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- Some Optimization Problems for
Convolution Systems over Finite Groups

M. G. KARPOVSKY
Department of Mathematics, Tel Aviv Untversity, Tel Avre, Israel
AND

E. A. TRACHTENBERG

Department of Computer Science, Techmion—Israel Institute of Technology, Hatfa, Israel

We define and study many-dimensional linear invariant discrete systems over
finite groups. We consider the problem of optimum synthesis of such systems
computing a given inputfoutput pair. The optimum solution {or estimates for
themn) are obtained on the basis of two very simply computed critetia. Conditions
are studied for the existence of an idempotent impulse function of a lineat system
over a group, computing a given imputfoutput pair. The best approximation
is found for many-dimensional linear invariant systems, defined on a fmnite
interval of discrete time by systems over the given finite group.

1. S¥sTEMS OVER FINITE GROUPS

We consider linear systems with = inputs and % outputs, constructed as follows,

Let G be an arbitrary abstract finite group with elements 0, 1,...,2 — 1 (0 1s
the identity of the group). G = g is the order of G (throughout, 4 denotes the
cardinality of the set A). Let L, , be the set of all functions defined on G with
values in a set of (@ X &) matrices M, ;, over the field of complex numbers C.

DerINITION 1. A linear invariant discrete system S over a finite group G is
defined as a quadruple S = (L 4 ; Ly ; ; ; @), where thcoperatmn () is defined
for any u eL,, ;, yel; , as follows:

) = (h@ue) = 3 KL2o 1) (D) 0

~ Le., @ is the operation of group convolution of two matrix-valued functions;
hely p,u€ly,;y€L, ; {1is the inverse of  in G and o denotes the group
operation.
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Fast Fourier Transforms on Finite Non-Abelian Groups .

M G KARPOVSKY

Abstract—-—-Reeent works [l]—[9] were devoted to the properties
and application of Fourier transforms over finite Abelian groups

and fast Fourier transforms for calculation of the corresponding
- spectra. In this correspondence we describe Fourier transforms
on finite. non-Abellan groups and approprlate algorlthms of fast. o

Fourier transforms

Index Terms——Fast Fourier transforms and fast inverse Fourier

and fast Hadamard——Chrestenson transforms, Fourier transforms
on finite non-Abelran groups, 1rrednc1ble representatlons of
gr oups o 5 S B | |

I INTRODUCTION _
Several authors have consrdered the propertles and applrca—
‘tions of Walsh and Chrestenson functions and their generaliza-

tions on arbitrary finite Abelian groups, and fast Fourier trans-
forms (FFT) for calculation of the corresponding spectra [1]-{9].

In this correspondence we describe Fourier transforms on finite

non-Abelian groups and appropriate FFT. The main difference
between these transforms and the Hadamard-Walsh or Hada-
mard—Chrestenson transforms is that instead of Walsh or
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there exists a @ € GL(V) such that R, (x) =
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o Chrestenson functlons Wthh are group characters 1rreducrble
- _"-_representatlons of the approprlate groups must be used.

‘The transforms discussed in this correspondence are gener-

= alizations of the Hadarnard—Walsh and Hadamard—-Chrestenson

transforms. They may be used in the problems mvolwng func-

- tions that depend on permutations, on matrices over finite field,

etc. As examples of such problems we note an assignment prob-
lem for automata, a traveling-salesman problem, a problem of
pattern recognition for two- colored ‘pictures, which may be
considered as a problem of realization of a function defined on
the group of binary matrices; a problem of interconnecting tele-
phone lines [10], and a problem of synthesis of rearrangeable
switching networks whose outputs depend on the permutation
of input terminals [11], {12]. Another example of a problem of this
type is a problem of approximation of the linear system by the
system whose input.and output are functions defined on group.
In the case of the dyadic groups this problem was solved in [9].
The replacement of the dyadic group by some non-Abelian group

~ may result in considerable simplification of the apprommatmg
: system ThlS problem wrll be conmdered in [13]

If. FOURIER TRANSFORMS ON FINITE NON ABELIAN
| GROUPS -

Let G be a (non-Abelian) groUp of order 8; V be a vector space.__

- of dimension d over the field C of complex numbers; and GL(V)
~ be the group of all nonsingular d X d matrices wrth elements in

- C. A'representation of G with representation space V is a ho-
~momorphism R:G — GL(V); thatis, R(xy) =

R(x)-R(y),x,y €
G. A representation R is irreducible if there are no nontrivial
subspaces of V which are mapped into themselves by all matrices
R(x), x € G. Two representations R, and R, are equivalent if
Q IR, (x)Q for all
x € G. Every representatlon is equivalent to some unltary rep-
resentation (i.e., a representation R such that R{x) is a unitary
matrix forallx € G [14 p. 3]). Methods for constructlng the

- representations of a given group are considered in detail in al-

gebraic literature (see, e.g., [14]). The number of sets of irre-
ducible unitary representations for some specific groups may be
found in {14, pp. 47-54]. Let R**)(x) denote the (s,t)th element
of R,(x); then we have the orthogonahty relatlons {14, pp. 11-
14] - .

g1y Rw(x)swx)—d"? dug < Osp = Btn (1)

xeG

Ly Ao TrRx) =g b ()
R;.,ER(G) -

| __e_'r?-f-:where d 18 the dimension of Rw, R(G) is the set of all n'reducrble
transforms on finite non-Abelian groups, fast Hadamard-Walsh | unitary representations of G; e is the identity of G; 8 is the Kro-
- necker symbol; and Tr A trace of A.Thus the drrect and inverse

