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Error Detection in Digital Devices and Computer Programs with
the Aid of Linear Recurrent Equations Over Finite Commutative
Groups

MARK G. KARPOVSKY

Abstract—A method is proposed for error detection in digital
devices and computer programs caleulating the values of functions
f(x), where x € { and G is a finite commutative group. For the case
of network implementation of the method, “errors” are catastrophic
structural failures; for the case of program implementation, they
are errors in the text of the program.

The method is based on finding, given the function, a linear “re-
current equation over G with coefficients ¢ or 1, of which fis a
solution, The verification whether this is indeed the case constitutes
an error detection method.

Implementation of the method requires only the operations of
summation, delay, and the group operatjon in G.

The equation whose solution is the given function f will be sought
using methods of abstract harmonic analysis on the group G.

Index Terms—Error detection for digital devices and computer
programs, error detection tests for digital devices, characters of
commutdtive groups, Fourier iransform over finite commutative
groups, spectral and autocorrelation funciions over finite com-
mutative groups, fast Hadamard-Walsh transform., '

I. INTRODUCTION

UPPOSE given a digital device or program
for calculation of a function f: G — C, where G is a
finite commutative group and C is the field of complex
numbers. (Examples of such devices are the blocks of the
arithmetic unit of a computer, networks whose operation
is described by two- or many-valued logical functions,
devices operating in systems of residue classes, etc.) To
detect errors, one can construct another device or program
calculating the same f(x); errors are detected by comparing
the results of the calculations (“system redundancy
method”). This method is widely used but is, generally
speaking, highly uneconomical.
In this paper we propose another method of error de-
tection, according {0 which, given the function f, one de-
termines a linear recurrent equation over (:

2. alg)f(x*q~1) = &(x) (1
g
(* denotes the group operation in G,q~! & G is the inverse
of g) and checks the validity of {1) for given x.
Note that the meaning of the term “errors” depends on
the context; errors in a digital device are catastrophic
stable structural failures, and in programs 1;h4z~:¢1izr are errors
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in the texts of the programs. To simplify the error detec- .
tion process, we shall consider the case a(g) € [0,1}.

The proposed error detection method will not depend
on the specific features of implementation of the device or
program for calculating the function f; moreover, it will be
universal in the sense that for any f; G — C there exists an
equation (1) with a(g) € {0,1} and a “fairly simple” func-
tion $(x) (for example, #(x) = const; see Section I, The-
orem 1). It will also be seen that the above-mentioned
“system -redundancy method” is a special case of our
method.

To search for the optimal checking equation (1) and to
estimate the complexity of the equation we shall use
methods of abstract harmonic analysis on G. The advan-
tages and the limitations of this technique will be discussed
in Section V,

Related questions, concerning the analysis, synthesis,
and optimization of digital devices by methods of abstract
harmonic analysis and generalized Fourier transforms,
were dealt with in {1]-[5].

il. ERROR DETECTION BY LINEAR HOMOGENEOUS
EQUATIONS OVER A GROUP

A. Letf: G — C, where G is a finite commutative group
and C the field of complex numbers; we denote the ele-
ments of G by 0,--- g ~ 1 (g is the order of G); 0 is the
identity element of (; * denotes the group operation in
G.

- Let f be a solution of a linear homogeneous equation over
G with coefficients 0 or 1; i.e., for every x € G,

f(x) + flx*q ) +-- -+ flx*qrp~)) = d,
-n%mEGd€C {(2)

Equation (2) generates a simple method for detection
of errors in the calculation of f(x). A network interpreta-
tion of this method is illustrated in Fig. 1.

In the network of Fig. 1, signals corresponding to
x,x*q17L, -« o x*gr(n~! are applied at consecutive instants
of time to the input of the network calculating f(x); a
nonzero signal at the output of the adder-accumulator with
initial state —d after L(f) elementary additions may be
tised as an error signal.

The complexity of the network of Fig..1 and the time
required for error detection for fixed x depend only on i
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number Ll’f} mthachec]ung equatmn {2] {1 % L(ﬂ ig -
1). L
B.’ We now mnmder the prublem of f'mdng a lmear
equation (2),given f.

.For the solution of this problem and the other problems

considered below, we use methods of abstract harmonic.

anslysis. We recall the main definitions.
A character of a finite commutative group & is defined
as a homomorphism of 7 into the muluphmnva gronp of

complex numbers. The set of characters of 7 iz a multz-
plicative group isomorphic to G [6, p. 367]. The character

méapyped onto an element o € G undartlusmomnrphm:r
will be denoted by-x {xH{x £G). .

7560, Let £, & 5, denote a generator ofif;;p,s—:
order of G, where p, is power of prime_ Then [6, p. 35’5’}

xo(e) =em (35S o) ©)

ﬁherﬂ. P - . )
T = %Gk, w = EE b
Xogws- = §0, k20w P — 1} 2= V=,
&P B 50 -0,

- - 'h -
-

Drue to the orthogonality and completeness of the set of
charactera [x.}, one-can use thisset asa mmplete prthog-
onal basis in the space of functions mapping G into the
field L'.' of mmplex numhbers. Thl.lﬁ 1f f: G —C, th&n

fli::}= E S;im}xu{x:- | (4)

where . -

Sf{m} = 1/g E flx)xAx) {5)
and ¥, is the charﬂctermmplex-mn]ugatatu i< ¢

E¢uations (4} and (5} define the generalized Fourier
transform Fe and the mverse generalized Fourier trans-
form Fg—!'on. G; each finction f 15 sssociated with its
gpectrum Sy,

