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Harmonic Analysis over Finite Commutative Groups
in Linearization Problems For Systems of Logical Functions

-,

M. G. KARPOVSKY

Tel- Aviv University, Romai- Aviv, Tel-Aviv, Israel

In this paper we consider the linearization problems for systems of two- and
many-valued logical functions by methods of abstract harmonic analysis. By an
optimal linearization we mean a representation of the original system as a
superposition of linear and nonlinear vectorfunctions, such that the complexity
of the nonlinear part is minimized. The problems are solved for the three most
simply computed criteria of the complexity of systems of logical functions.
Logical functions are treated as functions defined on finite commutative groups.
The solutions of the linearization problems involve the use of Foutier expansions
of these functions in terms of the group characters. The spectral characteristics
thus arising, as well as the correlation characteristics obtained from the original
function by double spectral transforms, are used as a working tool in solving
linearization problems. The solutions are exact and convenient from the com-
putational standpoint,

The paper illustrates the effectiveness of the methods of abstract harmonic
analysis in problems of synthesis and optimization of digital devices.

INTRODUCTION

This paper deals with the linearization of systems of functions defined on
finite commutative groups, the principal topic being linearization of systenis
of two-valued and many-valued logical functions. Two classes of structures
are studied: structures with the linear and nonlinear biocks connected in
series and in parallel. The problems treated are optimization problems, in
the sense that their solutions determine structures with nonlinear parts of
minimal complexity.

The main tools are methods of harmonic analysis on finite commutative
groups. These methods yield solutions which are both exact and convenient
for computational purposes. "

'The paper falls into four sections.

The first section discusses harmonic analysis on finite commutative
groups. We define the spectral and correlation characteristics of funetions
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“on such groups and study their properties. Spectral transforms of functions
are defined by expanding them in generalized Fourier series in terms of the
group characters. Correlation characteristics are obtained from the original
functions by double spectral transforms. ' o '

In the second section we introduce and justify various criteria for the
complexity of systems of logical functions. These criteria will subsequently
be used in the linearization problems. . '
~ The third section. formulates and solves linearization problems for the case
of series-connected linear and nonlinear blocks. The main tools utilized
here are the correlation characteristics. _ |

The fourth section is devoted to linearization when the linear and nonlinear
blocks are connected in parallel. The main tools are the spectral characteristics.

In order to make the exposition more systematic, we include in this paper
certain results of Karpovsky and Moskalev (1970, 1973), slightly generalized.
Related questions, concerning the linearization of systems of logical functions
and the synthesis of logical I_ietwoifk_s using orthogonal transfo.rmations, were
dealt with in Karpovsky and Moskalev (1967, 1970), Karpovsky (1971)
Lechner (1971), Kitahashi and Tanaka (1972). The use of harmonic analysis
* on finite commutative groups in problems of analysis, synthesis, and optimiza-
tion of digital devices is also discussed in the monograph of Karpovsky

(1976).

I. Harmonic ANALYSIS ON FINiTE COMMUTATIVE GROUPS

Let G be a finite commutative g‘_foup.' A character of G is defined to be a
" homomorphism of G into the multiplicative group of complex numbers. The
set of characters of G is a complete orthogonal basis in the space of functions
--map'p-in.g G into the field C of complex numbers, and on:the other hand the
set of characters of G is a multiplicative group isomorphic to G (Curtis and
Reiner, 1962). Thus if y,, (%) is the chatacter mapped onto an. element w € G
under this isomorphism and f: G — C, then.
@ =Y Sdyxal®, D

- weG

Sy =Y f@x @

x€CG

g is the order of G and y,(x) is the function complex—conjugate to x,(¥)-
Formulas (1) and (2) define: the generalizedFourier transform over. G,
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a function f(x) being associated with its spectram S;(w). The basic prnpertles
of the generalized: Fourier transform are analogous to the corresponding
properties of the classical Fourier transform (Curtis and Reiner, 1962).

We now indicate an explicit method of constructing characters for finite
commutative groups. _

Express G as a direct product of cyclic subgmups G =T1re G;. Let ¢
denote a generator of G , ¢; the order of G; and ¢, prime (i = 0, 1,..., m — 1).
Then for any x € G there is a unique vector x = (x®,..., xtm-1) such that
0 << &4 < g;and

m—1
x = xWeg k +«e x xlm-Lg = — * xe;
i=
where
xWe; = e; x -+ % e;;
S T

m‘“
Qe = ¢, the 1dent1ty of G. (We let x denote the group operation in G )

THEOREM 1 (Curtls and Reiner, 1962). Let G = Hm_l G;,x = x1  xlie,
w =+t wP%, (0 a®, o <q,;71=0,1,..,m— 1). Then

m—1

) = exp( 3, @elg)jox), @
i=0

(where §j = (— 1)11"2, q; ts the order of Gt) and the multiplicative gfnup {x.(%)}

is 1somorphic to G.