-Fourier transforms on’ G may be defined as follows: If f:G— C

then
Sf(w) ‘d gh_l ZGf(x_)R (x"l) . (3
= T R @
R,e R(G) r |

where x~1is the inverse of x in G. The verification thiat (3) and
(4) define an 1nvert1ble transform rnay be done by (2) and (3) as

follows:

Y. Tr ((S,«(w)R (x))

meR(G‘} = L

=g v oa Tr(z f(y)R (y-1x>)

IR RmeR(G) ye(}'

=gy ) £ dyTrRu(y-1x) = f(x).
yeG Rme‘R(G)
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In other words, 5 consists of the set L,, ; of mappings G — M,, ; (the set of
input signals), the set L, ; of mappings G — M, ; (the set of output signals) and
a mapping A from L,, ; to L; ; (impulse function). If (1) is true for a given system
&, wel,, and y EL;, 1y We say that system S computes the input/output pair

‘Equation (1) may be realized e:lther as a network or as a computer prograr.
- One possible network realization, computing %) by a sequential procedure, is
illustrated in Flg' 1.

I- ————————————— e — o —— A e e e — .
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block in?erting elements of G,

nt '
i— © l— Dblock computing group operatien,
hi.) 71 |
ul.}] " == matrix multiplication block,

| _..?-—-. adder accumulator,

Ficure 1 -

For each € G, all elements §{ = Q, 1,..., g — lufGarefédtu the input of thié o
- network, and blocks £ and 1 compute h(§‘1 o £) and u(}), respectively. After tha e

right-hand member of (1) has accumulated in the adder Z, the nutput B;;bdum

the signal ¥(t), t =0, 1,..., g — 1. i T _'“'%. L
From the standpoint of systems theory, 5 is a linear mput;‘aut' :.. : Eyeterd whoge
input and output signals are defined over an arbitrary ﬁIIItE Moup (@i When, G
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addition mod 2), such systems are considered by Pichler (1971), Pearl (1975).
Systems over locally compact Abelian groups were studied by Falb and Friedman
(1970). The systems considered by Tsypkin, Faradjev (1966), were defined over
groups in such a way that the input and output were functions from the infinite
cyclic group of integers into GF(29) the (Galois field of 2¢ elements).

Systems over a finite group G may be regarded as a special class of digital filters
or a special class of systems with variable structure (Nailor, 1965), operating in
discrete time and defined on a finite interval [0, g — 1], such that at each instant
of time ¢ the impulse function is readjusted according to the rule A2, {) =
ML o 1)

Some problems connected with the analysis of impulse matrices of systems over
arbitrary (not necessarily commutative) finite groups were considered by

- Karpovsky and T'rachtenberg (1975).

Systems over finite groups to compute a given inputfoutput transformation
may be very useful, particularly when the input and output have a natural
interpretation as functions on 2 group as is often the case fn; Abelian groups, in
switching theory, the theory of error-correcting codes, image processing, etc.
(Hartmuth, 19'?0 Karpovsky and Moskalev, 1970 Lechner, 1971; Karpovsky,
1976.).

As examples of such pmblema for non-Abeliah groups we note 2 problem of
pattern recognition for two colored pictures, which may be considered as a
problem of realization of a function defined on the group of binary matrices, a
problem of mtercunnectmg telephone lines (Benes, 1964) and a problem of
synthesis of rearrangeable switching networks, whose outputs depend on the
permutation of input terminals {Harada, 1973). Ancther example of a problem
of this type is a problem of approximation of the linear time-invariant system
by the system whose input and output are functions defined on group. In the
case of the dyadic groups this problem was solved by Pearl (1975). The replace-
ment of the dyadic group by some non-Abelian group may result in considerable
simplification of the approximating system. This prﬂblem will be solved in
Section 3.

Simulation of Eq. (1) by a computer program greatly expands the pn-sslble
applications of systems over finite groups.

By letting the elements of an abstract finite group play the role of time, one
can not only extend the results and methods of linear systems theory to systems
over groups but also prove some new results for such systems.

For our investigation of systems over groups, we use the techniques of abstract
harmonic analysis, which will play a role analogous to that of Fourier transform .
techniques for ordinary linear systems. This method iz employed by Lechner
{1971), Karpovsky (1976) as applied to problems in the analysis, synthesis, and
optimization of devices whose input and output signals are functions on finite
Abelian groups.

‘This paper comprises five sections. The next section presents some prere-
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quisites from harmonic analysis on finite groups. Section 3 solves the problem of
synthesis of optimum systems over groups computing a given inputfoutput
pair, for two easily computed optimality criteria. Section 4 is devoted to the
synthesis of a sgpecial class of systems (systems with idempotent impulse
function), which display significant advantages as regards the simplicity of their
network or program realization. |

In Section 5 we solve the problem of the best approximation to a given linear
many-dimensional system operating on a finite interval of discrete time by a
system on a finite group.

