given group are considered in detail in al-

gebraic literature (see, e.g., [14]). The number of sets of irre-
ducible unitary representations for some specific groups may be
found in {14, pp. 47-54]. Let R**)(x) denote the (s,t)th element
of R,(x); then we have the orthogonahty relatlons {14, pp. 11-
14] - .

g1y Rw(x)swx)—d"? dug < Osp = Btn (1)

xeG

Ly Ao TrRx) =g b ()
R;.,ER(G) -

| __e_'r?-f-:where d 18 the dimension of Rw, R(G) is the set of all n'reducrble
transforms on finite non-Abelian groups, fast Hadamard-Walsh | unitary representations of G; e is the identity of G; 8 is the Kro-
- necker symbol; and Tr A trace of A.Thus the drrect and inverse

-Fourier transforms on’ G may be defined as follows: If f:G— C

then
Sf(w) ‘d gh_l ZGf(x_)R (x"l) . (3
= T R @
R,e R(G) r |

where x~1is the inverse of x in G. The verification thiat (3) and
(4) define an 1nvert1ble transform rnay be done by (2) and (3) as

follows:

Y. Tr ((S,«(w)R (x))

meR(G‘} = L

=g v oa Tr(z f(y)R (y-1x>)

IR RmeR(G) ye(}'

=gy ) £ dyTrRu(y-1x) = f(x).
yeG Rme‘R(G)

Copyright © 1977 by The Institute of Electrical and':'Electronics Eng‘ineers, Inc.

Printed in U.S.A. Annals No. 710CX012



CORRESPONDENCE

The Hadamard-Waish and Hadamard-Chrestenson. trans-

- forms are special cases of {3} and (4) obtained when G is the ad-

ditive group of binary or pary (p > 2) vectors (in this case, group

is Abelian and 30 Yeprésentations have dimension 1 and cumci{le
__ﬁqth the Walsh or ‘Chrestenson functmns} -

Wennwdescn"be the mampropertIm of the ﬁar:sfurms (3) and
@) _

Y Lmeunty For all ﬂ},ﬂg E C fufeG — c

| Scrlfl(:Hagfz{:}(W} #13{1(:}(“’) + ﬂEanb:}{W}‘-
9) (Right) Group Translation: Forall r & G
| Stanyw) = Bu(7) « Spixy (@)
3) Gruup Cﬂﬂﬂﬂ!utmm Let f1,fo:G — C and -

(¥ f®D) = T firlx) - falrz—),

:{E_G

(3)

(6)

(7)
Then
Ao 87 St (@) = Spaf) - Spew).
Properties 1)-3) follow immediately from (3) and (4).
4) Parseval’s Theorem: For a]l frfazG—C
¥, fite) Flm) =g~ ¥ A5t T (S1)() - Sin())
e

R.e R
9)

«}(@) 13 the conjugate transposed to Sy,(x)(w) with ele-
ments .S! Pw) = %(m)(sm;(w) is the {q,p}th element of
Statxy(@)). The proof of Parseval’s thmrﬁm may be done by (2},
{3), and umtarlty of R”(:t}

g 3

R e i)

= g1 "E%{G}_qu'r((xg ARG )

d T (Sh{cﬂ)S;g{w)}

(5, AR ) =gt 3 p)fiE

xyx2e G
. = ¥ fi(x)fo(x).
R.e RiG) x=@

§) Correlation Functions and the Wiener—Khinchin Theo-
rem:; Let f1,fo:G — C, r € G and

Bpp(7) = EG Ff (7Y,

Then By, 7, may be called the cross-correlation function on G; if
f1 = fa, it is called the autocorrelation function. By, 1, 1s a gener-
alization of the logical or dyadic correlation functions described,

for example,-in {3], [6], [7), [9]. -

':!m Tr {I I-IIE}

(10)

Let F be the direct and F3! the inverse Fourier transforms -

on G, and Fg the transform such that (Fi())w) = Sf(w}
Then

B g = 8- FGldS - Fg(fy) - Fo(fa)).

The proof of {11} follows from unitarity of Ru{x) (3), and (8).
Formulas (5}—(11} generalize the analogous properties of the
Hadamard-Walsh or Hadamard-Chrestenson transforms [2],

3], 16]-[8].