It follows from Theorem 1 that if g, = g (£ = 0,..., m — 1), then {y (%)}
is the system of Chrestenson functions; if ¢ = 2 we get the system of Walsh
functions (Karpovsky aad Moskalev, 1970).

We now deﬁne. correlation function on a group. The cross-correlation
function Bfm{m} #2149(7) for functions f¥: G — C, f?: G — C, is defined as:

B{fﬂ{m} _f{ﬂ){m](’i'—) Z f{“(x) f{m(x * T_l), (4)

TE(F

where 771 € & the inverse of 7 in G.

The next theorem will show the relationship between the cross-correlation
function and the generalized Fourier transform. Denote Sy(w) = F(f(x))
and f(x) = FHS/(w)).

TueorEM 2 (Curtis and Reiner, 1962). For any f, f@: G — C, the
following diagram is commutative (g is the order of G):
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(S ; Sta1)

. -1
g2’ i + S~ Sy
fﬁ} , £ (2) —-teme — g fﬂ Sfm

Fic. 1. Diagram of Theorem 2.

Theorem 2 enables one to calculate the correlation function as an iterated
generalized Fourier transform. |
‘Throughout the sequel, we shall consider functions f{x) taking values in
the field R of real numbers.
If f%(x) = f®(x) = f(x), then function BEY(+) = B®(r) is known as the
autocorrelation function. We now proceed to generalize this concept.
Consider the system of autocorrelation functions |

B9(r) — 3 F) flxx78) e f ) — Z{j:[ﬂf(x*f“’) (5)

where, if G = ]'If:ﬁ G, g;is the order of G, , then p = 2, 3,...,ming; ¢; — 1.

The function B{®(r) may be viewed as the cross-correlation function of
J(x) and its p — 1 successive translations on the group . We now describe
its main properties. |

Tueorem 3 (Karpovsky and Moskalev, 1973). Let f: G — R: let ¢ be
the identity in G = [1"y G;, ae G. Then for any pe{2, 3,... min, g, — 1)+

-

BOE) = ¥ ), - ®
. xeq '
Bifa(r) = Bih(s) (7)
(analog of the evenness relation for the classical autocorrelation function),
 Btlea(r) = BitN) . ®

(group-transiation invariance).
Let o be a group isomorphism for G, then

BRwfr) =BEet). (9
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Theorems 1-3 may be used to calculate the functions S/{w) and BiP(7),
which will be used constantly for solutions of linearization problems.
~ 'T'o'conclude this section, we note that calculations of the values of functions,
spectral characteristics, and correlation characteristics utilize operations over
these values in the field of complex numbers. However, the results may be
generalized to the case that the operations are defined over finite fields.

II. CoMPLEXiTY OF SYSTEMS OF LOGICAL FUNCTIONS

Let G, denote the group {0,..., ¢ — 1} with respect to addition modulo g
(the operation will be denoted by @ (mod g)), and

Gt =Gy X = X G, - (ﬂ' )
m

By a system of % g-valued logical functmns of m arguments we mean a system
of K mappings f#: G — G, (i = 0,..., ¢ — 1). The complexity of a system
is defined as the sum ﬂf cnmplemties ﬂf the functmns entering into the
system. |

We shall cnnmder various criteria fcar complexity of logical functions.

'The simplest and most natural cumplemty criterion for a ¢g-valued logical
function f(x@,..., xtm-1) xB e G, ({ = 0,...,m — 1) is the number )
(&0 <X m) of arguments on which f(x®,... x‘m—”) depends essentially. ('The
function depends essentially on x* if there exist «; 8 € G, such that for some
(xO),..., pl—D) gD xtm—n) @O, 20D, g e pme1)) 2 f(xm:-
mh—l} B x(i--l-l]" . x(m-l}) )

‘The criterion £ f) is very easy to’ evaluate but 1s only weakly connected
with the specific properties of the function f. .
‘We now define a cntenﬂn £ f ), first for the case of Bnnlean functmns

(g =2).

If 2, = (239,... ““‘”) xg (xg'”, ooy xém D)2, 2 € {0, 1}), we's_e:t
T
d(wy , %) = ) %" — %y |
i=0

Then &,(f) is the number of pairs {x, , x,} such that f (%) # f(x,) and
d(x, , x,) = 1.