A B st

nelwark mE:-ufn.-ir.nH ‘![:};

adder accurmbator watk iniial stete -4

two-inpul  dees mp!rme.rrtmg the group

Ermrdetectlmhyalmearhnmngenmethm

Theorefn I: For any f: G-*Cﬂl&rﬁexmta G-, 1}{&

o D}am:lﬂ = Csuchthatfﬂre‘-veryr E G

T al@fz*eN=d (6}
s L L

M Z ﬂ'[q} gfgﬂ {T)
wharﬁgnrmthemdarnfanmhlﬁargwhgruupﬂ ufG such
thﬂtlfIJE Gq,. and w #ﬂthﬂhslfl:m:l =0, -

Proof: The left-hand side of (6} is the mnvuluhm over

(7 of the functions o and f. Spectrum of the convelution of
Expiees (7 as adirect preduct of: cjrc:huﬁubﬁmﬂ?ﬂﬂ -

two functions is equal £o product of the zpectra of the
functions multiplied by the order of the group [6, p. 360)
(“convolution theorem™). Hence the required function d
must be such that.

: 'd

Sﬁ{m} - Splor) = g‘ ifw=0 (whereS,(w spe(:tmm {8)
g, ifw =0 ' aig)}.
Let-. . |
Eﬂﬁ:cj y
d=E 80y == @)
. &a . g a
arvd
—_ lfg{l: iwa Gﬂ!
S [ )= o f o G (10}

Then equal:ty {8) (and henﬂe also {6)) will fu]lﬂw from {9},
{10}, and by (3), (4}, {10), for every g € G, '

Y Salwxalg) = 1/ea T xolay. (11

uEG# e (3,

, E{q]. ,

Thefunn:tmnxq{m] -:.JEG madﬂrﬂﬁt&rﬂfﬂmsuhgrmp
{7,. Henﬂ&,uamg{'&] and {31}, we obtain
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Ec; Xelot S ihg,): el =1 a(p) =101 (1)
wi=lr

Thius if 2{g) is defined by {11) and o is defined by (9), then
a, f, and d satisfy {6} and a(q) < 10,1}. We now prove {7).
Consider a homomorphism of the group of characters of
7 anto the group of characters of {a. The kernel (3, L of
this homormorphism is defined by the condition; - - ;

qE G L iff x(w) = 1 for ale G,
o B y
4 € G, L iffalg)=1.

Smee G, L Ba Suhéruup of G {this subgroup is isornorphic
to quotient group G/G, ), and the order of G, L s &g, it
follows that T ' - o

z ﬂ{q'} = i.'.l":E_q-
qeEL :

C. The prmf of Theorem 1 penerates a simple method

for constructing a checking equation (2) or {6) for-the given .

function f. This method reduces to the- following opera-
tioms: : . - -
1} Compute the generalized Fourier specttum Sy of
+ 2} Construct a subgroup G, of G such that if » & {fs
and @ = {, then S,r{-m] =0, : .
- 3) Construet a: & — 0,1} by {11}, and d by {9). .

The spectrum S; may be caleulated by using the highly .

effective algorithm of the fast Fourfer transform on the
group (7 {7}, - ' '

We now illustrate the error detecting technigue de-

scribed above for binary adders and multipliers. . -
Example I: Consider extor detection in an n-bit hinary
adder using Theorarm 1. Lét
a1 :
A =3 xp27=17p

n—1
Y=7 y2ml-e
p=1 =0

{Ipp}rp E 'H]':']-H

and fxn, e+ xp1¥n -2 ¥ac) = X 4+ Y. Then
(X === X1, ¥0 + 2 = Wom 1) € G2 where G is the group
of binary 2n -vectors with respect to componentwise pd-
dition mod 2. '

According to (3}, the characters of (G2 are the Waish -

functions:
W {xg,+++ Xa—1¥i * =" Va=1)
— {—rrj. }.:b-u"_]{m{_hlp+ﬂn-.l-p}'§ J,‘
(eap € 1087 =0, - - 2r — 1},
1 = n!‘ T ':-I-il]:r' '.'!-I M-, - .
LEMMI rﬂ -ﬂ}.{.rﬂ-ﬂnlj,mput.,

(13)

) ) R:I'I'-I-]':..Wm.{xlh.'%".;ir_t_-l.-}":ﬂ?.'_l”-yn—l:}. |
(these funetions are known as:the Rademacher functions
[2Lésp. - . . L e

Then by {13}, (14),

a4

IEEE TRAMSACTIONS ON UCDOMPUTERS,  MARCH 1577

Yp = 0.5(1 =~ Ryr1)  yp =061 — Rpupra),
p=0,--+ =1 (15)
and

n—1 '
X+ Y=0+-71- Z: {Rp-j—j + Rﬂq.p-rl]ﬂ“_z_p. {16}
T =0

- Consequently, in view of (4), (14), |

Syla) = 8y plw) =
an — 1! i w= (ﬂ:"'tﬂ};

e
- 2n

=2r7E, i = (0,--0,1,0,-+ 0,
o —p — i
@=(0--4010,...05;{p=x5—1}
. n—p-1
0, otherwise (17}
In accordance with (17), we get

G,={m Elw,=2k - m=u,1.--~.,g}].