TII. FAST FOURIER TRANSFORM (FF'I'} FOR FINITE Now-
ABELIAN GROUPS

Calculation of the specirum Sy{w) by (3} involves g - dZ mul-

tiplications for a given o {nut counting normalization by d,2~1).
Since [14, p. 43] Zx_cricyd> = g, the number of multiplications
required to calculate 8¢ for all & is g2. We describe another
method for the ca.lﬁﬂatmn of S, a generalization of the fast
Hadamard-Walsh or-fast Hadamarﬂ—Chrestaﬁon transfhrms

(8)

(11) |

_ﬂ.t} f(-"im . ,xm-;}- P E -}';
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[4], {5]. Let G be a direct product of groups G;(j = 0,+++ ,m — 1),
G= H}’i‘_ﬁ‘ Gj. Thenl)ifx ¢ ¢, thenx = {Iﬂ, :::mﬂ},xj e G;
2) g = I%y'g;, where g; is the order of G;;3)if R, € R((), then
(14, p. 27]

m—1
Rw{x) = Rw{xﬂr e :xm—l) = '®{l ij(xj}: ij = R(Gj)
7= -

(12)

where R{G;) is the set of all irreducible unitary representations
of ; and @ denotes the Kronecker product of matrices. Thus,
for everyR e R((G), we denote & = (wy, * + - ,wrn—1)- By (3) and

(12)
Seiw) = Splwq, - -+ ,wm-1)
=dgt T fleoegmen) E R. (x;")
=d g IE] ‘e (E (E F(x0, -+ Xm1)
-Rwﬂ{xgl}) O Ru\(xi)) -+ ) @ Rupyfxnl). (13}
Let
folZo, =+~ Xm—1) = f(X0, +++ Xrmm1) (14)
filwgxy, <=+ xmy) = xzn folxo, -« = Xm—1)B (x5}  (15)
filwo, - =+ ,wy—1,xp, « -+ :Im—lj
= IIZ_I fim1lwg, » = 010,211, + =+ Xm—1}
®R,,_(x:)i=1,--+ m). {16)
Then by (13}-{16)
- Splwo, -~ ,wm—1) = A8 Ynlwy, - - om_1). (17)

Formulas (14)-(17) define the FFT on a (non-Abelian)
group . Let us estimate the complexity of the FFT {14)-
(17). If wo,---.@i1—1,%, ++,Xm—1 are fixed, then fi_;
(g, =+ + 00— 2211, - xm—z}amiﬂﬂ,_li:r:-ﬂ are matrices of di-
mensions IlFt.d.,,J X Iler osand dg,_, X d,,_,, respectively. Since

ERWE #4Gj) b dl; = g;. the.numnber of the memory cells for storage
fris NjZe g_, = g and the nimber of multiplications needed to
ca]culate f by (16} is £1—1 - £ Thus the number.of multiplications

for the FFT (14} {17} is g - =7'g; and generally less than g2.

W FAST INVERSE FOURERMHSFURM (FIFTD) FﬂR
- : - FINITE Nﬂﬂ-ﬁﬁﬁhﬂ GROUPS

 For non-Abelian gmqpé the spectrum S¢ is a matrix-valued

function and the inverse transform (4) does not have the same

form as the direct transform (3). Calculation of f by (4) involves
&% multiplications. We describe annther method for the calcu-
lation of f which invelves only g - Z75'g; multiplications.
Let G = lla,=.;,1G4r Then b_',r (12) L )
R{Eﬁl{x} = I—Iﬂ Ru_,fﬂpﬁ;}(x _;} ﬂ;:ﬁ] E fl dmji (18)
ag= -
Bennt&m—*{ao, = m 1), B = (ﬁo; «ohi ,ﬁm-ﬂ Then by (4) and
(18): - N

NER(mﬂ:ﬁ B L
= z - z Sf{hﬁa,** n-—lf(lm}.'—.ﬂm-ﬂ]

Roope—l i -1 00" 2m—1
Bo—im-1 L -

m—-l} H -ﬁ:_.{n""ﬂ"—{ﬁj;l'

RELF -
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Let analogously (14)—(16) -
FolBo Bm—1)ilat~am-1) (g, « = = o 1)
- Sf{(ﬁl:l,-,ﬁm-l} {ﬂﬂa"*rﬂn-l}}[mu, - :mm—l} (2“}

fllf{ﬁr —Fm-1Aa1, '“*“ﬂ'l}]'(:rg,ml son &t}

= E fn{{ﬁm-* Bm=-1), {cm,-".rtrm-ﬂ}(mu . Wm—1) RW{IH}
Rup o080 -
(21)
fI'[(ﬂl,"*,m-l_]'.{dh“.ﬂnh—lll(xﬂ, e X, Wh t 0, Wn—1))
= Z E ﬁ.__li{ﬂlrln—ﬁm—1}.{11!“11“;&'51—1”
Rupa ai—1,81-1 '
e (xg, o=« X wp1, 00, @0pm—1) Rtﬁfil‘ﬂ"'l}(iﬂ—l}r
| (f=1---m}). (22
Then by {19)-{22)
| flxo, 00 xm—y) = Fre (20, <+« Xme1). (23)

Formulas (20)-(23) deﬁned the fast inverse meer transform’

(FIFT) on (7.

The number of memory cells for storage f; is 2, and calculation
of f; by (22) involves g;—; - g multlphcatmns The total number
of muitlphmtmrﬁ for the FIFT is g - 75 l¢;: Le., the same as for

V. CONCLUSIONS

We have considered the properties of Fourier transforms on
finite non-Abelian groups, FFT, and FIFT algorithms for such
groups and estimations for the complexity of these algorithms
have been presented
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