The criteria £( f ) and £,(f) are used in the case ¢ = 2, for example, in
Sholomov (1966), Pespelov: (1968), Karpovsky and Moskalev (1970); some
considerations from which one can determine the relation between £, f),
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¢,(f) and the complexity of a minimal network implementing the mapping f
may be found in Sholomov (1966), Karpovsky and Moskatev (1970)..

 We now proceed to introduce two natural generalizations ¢ i(f) and
£5,u( f)-of £,(f) to the case ¢ = 2, arising from two’ different metrizations
of the space of g-adic vectors of arguments. - - - | '

We shall use the two most familiar metrics (Berlekamp, 1968): the Lee
metric d(x; , X;) and the Hamming metric dg{%; , %) |

m—1

| @ G | : '
di(%y , %3) = Z I 9"1!"} — X '} [, ] *’"’iﬁ — éﬂ | = '::(xi?) — *”"éﬂ) (mod g), -
=0

0 < | %? — 2" | < 0.5¢; (10)

fi—1

ey, %) = 3 du(x?, 687, du(al?, 7).

1, &9 #x, N |
ST 2 = £, S 4

We introduce the following notation: (i) §; .(f } 18 the number of pairs {x; , X5}
such that dg(x, , %) = 1 and f(x;) # f(xg); (1) £ u(f) is the number of
g-tuples of vectors {%; ,..., %} such that dy(x; , %) = 1 (5, s€{l,..., g}, £ 7 5)
and there exist «, 8 €{l,-.., ¢} (¢ 7 B) such that f (%) # f(%5). When ¢ = 2,
we have & o(f) = éuulf) = &(FN- S
" The complexity criteria & ;(f) and £ u(f) are related to the error-
correcting capability of the function f. The function f (and any device im-
plementing it) will correct an error-{x, , X} (x; 7 %) if f(x) = f(x,). An
error {x, , %} is called a single Lee error (Hamming error) if di(x, , %) = 1
(dy(%, , %;) = 1):(The probability of either type of error—Lee or Hamming—
depends on the physical representation (i.e.; type of. modulation) of the
signal x (Berlekamp, 1968).) - SR - -
Given a function f, we let ny ;(f) and =, 5(f) denote the number of
corrected single Lee and Hamming errors, respectively. Then by (10), (11):

i) = vam— D ve=los  Llg (2

) = (D@m= balH)- 3
| X | |
"Fhe criteria &g, 1,0 S0 will be used below: for linearization problems. |
Of course; these .are not the only- possible criteria; our choice is dictated

primarily by considerations of computational simplieity.: . o
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.. III. SERIES LINEARIZATION .OF S¥STEMS OF LoOcIcAL . FUNCTIONS

Let f(x) = {f D@} ¢ = Oy k= 15 5 = (#10),..., xmD), 40 & (0,..., g — 1})
be a system of & g-valued lngwal functions ‘which depend essentially on all
their arguments. We first assume that ¢ is a prime.- -

- Let .o ={o0;)(04,€{0;0.:, ¢ — 1}5 ;5 = 0,0, = l) be . a 1ionsingular
m X m matrix over GF(g). We construct a system Jo(x) = {F (%)} as
follows:

9 Rx) =fx) (modg) (=0,.,k—1.  (14)

(Here and ‘below the symbol &) and the notation (mod g) to the right of an
expression signify nyatrix multiplication over GF(g).)

Formula (14) generates a scheme for synthesis of a device implementing

the function f(x) b}r SE:I'IES cnnnectmn of two blocks: lmear ¢ and nonlinear
L.
By series linearization we mean the determination of a matrix o, minimizing
the cﬂmplexlty of f;(x) for the given system f(x). The reason that we are
nnmrmzmg the complemty of the nonlinear part f,(x) only is that for almost
all f(x) and almost all o the cnmplemty L{f) of the minimal network im-
plementing f (x) is. much more than the complexity I(o) of a minimal network
implementing ¢ For example let ¢ = 2 and m — o0; then for almost all
systems of £ Boolean functions of m arguments, the complexities L( f) and
L{e) (measifed by the mmunal number of single-input and twcu—mput Iﬂglcal
elemerits) satlsfy the conditions {Nechiporuk; 1963)

, L(f),.._;k -2, o (15)
L) ~omtfloggm. T (16)

(The expression “for almost all functions of m arguments in class ¢ satisfying
condition 4” means that the fraction of functions in ¢ sat:lsf_wng condition A
tendstnumtyasm—}oo) - . |

Thus, the problem of series Imeanzatmn with respect to a crltermn K

1 4

may be formulated as fullﬂws Given a system f(x), find a matrix o, such that

ARS AN (17)

JEEE N

where )ﬁ,(a&) i deﬁned in terms uf f (x) by (14) and =, 18 the class of all non-
singular m X m matrices over GF(g). .