2. PRELIMINARIES

Let L, , denote the space of functions defined on an arbitrary finite (not
necessarily commutative) group G with values in the field of complex numbers C.
~ We use the elements of the nonequivalent irreducible unitary representations of
G as a complete orthonormal basis for this space. Recall (Hewitt and Ross,
1963) that a representation of degree d in a linear space ¥{dim V' = d)} over C
is defined as & homomorphism R: G — GL(V), where GL{¥V) is the group of
automorphisms of V. A representation R is said to be irreducible in V' if 7" has
no proper R-invariant subspaces, and unitary if R(#) is a unitary matrix for
every .t € G. T'wo representations R, and R, of the same degree are said to be
equivalent if there exists an invertible matrix Q such that QR,(t) O~ = Ry(?)
for every te G

Let R(G) == {R,} denote the set of all nonequivalent irreducible unitary
representations of G in the space L, , , indexed so that R,, is of degree d, (Hence-
forth we write w e R(G) as an abbreviation for R, € R{(().) R(G) is the dual
object of the group G It is known (Hewitt and Ross, 1963) that

we R{ &} '

Moreover, d,, is a divisor of g for all w € R{(G), and if G is not commutative, its
dual object R{(() contains at least one R, such that 4, > 1.

Let R%®(-) denote the (4, k)th element of the matrix R, () (1 <4, &k < d,).
We recall the orthogonality relations for the components of the matrix functions

of the dual object R(G):
% Y. dU2REH(E) dYARYV(E) = Bunisder - N«
telr '

(w,veR(GH 1 €L ALd,; 1 <j,r<d,. The bar in (3) denotes complex
conjugation; the expression on the right is & product of Kronecker symbols.)
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The character y,, of the representation R, is defined as follows:

X.(2) = trace R,(2). 4)

The characters satisfy the following orthogonality relations (Hewitt and Ross,
1963):

'é" E:; m xlr(t) = Smu y (5)
1 — o O
r w%m Xal£) Xal0) " (6)

where p, is the number of elements in the conjugate class of G, which contains 2.

(Recall that the number of conjugate classes of a group G is equal to the number
of elements in the set R{(G).)

Methods for the construction of representations and characters of finite
groups are described in the algebraic literature (see, e.g., Dornhoff, 1971).

Let fely m, 1., f: G— M, . It follows from (3) and from the Peter-Weyl
theorem (Hewitt and Ross, 1963), that the Fourier and inverse Fourier trans-
forms in L ,, may be defined as follows:

fw) = (f@(w) = (2 T fn(g) RH), 7

g fedy

F& = (o) = ( T trace(fmiw) RAD)) (®)

wE R{G)
(flw)e Mypma,; 1<n<kl<I<m)

We now list some fundamental properties of Fourier transforms over a given
finite group G.

(1) Linearity. If f,,fyel; ,, and ¢, ¢, C, then
T —

(e1fs + eafallw) = f:.ﬁ(“;‘) + f*'afz(w)- (9)

(1) Left translation. 1If fi(t o ) = fi({) for all { £ G, f, , £, € Ly ., (Where
t s a fixed element of &), then

f@) = i ) RATY, (Q<n<hlgi<m)  (10)
(1) Group convolution. If fel,, ,pel,,,and yel,, , then

O =@@HO = 3, #(f 1) (),

fedd
iff

f@) = -5 (o) o). (1)
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(iv) Plancherel Theovem. If f,,fo€Ly, then

— E trace(fi*(t) fo(8)) = "2 d_' tface(fl*(w) Folw)), (12)

£ taG  weR(G)
where f;*(') is the adjoint matrix (transpused complex-confugate) of f(-).
(v) Wiener—Khinchin Theorem. Let fl_E Lym:fe€ly,,re(and

By 4(r) = 2 M e DAL Brsy€Llma- (13)

fe
Then B, (‘) may be called the cross-correlation function on Gj if f; = f;
it is called the autocorrelation function. By 1, is a generalization uf logical or

dyadic correlation functions described, for example, by Karpuvskjr, Moskalev

(1970), and Lechner (1971).
- Let F,; be the direct and F! the inverse Fourier transforms on G, and F.* the
transform such that (Fe*{f})(w) = = f *(w). 'Then

By, 1,(7) = g(FGHdS Fa*{ fi} Fl fo}})r). (14)

The proof of Wiener—-Khinchin Theorem (14) fullﬂws from (7), unitary of
R,(-} and (11).

3. Smnsrs oF OPTIMAL SYSTEMS OVER A GROUP FOR A
Given Inrut/OUTPUT PAIR

Consider the Emg-dimensional linear space Ly ,, over C. The norm || * {l; in
L, . (Hilbert—-Schmidt norm) is defined by

| U'Hn = (Z race(f 0 @) (15)

(if Be M,, , then | B s’ (trace B‘*‘B)m)

Solutions of op;i__mtmatip;ﬁ prioblengs far,sys’l:gqm on groups relative to criteria
based on the norm |- ||y :areinsusally unique and fairly simple to find (see, e.g.,
Theorem 1); in some casgs; hidirdver, auch cntena do not faithfully represent the
#. - complexity of realizatiofh: ofthe:bibck: didgrimiof system S (by complexity we

;—'{ mean, for example, the numb&f Qf elﬁﬂlﬂlitat{l nits needed to realize the block
dlagram) We, the:refnre, I f Iﬁ,“ﬁﬂ bet Sf nénzera elements in all
. matrices f(2) for all t e G, g :1:. ALl

), %ﬁtg}}hatﬂ, +lo may be regarded as

. a generalization of the Hamuilh g1
i Now, consider the original sygtef .S over the grnup G

LN .
K

i ¥(t) = (& @ﬂ)ﬁﬁi@%@h 14 ktérh mi¥eL, ) (16)
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If Eq. (16) is solvable for A for a given pair (u, ¥), we consider the problem of
finding h,, € H(u, y) and hy, € H(x, y) (where Hu, v) is the set of solutions of
Eq. (16)) minimizing || &, and || &}, respectively,

If Eq. (16) is unsolvable, we let e, dencte the error function

ex(t) = ¥(&) — (b ®u)(?), (17)
and consider the problem of ﬁndihg hyg € Ly and By, EL,;,,“ minimizing || & |l

and || el .