Then
e = 22"-71. Gﬂ'. 1= E{ﬂi' - ':ﬂ]t {Ip- * ":1]1'-
n 2n
Since

2 flxg, a1 Y - Yeayd = 2320 - 1)
XY .

it tollows from (9) that d = 2{27 — 1), and we have the
fellowing checking equation for binsry adders:

Hxg --- Xaoi¥o, oo Yt}

tixo®Lere 2, @ Ly @ Ly & 1)

= 2§27 — 1}{mod 2). | (18)
{Henceforth, the symbol & with “(mod 2)” to the right of
the equation stands for addition mod 2.

Example 2: We now consider error detection ina binary
muitiplier. Let S N

=] i H=1
X = J xp2n-1-p L ypl2ni-e
o . . et

(X0, 4 X 1,0, * " = Y1) € Ggin,
Flxn, === xpm¥a, - Yoo) = X- Y

Than, in view of {14}, (35), .
XY =025(22- 12— 0502 — 1)

r—1
= 2 ARpe1 + Rppe )27 270
=4 o

=1 .
+ 3 B Rptpavt + 223 4P1=p,
O P i}

Mow it follows from (13}, (14) that

RmH - Rn+p:_+,1__=_ w. i-"m ‘= Xp=1,¥h " "7 ¥r=1)

(19)

. where



KARPOVSKY: ERROR DETECTHXN TN DIGITAL DEYICES

= {u'l' - "l-ﬂ!]"lu:r' T '10111{}1' - :ﬂl

P e
.P. H+F2-P:
and g0, in view of {4}, {19}, we have
0.25{2n =1, Hw=(0, - -0x
[

n
0520 =1) 2027, if =
[ﬂs' - '+ﬂ51iu+‘ * -!U}t

— —

P
= {u'l - '!uiltﬂ' - -.I:I},.
L il
R+p
92n4-p,-py, L=
[ﬂp‘ - .!ﬂlliﬂi' v 'iu!]'!u'l. - .ID}'
" g, —"

mon +.I.Dz - P,
0, otherwise, (7 p 2, =<k —1).

Sple) =8y - ylw) =

{20)
In accordance with (20), we set
n—1

E Wy
p=0

T T ,n}]‘

=1
E. T.'!'.'l‘p — EK],

{7, = [m
p=0

Then
B ™ 2'1!1-1’ Gﬂl -
Hu: - -], {ﬂ', --01,- - ':1}1[1:' } '11:']1' 50,1, ':1}1-
et ey’ Tr—

IH n n 1
Since in this case

T flxg v+t 1Yo -+ Hami} = 222N — 132
X.¥ " . .

it follows from (3) that d = {27 — 1)2 and we have the fol-
lowing checking equation for binary roultipliers:
flxg ++ Xn—1¥0 * 4 Ka=1)

+ flxg, « - xn—1yo B L0 Y01 @ 1}

+f{1ﬂa 1,441 Xp1 ® LYo, “e e Vp=1)

+ g @], - a1 B Ly @ L, - a1 B 1)

= {27 — 1}3{mod 2). (21)

To end this section, we consider the special case o
Theorem 1 ford = 0. :

Corollary 1: For any f: @ — € such that Z;caf{x) =0,
there exists a: (7 — 0,1}z == 0) with the property: for every
x &

v alg)fix*g~ 1) =0

gEl

4
afg) = =
IR
where g, ia the order of an arbitrary subgroup G, of G such
that if @ & G then Spw) = 0.

214
Proof: Follows directly from (6}, {7), (9).

III. ErRROR DETECTION BY LINEAR
NﬂHHﬂMDI’.“_-ENEDUS EQUATIONS OVER A GROUP

A. Suppose that besides the device or program for cai-
culation of the function /: G — C we have another (inde-
pendent} device or program for caleulation of some fune-
tion 4: G — C, such that the calculstion of ${x) for all x
& (7 iz “simple” in the sense that the probability of errors
in Bz} is small. (An example is #(x) =2 {r=0]1,-++ ,m
~ 1), where x. 15 the rih component of the vector x.)

We shall use ®(x} to detect errors it the calculation of
flap.

Let there extst Gy, «+ - gLyno1L - - - S EGandd £
(7 such that, for given f and &, and for everyx € G

flx) + Fla*qy D) + - -« + fix*qrn~!) = 2(x)
+ F{x*S, D+t F{x*S8p 3y 1) + d.

Equation {22} is the general-form of a linear nonhomo-
genevus equation with coefficients 0 or 1 over the group G,
it generates apother method of error detection, iltustrated
{for the case L(#)} < L{f)) in Fig. 2. In this case detection
of an error for given x requires max(L(f),L{®}} elementary
additions (errors in the calculation of $(x) may also be
detected by the bleck diagram of Fig. 2 if there are no er-
rors in the caleulation of f(x)). The use of the block di-
agram of Fig. 2 instead of that of Fig. 1 may resuit in 2
significant decrease in L{f), sc thai nonhomogeneous

{22)

. checking equations may be more effective for error de- -

tection (see Exampie 3}.
'B. Using the notation of (22), we denote

if § € 10,q1. +++ GLiph
ctherwise;
if g = 10,8, « -+ .Seik;
otherwise.

1,
ailg) = [ﬂ (23)

-2

Fhen by (12} and (23)

T alg)flx*q N = T blglelxtg ) +d.  (24)
el g

Set
= {mlﬂf[m] = {}], Ra = |W!S¢(ﬂ"] = [y,

Q.0 (a) = [ w

Salw) " ﬂ/]}
Srlw)

Theorem 2: For any two functions f,$: ¢ — C, there
exiska: G —~ 0L b: G — 0L} la = 0,b = 0),andd EC
such that o,b.f,$,d satisfy (24}, and if for some o the sets
ﬂf )] ﬂf_g{ﬂ"] i) ﬂ]l Hﬂdﬂg L) ﬂf_.ﬁ.{ﬂ] L) ¥R contain
subgroups G, (af and Gy (=) of G, of orders g.{a) and gy (e
= ag, (), respectively, and G (o) M Ry pla) = Galad M
s o (0], then
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Fig. 22 Error detection by & linear nonhomogeneous equation.