THEOREM 1, The impuise functions hy, , by of optimal systems over a given
group G, computing a given pair (u, v), satisfy the condition

) = ha(e) = o) = 22 3(0) (o) YoeRG)  (18)

(Hw) € Myg,,a, 3 GH{w) € My, ma,),
where #+(w) denotes the generalized M oore-Penrose inverse (Ben Israel and Greville,
1974) of #w).

Proof. FYor any kel ,,, it fulluws from the Plancherel Theorem (]2) and
from the group convolution theorem (1 1) that -

Gati= 3 Eaaoir= 3 & (I;v(w) — £ ey )] )
werle Fu weR(G) @ (19)
Consequently, |
(1eall)® =l en, o) = min {(] e [5))3
- -
| $w) — £~ ) Bl = 00 3“ (e ;. (20)
for-all w € R(G). -

Condition (18) now folluws frum (20) by the deﬁmtmn of the generalized
Moore-Penrose inverse.

The following corollary of Theorem | sometimes facilitates the computation

COROLLARY. If the matrices ﬂ*(m] ) are invertible for all w € T, where T is
some subset of R(G), then

ho(w) = %’ﬁ(w)(ﬂ*(w) Yw))t A¥(w); (21)
for all we T,
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Indeed, if #%(w) fi(w) is invertible, then &Y w) = (2%(w) Hw)) ! A¥w).

Theorem 1 and Corollary together with (8) solve the problem of synthesis of
optimal systems over a finite groups relative to criteria based on the norm || « [l; .

The next theorem gives upper bounds for the optimal impulse functions
hy, and g, (optimal with respect to criteria based on || - (|p)-

THEOREM 2. Let (u, y) be a given inputfoutput pair, uel,, ,,v€ly, .
(i) If Eq. (16)is solvable for the given pair (u, ¥), then

Thorllo < & 2, d, rank #(w). (22)
w& R( G} -
(i} If Eq. (16) is unsolvable for the given pair (u, ¥), then
| ergllo <= kg — k& Y, d, rank 4(w). (23)
: we R{T)

Proof. (i) Any solution 4 of Eq. (16) may be written as

M) = 9lf) + 3, cab(0), 24)

fml

where @ is a fixed particular solution of the equation, y* are lineatly independent
solutions of the homogeneous equation corresponding to (16} (f = 1, 2,..., p).
To determine p, we use (11) to write the homogeneous equation as

M) iw) = © (25)
(B(W) e Mkdm-mdw : ﬂ(ﬂ.}) = Mﬂlﬂm.ﬂm)'

In view of (2), there results from (25)

2= Y -kdfmd,— rank dw)) = kmg — k 3 d,rankd(w). (26)

€ R{G) e R{C)

Consequently, the required relation (22} follows from the fact that the least
number of elements in the values of A(*) that can be equated to zero (by suitable
choice of the coefficients ¢,} in system (24) is kmg — 2 Y cz(s) 4., rank d(w).

(i) The proof is analogous,

We now consider a special class of systems over a given group &, which admit
simpler program and netwotk realizations than in the general case.
Let 2 = m; let G, be a group of order %, and

) = B, ((eGil <4 <k), (27)

where 7, { € Gy and the group operation in G, is written as multiplication. Then
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the methods outlined in the proofs of Theorems1 and 2 may be used to synthesize
systems of this class, by successive application of Fourier transforms on
the groups G and G, . .

Given a function f: G — M, , , we let f denote the result of successive applica-

tions of the Fourier transforms on & and G, . We then have ﬁm, f) = f (8, w),
(w € R(G), 8 e R(G))).
A double application of Theorem 1 now shows that the optimal impulse

functions / satisfying (27) (i.e., those giving the best || % ||, or || &, [|o) are defined by
the condition

. . . d dy .
ﬁﬂ{mr E) = hﬂ (“": H) = *?'EI(W! ﬁ) == "}[i Tﬁ(“r 6‘) £+(m= -ﬁ),

(H(w, 0), #w, 6) € My 40,44, @ € R(G), 0 R(GY). (28)

Similarly, two applications of Theorem 2 show that the optimal (giving the best
| 2 lip or || &3 [lp) impulse functions % of the form (27) satisfy the conditions

| Atgq flo = Z Z d, 4y rank #(e, 6), (29)
we R(GF) §eR(F,)
lengslo < 2g — 3 3 duds rank #{w, 6). (30)

wER(G) PER(G,)

To conclude this section, we note that if we put «({) = { in (16) for all
{ € G(k = m = 1), the synthesis methods considered in this and the following
sections make it possible to design devices computing functions on groups
(see Figs. 1 and 2) using only linear systems over groups.