2 alg)+ 3 big)=

gelr gt

( 1+ 1) (25)
gﬂ{ﬂ)

Proof: By (24) and the cnnvuluuun the-nrem we
have

d

Sp(0) - S¢(0) + E, if w = 0;

Sa(w)Si(w) = (26)

Splw) - Spw), i w < 0.

(84,85,57,5 3 denote the spectra of a,b.f,$.)
Assume that for some « all the conditions of Theorem
2 are satisfied. Let

1 . -
Su (w} _ Py {ﬂ}: if w E Gn (ﬂ}r (27}

0, if we Gala);

| 12 ifo e Gula):

'Sb{&l)_? gf,{q} ) ) BREL
0, | if w ¢ Gpla);
and . |

{ N
d= - $(x). 28
gﬂtangﬂf ") (@ T @

We now prove that (26) (and hence also {24}] will fullnw
from (.2’1') and (28). We consider all possible n::ases
1) Let w = 0; then hy (27), (28) @

2 s

a(ﬂ-’] g x&0

5, (0) - < 5,(0) =

1 1

Y &(x) + d) = S,(0) - Sp(0) + g~ 1d.
plcr) xe= ' '
2) Letm #* 0 and w € Gala) M Gela).

- a) If w & Qf, then w & 4, since for every a, Qs ﬁ
R ola)= Q6 M U ala) =@ (the empty EEt»}, Stlw) = Splw)
= 0 and S, (o) - S{w) = = Sp(w) - Se(w) =

b} If @ € © 4(a), then S.;,{w}fo(m} = « and, since

gola) = a-gqla), S;(w) - Sp(w) = (1/8,(a))Se{w) = (1/
Eata)(Sg(w)/a) = (1/gp(a))Ss(w) = Spw) - Sew).

3) Letw € Ga(a) and w ¢ Gy (a). Since G, {a) N 2 o ()
= Gpla) M Qf (), it follows that for every o w ¢ Qs 3 (),

so that @ € O and Sf(w) = 0; but if w ¢ G;_,(af} then Sy (w)

- =0, and thus

Sg(w) - Sf{w) = Sa (w) - Se(w) =0,

(The case w ¢ G,(a) and w & Gy (a) may be treated simi-
larly.)

4) Letw ¢ G (o), w ¢ Gp(ax) Then S;(w) = Sp(w) =
and S, (w) « S¢(w) = Sp{w) - Sp{w) = 0. Thus (26) fnlluws
from (27) and (28}). Furthermore, if we consider the
subgroups G, 1 (a) and G; X (@) as in the proof of Theorem
1 for G, 1, we see that a(q),b(q) € {0,1} for every ¢ € G,
and

Lfy+1= 3 alg)=

g

n(ﬂ)
L@)+1= % b{qi =_£ (29)
&G grla)

whence, using the fact that gl(nr) = o+ g.{a), we have
(25).. .
Example 3 Let f be the function defined on the dyadic
group- G by Table L

We take $(x) = x5 (the spect.ra S;,S@ are shown in Table
I). Then by Table I |
{{01010}:(05011}:1 . if o = 2 |
ﬁ; i __f&#Z

Q; = §(0,1,0),(0,1,1)

{(0 1,0),{0,1,1),(1,0,0),(1,0,1),(3,1,0),1,1,1)};
- Ga(2) = Q5 U Qa2

.0 (a) = [

Gb(Z} = ﬂ.,, W, 9{@-{2) =
G.(2) N ﬂﬁ-(?} =Gy (2) N El,rq:{Z) Q 5(2);

£:(2) = 4; 2, (2} = 8. The conditions of Theorem 2 are sat-
isfied for « = 2. The functions S,,S;,a,b are shown in Tahle
I. Since it follows from (28) that d = 0, we have from Table
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TABLEI
Tuug |®g ¥y %y | (WD aclul | Simd 5, ek St alg) | bigd
O 1 .25 9.5 [ D.25 |o.x35 | ¥ 1
1 o6 1 o =0,35 .5 | 0.258 |p.ars | 6 1]
by b1 G 1 n} 1] 0.25% [0.176 LI ] 1]
3 B rl 1 f 1] G.35 {0,125 | B i
4 100 -1 D.5 o o, 0.18%5 | 2 B
5 1612 1 2.5 i} o 6.125 | o 0
I E 110 -1 -f. 25 g n 0.125 | © 1
i 7 111 - a,25 8 o 0.125 | @ )]
[
}[b— L}' > Erpar
ﬂ:...E sigriaf

madulo 2
dddar

-

Fig-3. FError detection for Example 3.

LN AN
AN

$og ¥ e moud

Fig 4. Errardetection by (24} witha{g) = b(g) (g = 0.1, -~ .g'- 1).

1 the following nonhomogeneous checking aqﬁatiun:
Fe p,x3) + flxo @ Lxy,xe) = xo (mod 2).

{A block diagram of error detection for this exampie is
shown in Fig. 3) To find an optimal nonhomogeneous
checking equation (24} for given f and &, i.e., an equation
minimizing the complexity Tyecul(g) + Zoecble), one
must consider all o such that o or a~1 is a divisor of the
order g of the group G. T

(. We now consider the special case of the checking
equation (24) in which a(g) = b(g) fer all ¢ € G. The bleck.
diagram Fig. 2 is now considerably simplified, and & may
be chisen as a function reslized by some subnetwork
implementing f {zec Fig. 4). o _ _

Corclinry 2: For any two functions f,&: & — C, there
exist a: &7 — 0.1} {a » 0) and d € C such that a f,&,d
satisfy (24) with afg) = blg) for allg £ G, and

Wé:ﬂu[q} Euﬂ]

where g, (1} is the order of an arbitrary subgroup &,(1)
contained in (9 M Qs) U Qo1 U {0

(30)

Progf Corollary 2 follows from Theorem 2 with o =
1and G;(1) = Ga(1). In this CHEC En {1) = gp(1) angd, by (27},
8. = 8, a = b and {30) follows from (29).

Note that the “system redundaney method” mentioned
above is n special case of ervor detection method generated
hy Corollary 2. In this case f(x) = #(x) forallx € G, (2 M
e} U Ba(l) = G, d =0,8,(1) = g and Zqcoeig) = 1.

D. We now consider & usage of error detection methods
generated by Theorems i, 2 and Corollaries 1, 2 for finite
automats. Let My = (X,Q,Y,qn,5.X) be the given finite
automaton (X = §0.1, - - -,n. — 1] be the input alphabet;
& the set of internal states; Y C C ¢the output alphabet; gy
e €} the initial state; 5: X X g — 2 the transition function;
a: ) — Y the output funcifon); and x = (xg,xq, <+ - Em—1)
& X™ Set '

flx) = Adlzm_1, + - - ,Blx1,5(x0g0)} -+ - . 3D

The functien § now may be considered as a function de-
fined on the group & of theall vectors (xp,x1,  + +  Xm—1) €
X'm with the respect to componentwise modulo 72 addition
and all the error detection methods of Theorems 1,2 and
Corollaries 1,2 may be used for §.



214

Example 4: Let the automaton M; be defined by the
transition diagram Fig. 5(a) and suppose that a network
implementing M; contains s subnetwork implementing
automaton My defined by the transition diagram Fig. S(b).
Let us try to use Ay to detect errors in M; for m = 3.

The funciions f and ¢ constructed for My and My by
(31} and the spectra S; and 54 of f and # are shown
in Table II. Then @ = @, 24 = @, Qs 4(1) = }(0,1,1),
(LOOWLLIN. Let G.(1) = Ga()} = {(0,0,0),0,1,1},
(1,0.00,(1,1,1)] (g (1) = g»(1} = 4}. {The functions 5,, Sy,
@ and b are also shown in Table I1.)

By {(28),d = 1/4 (T, cgf(x) —~ 220 ®(x)) = 2; thus, by
Table 11, and Corollary 2 we have the checking equa-

tlon:

flxpxy,x2) + flxgx; & Lo @ 1)
= ‘P[Iu_,.t' Lxa) + ‘I‘{Id,.tl B lxcd 1)+ 2 (mod 2}

IV. TESTS FOR ERROR DETECTION NETWORKS_
RECOGNITION OF THE “SIMPLEST” FUNCTIONS

A. Tt follows from Theorems 1.2 and Covollaries 1,2 that
the complexity of the error detection hiock diagrams (Figs.
1, 2, and 4) depends on the orders 24,8, (a).g.{1) of the
selected subgroups .0, (a),G,(1). To minimize the
complexity, therefore, one should choose subgroups of the
mazimal possible order. The measures Zeepaig) and
Z,=rbig) of the complexity are always divisors of the
order g of the original group G.

For every block disgram of Figs. 1, 2, and 4 we can or-
gainize the fly test detection by applying some signals x to
.the input of the block diagram. Any suck signal will be
:'¢alled a fly test for the corresponding block diagram. We
now consider a problem of finding the minimal set of these
tests. . :

: It follows from the results of the previous sections that,

for a given checking equation, the set G + defined by g
Gg* iff2lg) = 1is 2 subgroup of (7. Hence, for every x
G, the sef {x.x%g,"), - - - x*grin~") penersted by the test
x iz the coset of &, L in &, Thus any system of distinct
coset reprezentatives of (7, 4 in 7 {and, in particular, the
subgroup {5,) iz 2 minimal set of tests. S

For instance, for the block disgram of Fig. 3 (Example
3) G, L = §(0,0,01,(1,0,0)) and the minimal set of tests ma
he chosen as [(0,0,0),(0,6,1),{0,1,1),(1,1,0%. o

The minimal number of tests is g/%,csaig), and fora
given f the product of the compiexity Zocqalg) of the
block diagram and the minimal number of tests is always
equal to the order g of the group G (irrespective of the
choice of the subgroup G, ).

B. We now consider the class of “simplest” Functions
f which satisfy the general equation (24) when $(x) = 0 for
all x £ G, d = 0, the number of nonzero terms on the left
of (24) iz two and f: & — R (where R is the set of yeal
numbers). Then forall r = @

flxy+alg)fix*g ) =0 {32)
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but in this case we shall assume that a{g) & f~1,+1). The
case alg) = —1 is convenient if f(x) = 0 (or f(x)} < 0) for all
x . (All functions of two and many-valued logic, for ex-
ample, satisfy this condition.}

Our problem is, given £, to find {if possible) ¢ < G (g =
0), and a(g} € {—1,+1), such that f,q,a{q) satisfy (32,

In contrast to the previous treatment, the method pPro-
posed for solution of this problem will involve not spectra
but correlation funetions on the rroup (3.