4., SYNTHESIS OF SYSTEMS WITH IDEMPOTENT IMPULSE FUNCTION FOR A
Given INPUT/OUTPUT PAIR (1, %) (k = m = 1)

Suppose that, given an input #: G — C and an output signal ¥: G - C (k =
# = 1), there exists an idempotent impulse function k: G— C, 1.e., #2({) = A({)
for all { & 7, which satisfies (1). Then the block diagram for realization of system
S assumes the very simple form shown in Fig. 2.

Here#, {71, ;e Gand B(E) = 1iff { {0, &y ,..., L.}

It was shown by Karpovsky (1977) for Abelian groups that if a given input/
output pair (u, ¥) has an idempotent impulse function %, there is a simple and
effective method for detecting errors for the appropriate system S. In this
section, therefore, we consider necessary and sufficient conditions for the
existence of idempotent impulse functions realizing a given inputfoutput

pair (#, ¥},
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=y (/]

— 1 One step delay element.
Here t, {%..., e Gand A(L) = 1 wherei = 1, 2,..., ».

FicURE 2

TuroreM 3. If a given inputfoutput pair (u, ¥) is realizable by a system S
with idempotent funciion h, then there exists an integer &y, (1 < by < £) such that

k
Uﬂi(ﬂ,y}%%(l——f)ii- e
Moreover, if 1) 5 O, then ky = $(1)/4(1). Where
., 1/4,,
w, yy = 3, (H ‘di(‘”)) ;o | (32)
miﬂiﬂ fom] _ |

' gl £ 2
Ai(“”’) == iﬂ: :ﬁ:gw;:g, » .Bt(‘w) #0;

=0,  otherwise. - (33)

and afw), Blw) are the eigenvalues of the matrices H{w), @w), respectively (1 <
t 5 d,). (Notethat By(0) = 1 forall { € G.)

Proof. Usiné (11), we write (1) for s}rsi;em Sinan equivalent form:

o) ) = 22 g(u), "

(o), o), W) My )
Set y = Tio Mt)i then by ()
SHORGE) =T M) =gk (9

1
k(l) - E tely g teG

It follows from (35) and (34) that &, = $(1)/4(1) if ﬂ(-l) 7 0. o .
It remains to show that k; satisfies inequality (31). Since &(*) is idempotent, it
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follows from (35) by the Plancherel theorem (12){(fork =m =1) and from the
fact that A(1) = 1/g 3.0 K(t) > O that

(1) = B _ -} SHOM) =L Y £ racefi) M)

& led 4 s R{G) d‘-‘-"
k2 ]

=—5+ Y - trace(A*{w) Hw)). (36)
& wsf:‘.lﬁ} 'd"‘*

The expression following the summation symbol on the right of (36) is the
sum of squares of the singular values of the matrices A(w). Thus, inequality (31)
will follow from (36) if we replace the arithmetic mean of the squared singular
values of A{w) by their geometric mean and use the Weyl inequality (Amir-Moez,
1956), together with (33) and (32). Note that the right-hand part of (31) is true
for any k%, . |

With a view to simplifying the search for an idempotent impulse function,
given % and y, we impose a restriction on the class Hy, of idempotent functions,
stipulating that % € H}, if there exists a normal subgroup G, of G such that .
A&(Q=Liﬂ:CEGR¢ - [

Now, consider the problem of finding all idempotent impulse functions
h € Hyy realizing a given pair (#, ) on the assumption that ¥ =0; e, we are
considering the following equation in &: -

(h@u)t) =0 (37)
forallte G.
Let P C R(G), and denote
Pt= Ry* = () kern R, (38)
el wal

(Ry: =kem R, ={t|R,($) = E, }), B, — (4, x d,) identity matrix.
Then P* annihilator of P in ¢ and it is obviously a normal subgroup of G.

DEFINITION 2. ‘A'subset P C R(G) is said to be closed (notation: P = [P)),
if, for any R, ¢ P(R, € R(G)), we have R, 32 P+,

Note that if the representations in R(G) are indexed so that R,(t) = 1 for any
t€ G, then R, e [P] for any [P]in R(G).

It can be shown (Hewitt and Ross, 1963), that for every normal subgroup
G of G there is a unique [P,] C R(G) such that [£h]t = G . Moreover, any
[P] isomorphic to the dual object R(G{[P]*) of the factor group G/[P], and the
elements of the set [P] are constant on the cosets of & modulo [P]4; in addition,

2 4 =GP (39)

wE[P]
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In other words, if K is any coset of G modulo [P]*, then the relation between
R, e Pland I, & R(G/[P]Y) is given by the formula:

R (1) = I'(K), te K. (40)

LemMa 1. For any f: G — My, ,, and any [P] C R(G),

P ¥ f() = T Tracef(w), (41)

te[PIL wslP)

(f() €My 3 LG, f(w) € Mgy ma,, 5 @ € R(G)).
In this furmulﬁ,
Trace f(w) = (race f W), (1 <n<h 1 <I<m. (42)
Proof. In view of (42), it follows from (7) that | |

d d .
Trace f(w) =~ ¥ fOxlED+== T fOxl @)
g rapr1t £ te[rp-

We now sum (43) over w € [P]. Then by the definitions of [P] and [P]* and by

(40),

S 0 Y eyt =3 fO~ T 4
P wslp] & Pl & welp] .
1 e
=-EGR'[P]* > f@ =P} Y f(5) (44
te[P]L te[P1L

On the other hand, by (40), (6), and the fact that d,, = x,(0):
Y AT Gty =1 Y 50 T nOWD =0 ¢S

ZE[PIL walP] & g e wE[P] -

Thus (41) follows from (43) and (45).