We first construct the following system of characteristic
functions f,: G — =101} (t > 0);

_ [(=1pmnfzHf ()] = ¢
futx) L}, if |flx)] = ¢;
. _ [Lf(x) = 0
mgnf{xl-{ﬂﬂx}{ﬂ; (33)

tie cotresponding system of autocorretstion funetions i,
on G:

By (7)) = EE[_; felzdfe(xrr—1), (34)

and total autocorrelation funetion B

Bz{r) = ¥ By(r). (35)
=1}

(The properties and applications of these autocorrelation
funetions to the analysis and synthesis of digital devices
were studied in [2), [4], [5].)

Theorem 3: A function f: G — R satisfies {32) for given
¢ C Glg = ), alg) E{—1,+1}iff

(—1)0Helg* UB (g} = B3(0). {36)

Proof: Since for all x £ G, f,(x) I—1,0,41}, we have
for every q,v = G, alq) S —1,+1)

(=)= Df (2)f, (x%7 1) £ £ 3(x). {37)

It follows now from (34), {35), and {37), in a view of
ZinoZyfe 2z) = Bz {0} that {36} is satisfied iff

foe) = (RSO UL () f Gty (38)

but in a view of (33} and (—1)05(ela1+1} = —g(q), the lasi
condition i3 satisfied iff the condition (32) holds.

Thus the “simplest” functions, for whichi there exist q
€ Glg = 0) and q(g) € i—1,41} satisty (32), may be rec-
ognized by using sutocorrelation functions on the group
i,

C. Note that for given f there may exist several ¢ end
alq) satisfying (32); all of them may be found simults-
neously by caleulating the sutocorrelation functions B,

The set of all g satisfying (32) for a giveri f when a(g) =
—1 is a subgroup of ¢ (“inertia group™ for f), so that the
nuraber of g satisfying (36) for a{y) = —1 is alvays a divisor
of the order g of 7 {this is also true for gz = +1}, and this
fact may be used to detect errors in the calenlation of the
autecorrelstion function By,
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Fig. 5 (a) Traneition dingram for antomaton My from Example 4. (b) Automaton M, from Fxample 4.

TABLE N

xama | X F %y Fiz) | #ixd sfm Sih'-i E.h:l atql
0 poa -1 o r.125 | 0.128 [ ozs ) 1.
1 oGl |- 1] 1.7 |=0.125% 1] B | R
. g10fa & - |=1.125 |j-0.125 | O a "
k| o131 k| L1} 0.lzrs -0.125 0.25 I+
4 100 {5 i} -0.125 |=0.1%% | 0.2 ‘-
5 101 (-3 o -1.875 | 0,125 |08 0
E iL0| 5 a -0.E75 | ©.128° . 1)
7 111 |-2 1 |-o.aes l-oiies | vhoes | 0

* Tg chlculate the sutocorrelation functions By, one ¢an  equation

use (34) and the “eveness relation™: By, (r) = By, (>~ 1y for
all r £ . However, when the number of differsut valaes
of f is small, it is more convenient to use the formula [2k:

By, =g-Fg~U8n8p) - - -y ¢{80)

(where &, iz the complex mnmgat&uftheupécﬁmnsﬁ
fi, Fe —* the inverse Fourier tranafurmonﬁ' (S, - SﬁHW}
= 8, () 8, (w}). To caloulste the s.pectmm and inverse
meeri:amfarmFa—lmmnmefantFuumrtmmfurm
on the group G {7]..

D. Thenramﬂma;rbaaunphﬁedwhenfmasmtchmg
function. In this case & is the dyadic group G=2™,f(x) €
0,1} for all €& G, = £, By = By,,00 = —1, Bz(0) = By, (0)
= ;Egﬂﬂ anﬂ mnd:tmn {36) may be replaced h]r

“ Biilg) =BAq) = Z flx).

Bmchamﬂ&muﬂhedyadmgmupm“rahhfunchuns
_one dan caléilite By by (39) and fast Walksh transform [8].
Tab]mufspecﬁaandautnmnﬂlaumﬁmchnnsfuralarg&
numbarﬂfclaam of switching functions may be found in
[5)

Emmpie“ﬁ Let f{:n,r]_,#g} {m = 3) be the smt.chmg
function defined by Table ITL. Autocorrelation function
By is also'showr in Table IT1. Since B;(1,1,0) = Ereafit)

= §, formulas {40), (32) imply the tollowing checking

'{m}

Fzox1,52) — Fxo ® Lz, @ Lxa) = 0 (mod 2)

- Y. DESCRIPTION OF THE CLASS OF ERRORS
DETECTED BY LINEAR EQUATIONS OVER A GROUP

A. L&tusmnsiderthanlamnfenﬂrsdemtudbythe
general nonhom linear equation (24), if a: &G —
0,1}, b: G—-[D,l;,mlddE 'C are chosen as deacribed in the
proof of Theotem 2

Washﬁﬂaamnn&tlmttheraaultnfanermre G—+Cis
to replace the given function f by the function f ¥ e.

Set Qp = jw]Se{w) =0 {whareﬂe{m]mtheapecm.\mnf
thaerrmfnnnhnua} .