Lemma 1 may be considered an analog of the Poisson summation formula for
matrix-valued functions on finite (not necessarily commutative} groups. It also
illustrates the relationship between the closed subsets [P] of the dual object
R{G).and the normal subgroups of G.

Our problem of finding solutions i € Hyq of Eq. (37) is selved by the following
theorem. Denote

8y = {w] Hw) = O} {1} (46)

i - 'THEOREM 4. Given an input u: G — C, (such that T4 u(t) = 0). There
L« exists @ one-to-one correspondence between the sets [P such that

x5
| [P]< 9y, , (47)
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and the solutions h € Hyy of .Eq. (37), defined by
[Pl Ap (D) = L, { e [P}
Proof. If [P] satisfies (47), we set

) T —

Ho) = hipfo) = - dEy,, welP)

= (@, w¢[P], (49)
where E; the identity (d, X 4,)-matrix.
Then
h(w) Bw) = O. (50)

Now, using (49), one shows by direct computation that % € Hiq and G, = [P]*.
Conversely, A(p) € Hiq , then, by (7) and Definition 2,

hepy(w) = % dE;, welP],
= D, w ¢ [P, (51)

where g, = G, and [P] is such that G, = [P]*

It remains to show that P satisfies (47), but this follows from (50) and the
definition of Hjq ;+dince kypy 18 2 solution of Eq. (37).

We now consider the analogous problem of finding % € Hjq realizing a given
pair (&, ), L.e., we are concerned with the nonhomogeneous equation (& =
m = 1) ’

(h ® u)(t) = (1) (52
Let 1(t) be e;pr;_ﬂaible as
A =E®NH+d (53)

where p € Hyg is an unknown function, f: G — C some known function, and
d an unknown constant. In other words, instead of (52) we are studying
the following equation:

(b ®u)t) = ( ®f)E) +d. (54
Let v # 0, and dencte

Qufy) = {w | y#w) =f(o); @ = {w|f(w) = O} {1}. (5

-TreorReM 5. For any u, f: G— C, there exists h, p€ Hiyqg and a constant d
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such that h, u, p, f, d satisfy Eq. (54). Moreover, if there is v £ O such that the sets

QU Ay)  and Q0 9, () (56)
contains sets [P.] and [P;), respectively, such that
oA[Po)) = yof[P,]),  where o[P]= ¥ 4,2 - (57)
wel P
o . (7]
| [P 2y Ay) = [F5] 0 2 (), (58)
then :
.z 1
LMD+ T o0 = g (1 4+ (59)
Proof. Bet
"(m) wEdm W e [P u]:
—o.’ w¢ [P,]. (60)
oy =12 g g, welpl,
=, w¢[Pﬂ]' . (6"[)
J = —"LP*EZJ()—-*J—P* T £ (62)
For any w € R((G), we have
) ) = Fw) flw) + 22 d(w), (63)

where d(w) = @ if w # 1 and (1) = dg. Then it follows from Eqgs. (60), (61)
that for every { € G {({) €{0, 1}, p({) €{0, 1}, and (59) follows from (60), (61),
and (57) by Lemma 1.

Note that sets [F,] and [F,] satisfying (57) and (58) exist for any « and f (for
example, [P,] = [P,] = {1}, ¥y = 1), and so there is always 2 sulutmn h, p, d
of Eq. (54) defined by (60), (61), and (62),

Note that sufficient condition of Theorem 4 follows from this theorem if we
setf=0,d = 0.

The advantage of idempotent systems over ordinary systems over a group lies
in the maximal simplicity of the appropriate block diagram (see, e.g., Fig. 2).
I addition (Karpovsky, 1977), in cases when there exist idempotent impulse
functions there are simple and effective methods for detecting errors in system .
Note that the impulse functions %y, and %, (see Section 3) coincide, if the cor-
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responding optimutasiproblems are to be solved in the class of idempotent
functions. In thatqease; the following corollary shows how to determine the
optimal idempotenttiiphilse function %, € Hia (the case of Eq. (3?)) reahzmg
a pair {x, y)mthy =0

COROLLARY, M the msumptfam of Theorem 4, denote

of[Plopt) = [g}éﬁ {ﬂ([P D} (64)

hopt(D) = 1,  {&[Plopt s
=0, {¥[Plén- (65)

Indeed, formula (65) follows from Lemtitd 1, Theorem 4, and (64).

3 APPROXIMATION OF A lea iNWNT SYSTEM BY A SYETEM ON A
Givex Firre Grovr G

Consider a given many-dimensiondl linear time-invariant system with zero
initial state, m inputs, and % outputs, defined on a finite discrete time interval
[0, g — 1] (where g'is an-integes): giicip - - -

e=1

() =@s)) = wlt—Dul), ©<t<g—D (66

© L)

The symbol * stands Ifurmﬁ?nlut}ﬁn of the impulse function w: [0, g — 1] —
M, ., and the input u: [0,z *——ﬂl]i&h M?m ;4 of system (66); 5: [0, g — 1] = M, is

the output of system (66). -

Now let G be sumaaﬁh_f | 30 ,Fanljr commutative) group of order g.
Treating the input : [0, g — 1]~ ' mlas a function defined on G, i.e., & G —
M, , , we consider the&b‘a@m && g graup G

EEPPRIRELTY & anm I*Ejr ! ' .
J’(ﬁ) ﬂ’ff“@”ﬁ(ﬂa h(ﬁ‘l o ) u({). - (67)

FOPSRNE (4 }uu {lm; 4 ‘;rFEG

We wish to find the best :apprummamn of system {66) by a system (67) over
the group G. This prnblem is’ solved- by Pearl (1975) for a dyadic group G of .
order g = 2%, with 2 = m == ], by a method which is also applicable for systems
S over arbitrary finite Abeltan’groups: In this section we generalize the method
to many—dlmensmnal syatemis (221, m 2> 1) and on the case that the group is -
not commutative. It is noteworthy that the use of noncommutative groups may
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considerably increase the accuracy of the approximation for a gﬁ#ﬂﬂ system (66),
or simplify the impulse function of the system over the group.

Given #: [0, g — 1] > M, ; and 5: [0, g — 1] - M, , , waﬂﬂeﬁne culumn
vectors U, Z as follows: e |

U = (4(0) (1) -+ g — 1) *+* 1f0) (1) - (g — L)Y

68
= (2(0) - #y(g — 1) - 2(0) - m(g — 1), N

ie., UeM,,, and Z & M,,,. Then the action of the impulse function . in
system (66} is equivalent to

Z=WU. (69)

Here Wis a (kg X mg) matrix, whose elements are arranged in blocks W¢.0(0 <
5, £ < g — 1) of the form (W) b — gindi(y — ) (1 K n k1 <1< m)
The matrix W = (w-3{¢ — {)) is called the impulse matrix of system (66). W is
a Toeplitz block matrix, generated by the function w: [0, g — 1] M, ,, . In

similar fashion, we write Eq. (67) of the system S over the group G in matrix
notation: S

Y = HU. o (70)

The impulse matrix H of system S belongs to the set of circulant matrices
defined as follows:

Cir(G, k,m) = {H | H = (H®9),
HEO — (htmer = (;,-:n.n(g-:l s t)),
ekl I g —1} (71)

Some properties of circulant matrices were cnnsldered by Karpovsky and
Trachtenberg (1975).

We now state the best-approximation problem as follows.

Given a system (66) with impulse matrix W, and a group G, let {S} be the class
of all systems .S over G with input 4 € L, , . It is required to find a system Sy in
{5} with an impulse matrix H,,; € Cir(G, %, m) such that

| W — Hupt "ﬂ = W— H”s}- (?2)

HEC}Hi&nk m} {”
1Ky

(The choice of the Hilbert-Schmidt norm || ' ||; as a measure of the “closeness”
of two linear systems is justified by, e.g., Nailor (1965) and Pear] (1975)).

Let R(G) = o (i.e., the dual object R(G) of G contains ¢ elements R, ,..., R,).

-
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We wﬁ'tﬁ“ﬂ(G) asamatnxﬂnﬁlﬂmﬁiﬂw {] o < o), where
el e A L
" :.l.*':'-': iy ﬂ - { oo { ' )
e ( RIDO) e @ RIO) RO
ROV PRV — 1) - RIW(g — 1) REVg — 1
iy B
% _ ke, o
e RERO) o RIV(O) o RIeS(0)
Sl L : (73)

e RBSI(g 1) s REaD(g 1y oo RUI(g |

R,e M,z . Here RP9(-) is the (p, g)th element of the matrix R, (")} (1 < p,
¢ < d,)and

R = (BB, R,) | (74)

Note that R is unitary (by the definition of the elements of R(G)and R e M, ,
(in view of (2)). Letting & denote the Kronecker product, we define two unitary
matrices R¥ @ F;, and R ® E,,, of dimensions (kg X kg) and (mg X myg),
respectively (Ey , E,, identity matrices of dimensions (% X %) and (m X m)).
Then the following lemma furnishes a block-diagonal form for any matrix
H e Cix(G, k, m).

Lemma 2, For.any matrix H € Ci(G, k, m)

W&g '@ B) HR® Ey) = D (£ Ea, @ hw), (75)

fymm]

where @45 thé :'ldﬁe‘ct summation of matrices and h(w) 15 a block matrix
M) = (hmi(eo)); 2l _f“(m) being a (d, X ) matriz (1 <n <k, 1 <1< m)

'I'lierl *m:é o5 th Lsmh .- ' w
of (75) using’(3). SRol
Gwenj,thg lmpulse matrl:!: Wmﬁﬁ% ne Of system (66), defined in (69), we set

._ S o), fﬁ@%{qf(ﬂ ® E,). ‘?6)

In wev nf (2), we can define blocks Qﬁl), .+ $(a) along the diagonal of £,
where ﬁ‘(m} € Mg md (| S0 < Jj{seg Eig. 3). In each block (w), similarly,
we detetinine d.lagonal blocks Ql(m), . ﬂd (u:-} where 24w)e Mg, ma,, (1 <<
i < d,) (8 Fig, 3). ity

The following theorem shows how to’ Belect a system Supt providing the
best approximation to system {66) in the sense of the criterion (72).