Thearem 4: &narrnre G—hﬂmnntdetautadhjra

(41}

where w & G.,{a} lffS,nl':m} P [l
Proof: The error e: G—-Clﬂnﬂtdet&ct&dh]riﬂllff

for every x & G,

Z a(g}f(x*q ‘1] +. e(::*q"}}

Z b{q}-ﬂx"q“Hd- (42}
liI'E

Tt follows from {(42) by (24) that
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Eﬂa{q}e[:*q‘l} = 0 foreveryx & & {43}
qE
and from {43} by the eonvolution theorem, that S, (w) -
8. (wh = 0 for all w & {7, whence Follows (41).

It follows from Theorem 4 that with inerease in the order
2o} of the subgroup Gg{or} (and hence with decrease in
the complexity Z,-¢alq) of the checking equation (24);
gee, for example, (25)). the number of errors detected by
{24) decreases. For an equation (8), if the set 2 L) $0)(2y
= {w|S;{w) = 0] is a subgroup of G, it is convenient to take
(rq = f1¢; then, by Theorem 4, an error e: & — C is not de-
tected Iff the domain of nonzero values of the spectrum S,
of the error is a subset of the domain of nonzero values of
the specteum Sy of function £

B. The class of the muﬂtpmlmhleermrsdepemisnnthe
implementation of device or program calculating the given
function f. We will consider two important examples €0
Mustrate the good error detecting capability of the pro-
posed methods.

We now illustrate the error detection capabtlity of the
above methods for the binary adder of Example 1. Block
diagram of an r-bit adder is shown in Fig. 6.

We shall consider four clazses of error for the adder nf
Fig. 6: input errors einp( X, Y), output errors eq, X, Y),
carry errors ¢ 0.X, YY), and shift ervors e,5.(X, Y.

An !-fold input. (output} error, 0 <! £ 23n 0 <! <n +
1), is said to occur if { binary components of [z, «-

Xn—1s¥0s = * * ,¥n—1) (of (fol X, Y), -- - fo (X, Y)) are replaced
by arbitrary binary constants (see Fig. 6).

An I-fold carey error, 0 <! € n, occurs if ! components
of thevector {Cq, ---,Cx) (see Fig. 6) are replaced by
arbitrary binary constanis.

An {-fold shift error is a shif by | posiiions to the right
or left in & vector recorded in any of the three vegisters
X, ¥, X + Y in Fig. 6. For a right (lefi) shift by | positione,
the vector (zg, - + + £a—1) i6 replaced by

{0, -0, 25, - gy ) (2, - -2, 0 - -0
f !

Shift errors gre probable when the information i trans-
ferred to the X and ¥ registers and from the X + l’reglstar

in serial form.
We denote the relative frequence of i-fold errors which

are detected of the above four classes by nalr), sgu(n,10),
7c{m,4), menln.i), respectively. .
Corellory 3; For an n-it binary adder:

1- M-z, =2

mnll) = |y if1=2s

-1
--.n) {44

ﬂmtfﬂ,ﬂ = 1— 'E'J!,n+ 12'*1-[
.+ (8 pry — Kronecker symbol)  (45)

ne{n,f) = nailnt) = 1, {46)
Proof: Any {-fold input. error may be expressed as

for 2il n,l.
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o
Einp':x:?} = !_E _{ﬂ'p‘- - Ipi}ﬁﬂ_ L—p:

o
+ ;1 (e, = ¥ )28 1700 (47)

where

S+ Sy=LEp<--<p, s -1

Vgr <ov i, €0 — 1; 05,8 € 10,1,

Since
2 {ﬂp; - -tp,'] = {—1)*piT1230~1 =148
XY
H’E'r’ Lﬂ“ r}'ﬁ'} = [_I]ﬂﬁq'lzh-l:- = 11 "rSE {481
it follows that
. 5,
2 CinplX,Y) =221 [ 5 (=1)0ni+12A—1—pi
xr f i
S
+ E [_l}ﬁfr'-l-lzn—l-n)l (49}
i=1
SEt'Einp ={einp|S1=8e=8p=ra, =1=-84i=1,

-+ ,3}. 'Then, if einy & Einp, we see from (49) that
Exryemp{.?f,}'] # Dand 0 ¢ 2., Since ¢ & G («), it fol-
lows by Theorers 4 that e, is detected. If ey, € Eipyp, then
by (49} Zx yeinp(X,Y) = 0 and from (34), (15), and (47) we
ses that Sﬁw[m} = 0if Biwp™ Mo # 1. Since (see Example
i)

Th=1
Gale) = G, = [m S =2k =0, ,n,'l}
T
it foltows that in this case 7 C £,,,, so that by Theorem
4, e{pp 15 ot detecied.

Hence, in view of the fact that the total number of 25-
fold errors is equal to (37) - 229, and the number of 22 -fold
eIIOTS €inp ©= Einp i3 (7] - 2%, we obtair: (44}

Any [-feld output error may be expressed as

3
Enut{x: ﬂ = 'gl ['ﬂp;' - fp,' Lxr F} }EH-P.?

Map, E0, 05 p, <<y =) (50)

Since X + Y= Spug fo(X. Y1272 {£,(X,Y) € 0,11); it 35

readily seen that for any p; < {0, .n} and ep = 10,1}
E}E,‘!’fpa[}{:ﬂ = 22n-1 - ép,0- 271 and

Y {ap; — fpdX. YD = (=1)eat 12201
A ¥

(1) by g 20T (1)

Since 0 <oy < «++ < p; € 1, it follows fmm {501, (51)
that

E Euut{x,ﬂ = P2n=i .(i'{—]}rrp.'llllgn—p,
XY i=1

+ (—1)i. am,o)‘ (52)
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TABLE III

x l x-l} H-l H!.