;,r direct computation of the left-hand side
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A

amenlf « 0
o - I
m |9 @) we a2l

nz 9z 2]
md ,'.'.'.2[2}‘ kdp { H:

., mds

L™

Hﬂ" — ekl

z . " er— . .
md3 ‘gl[ﬂ Thdﬁ’ i)

Figome 3

THeOREM 6.  Given a sysiem (66) with impulse matrix W and a group G of

order g, an optimal impulse function hyy, €Ly . (in the sense af (72)) for system

npt is defined by

hopt() = — ¥ Qo). o

gi-l

The norm of error e in (72) afforded by this approximation is given by

“) (78)

The proof based on the fact that |(R* @ Ey) W(R @ E,)l = | W/, for any
W e My, ., and follows from Lemma 2,
We now present some relations that establish a direct relationship between the

impulse function @ of system (66) and the impulse function &gy, of the best
appru:nmatmn

£2(w)

delr =3 3 (

dpmm] fan]

V' 4 (20— Baw

(el fum}

"—'.11

CoroLLARY.  The impulse function hopy of the best approximation Sy, to a given
system (66) with impulse function w satisfies the condition

hopt(l) =— ¥ wit o { — 1) (79)
§ e

The proof is by application of formula (8) to (77), using (76).
We now consider the question when there is a one-to-one correspondence
between the time system (66) and its best approximation Sopt OVer a- given
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group & i shown by Pearl (1975} that this is indeed the caseif . = m = 1,

G is a dggEtiBeoup and the impulse matrix W is symmetric (symmetric system
(66)) or iEEEHangular (causal system (66)).

We .to show that if system (66) is symmetric, the dyadic groups G

4 fichusal system, this is always the case for a commutative group G;
if G is Hidf.commutative, there need not exist a one-to-one correspondence.
To mmplify the expuﬂmun we assume henceforth that 2 = m = 1.
If ayate;m (66) 1is Eymmetnc (Wd = w{| t —{|) or causal (W{# &) =0
for t < C), we aet

L fsﬂpf(m - @(0)
H hmz( ). W=(.; } 80
ﬁnpt(g’ —_ 1) | w(g — 1) | |

We may thus rewrite (79) aa follnwa

LT H
rI L) H

hopt iy -L CGW' . where Cge M, . (81)

TueoreM 7. (i) If syﬂﬁﬂ (66). & symmetric, then C,; is mﬂembfa if Gisa
dyadic group. . |
(i) If system (66) is causal aﬂdfqr anyt, e G

el <t +1, | (82)

then Cg is a mngufar lower trmﬂgufar matrix:

Proof. (1) Sufficiency was prcwed by Pearl (1975). Suppose that G is not
dyadic. By (79), 1f aystem (66) is s}rmmetrm

:Cm” {’“”@—“—P} O<tr<e—1 6

LJ."

then, putting # ¢ ?“1 = ¢, we have for every 0 <{ p < g -_— l

{:_1:1}

Ce - 45[~#“It-'5€‘1--tl=ﬁ} {EII&'-WCI pr=Cg™. (34)

JRITENEN) P
Since G is not. &yadmthare exiats { € G such that {1 = { a.:m:l it fulluws from (84)
that det Cg =0.2210 |
(i) By (TS'}}.-‘if syutem (66) is causal,

*r
' -:.’H‘_".'I'ic '

R I T ey e (85)
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where
8x) =», x>0
=0, x<0 (86)
Then, CEY > 0 because (0 { — 0) = £,
By (86), using (82), we have
S(tef —1) < L. | - (87)

Consequently, by (85) C¥# = 0 for { < p.
We note that if G'is a commutative group then there always exists an enumeration
of the clements of the group by numbers 0, 1,..., g — 1, such that condition
(82) holds. (Since a commutative group may be represented as a direct product
of its cyclic subgroups.) | |

For the causal system (66) in the case of a non-Abelian group G, the matrix
{¢ may be invertible or noninvertible. For example, if G = S, , the symmetric
group of the third order, then for the enumeration:

1=0; (132)=1; (18)=2 (I=3 (13)=4; (23) =5 (88)

we have det C == 0. (1 is the identity of S;.)
But for the enumeration:

1 =2; (132) =1; (123) = 3; (1.2) = 4; (13) =0; (23) = 5; (89)

we i:ave det C, 54 0.
From Theorem 6, its Corollary and Theorem 7, we may conclude:

(1} The above search procedure enables us to find the best approximation
fol arbitrary discrete systems (including time variant ones).

. (2) For an arbitrary discrete possibly time variant m input % output system,
W& may construct its best m input % output approximation in the class of all
Bxﬁteys whose impulse matrices can be reduced to block-diagonal form by
t?mlunitary'matricea Q and Q' of dimensions (kg X Ag) and (mg X mg), respec-
tively.

4E41(3)" The norm of the approximation error ¢ for a given system defined on
the interval [0, g — 1] depends on the choice of the group G (in the set of all
groups of the order g over which the approximating system Sopt is defined)
This poses an apparently quite difficult problem: optimal selection of a group G
of given order minimizing the norm of the approximation error.

Th.e procedure we have described for solving optimum problems make use of
Fourier transforms on finite groups. The actual computation of such transforms
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d Wintz (1970), Karpovsky (to appear).).

{- .
I_;._-June 4, 1976
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