H
w
i,

g om g F @ ora = O
F R N e - - 2 I - ]
(S = L ]
[~ T — N T — I ==

| = =w F x @ 8 F =

_— e — | e— e e— —

[EEE - F p—

ST A L on i A addn
g = L R F N T,
’&I-ﬂ:! T I
Fig &.. Anmhlthmarjrﬂdﬁr '
Denote | LR T o0 -0) = 0, g1, - -1} < O
i in i
EoudX,Y) = ~folX,Y)2" + z (1—fp(X, Yﬂﬂ""‘ (58} angt nanln, 1) = Lfor afli € {1,---,nl.

Then, if e,y # Fouts it full-:rwa from [52} anﬂ {53].- that
Zxveon(X,Y) # 0,0 ¢ ﬂewandhywwﬁnﬂr
detected. s n

i eqnt = Eout, then Zx, Eﬂmut%ﬂ.f' Lpl.-sﬂmt!ﬂ] = {, hl"
(53} S, (@) = —Sxiyle): fﬂrm geﬂ,-and,,.}ly Thmrem 4,
Ewtlﬂﬂﬂtdﬁm: aickaoyae ot i

Thus the.
atmrEmang:lathn implies (45;.

Now let e(X;Y) =edxo--- n—1,Ym - - - ¥n—t} be an
[ fﬂli}mrwmfm;whlﬂhﬂﬁ otp, (5ee F:g. 6), where the
Oy T8 € himary constants (¢ =1, -~ L0 < pr <---
{pt Enr— 1} Thenwehuve

P §.F
'Eé.-{ﬂ

H I - . .
) wEup.Enpﬂ el 1) = 3 (. — 1)290;1
o i=1 iFy ———— i=1

In

f'.t';lt'al:'mr,mthe{n + 1] foid

ancd
. . ) . )
.Ec(ﬂ:‘ - ':ﬂ] + E{:‘(ll' ) :1} = [E‘ﬂ iT 1}2upl-+l i [54}

for any. .::r,,E € 0,1} = 1, -~ i}). Now, for an rider (see

{13)}%!1&?&
Calg)=1 iff g=1(0,-- D org=(L,--1)
pf N

and so it follows from (43) (54) that g.{n,{) = 1 for all L.
- Similarly, for an arbitrary shift error eh(X,Y) = en(xo.
- - Xa—n¥e -~ Yn-1) We have

'C. Ancther important example illustrating the good
error detecting capability of our methods is the tranafer
of information from the compiter mentory. Let the in-
formation be transferred from the memory by blocks
consisting of Py » P; words {Po.P1 > 1) (e.g., we have Fp
independent memory devices and the information is
transferred from every device by blocks consisting of Py
words). We eomsider the every block ss a Fp X Py matrix
with the elements f(xg.x1), where f is the function defined
on the groug G of the all vectors x = (xox) (X0 €10, --- Py
-1 e, Py —1)and G madlrectpmductuftwu
eyelic groups of the orders P,and P,. -

The checking equation (2) for f {construeted by the
method of Section IT) gemmtest.heermrdet&ctmnmeﬂmd
for errors arising in the precess of stoxage and transfer of
information from the computer memory. The method may
be exsily implemented by the simple program for checking
{2) for some 1. (These x may be chosen as a test for block
diagram of Fig. 1 for the funetion f (¢ Section [V.)

In this case its natural to understand by an {-fold error
{{ €11,--+,Py+ P1)) an error e distorting { words in the
Mok, i.e., iz the number of x such that ¢(x) 5= 0.

From Theorem 4 if £,cqel(x) # 0 then ¢ is-detected by
(2}, Hehee, if each word is the n-bit binary number then
we have for the relative frequence nin,!) of detected {-fold
errors: zin, 1} =1, n{n, 2 = 1 — (27 — 1} ! and s0 on. For
assymetric errors (ie., for errors such that e(x) = 0 {or eix)
£ (1) fﬂrnﬂxﬂ}n(mrl—lfnraﬂIEll v P Pt
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D. In order to look for solutions a(g) of the checking
equation (1), we used methods of abstract harmonic
analysis on finite commutative groups. When this is done,
the complexity of Figs. 1, 2, and 4 depends on the orders
of the selected subgroups G, G, («), G,(1) of G contained
in the sets Q¢ {03, 1) Qg U (04, (Qf M Qg) LU ﬂﬁq}(l)
) 10} (see Theorems 1, 2 and Corollary 2). Generally
speaking, therefore, as far as the complexity of the
checking block diagrams is conserned, the most suitable
functions for this method are functions whose generalized
Fourier spectrum contains sufficiently many zeros.

Another limitation on the use of our methods is implied
by the fact that they yield only solutions a(g) of (1) for
which {g|a(g) = 1} is a subgroup of the original group G.

'The main advantage of the methods proposed for solving
(1) lies in their simplicity and convenience from the com-
putational point of view. Thus if the initial functions f: G
— ( are defined analytically, the solution a(g) may often
be found analytically too (see Examples 1,2). Note that in

the binary case (when G is a dyvadic group) the solution

a(g) may be determined with the help of the tables in [5],
which hist the Walsh spectra and autocorrelation functions
for a large number of important classes of Boolean func-
tions. |

If the function f: G — C is specified in tabular form, the
solution a{qg) may be sought by employing the very effec-
tive fast Fourier transform algorithm on G [7], {8].

Another advantage of the methods is their weak de-
pendence on the original group G, so that one obtains a
unified set of error detection methods for devices that
operate in binary and g-ary (¢ > 2) systems, in systems
using residue classes, and so on.
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