We denote the complexity £ (f, ) of the ncmhnear part for- the best
linearization o, by £(f). : -
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The theorems established below furnish constructive methods to determine
o, and estimates of ¢™(f) (o = 0; 1, L; 1, H).
We shall seek a solution to the series linearization problems using the
autocorrelation characteristics B (7) and B¥(r) on the group G = G;™. -
We first consider linearization with respect to &, .
Construct the following system- of characteristic functions for given

L ()

; (1, ()(x) = |
| 7 : V() = 0, ;mg; 3 i | (18)

Let B)(+) be the autocorrelation function of f;*(x) (¢ = 0,..., g — 157 = 0,...,
E— 1) on G = G,;™ (see (4)), and let B{¥(z) be the total autocorrelation
function of f(x): - - .

(E}(T) — Z BP;(T) Z Z fii}(x)f{t] (x @ 7) (I‘ﬂﬂd q). (19)

'*z-t.- 2,0 el

(The symbols (@ and S (mnd g) denote cumpﬂnenthse addltmn and sub-
tractmn mﬂdulﬂ 9)- We set 7, € G f ) if and ﬂI’ll}’ |

B.?’(m — max B ‘*’(-r) = B.?’(o R-g™ (20)

s . teG - )

Then G}( f)lisa subgrnup of G which we call the inertia group of f(x)
(since it follows from (19) and (20) that 7,€ G/(f ) if and only if f(x) =

flx @ 75) (mod g)).
Now let b,{ f) be the number of clements in an arbitrary basis for G f)

(in other words, in an arbitrary maximal set of elements of G, f) linearly
mdependent over GF (g))

Tusorim 4. Let T € 5, be a matrix whose set of columns contains some
basts for the inertia group nf a system f(x)of k g-ﬂalued logical functions of m
arguments Then

w®T,=E (mdg, (E={ - || @

‘“’(f)—k(m—b,(f)) o o )
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Proof.: .. By (14) aﬂd-(zl), we h&v&fu“(x) = f(T, & x) (mod g). Set

e =(0,.,0,1,0,..,0) (s =0,..,m— 1).

Then fa (:q:) depends on x{” nnnﬂssentlally if and {ml}r if B‘E}(e o) = k- g™,

Then 1If 7g 5.0, T ()3 1S @ basis for G4( f) and 7, is the "sth column of T,
(s = 0,.. b;(f) — I) we have 75= T & e (mod g) and by (14), (20) and
Thenrf‘:m 3 (for o = oy and p = 2)

kq-m — Bf(m}(fs) — Bf(:c}(Tﬂ @ ‘Es) — BI(T“@J:I:}(EE) - Bi%}(a:}(ﬂs)
(3' =0, 1,. S Bi(f) — 1)(“‘1*'3“?i 7).

Consequently, £7(f) — fﬂ(f::r) m—b(f).
We now show -that for any aeE.' Elfs) = m — b)(f), whence it will

follow that o, is the best linearization with respect to & . Let £(f,) =
m— b(f) — E(E :> 0). Thenthereemstvectorse (r = Qyeet B {(f) + - 1)
such that : -

kgt = f.,(m;.(ei) = B - @m;(e,-,) B (a-l ®e;) (modg)

andsn(a—:l@ef)e(}}(f) Butsmcethevectnrse (7 =0,. ;(f) + e — 1)
are linearly mdependent and the matrix ¢ is ncrnsmgular over GF(q), this
contradicts the assumption .that the basis of Gy(f) contains only 5,(f)
vectors. This completes the proof.

Thus, series linearization with respect to the criterion &, reduces to the
fn]lnwmg operations; ' |

1. construct the total autncm;:;cl,auﬂn funcngn B‘m(r), N
2 using the maxima, of B‘ﬂl‘(-r) construct. the mertm group G/ f ),
'~ 3. select an at’bltrar}r basis in- G,( f );

4. cunstruct amatrix Toe &y whose set ﬂf cnlumns contains the basis
ﬂf Gy( f ) and uwert T over .G’F (q) o

" Exampie 1. Table-l%a-eﬁnés:a-s‘ysre-m {f©, f®} of two Boolean functions
of 4 arguments and values of the corresponding total autocorrelation function,
B(r)(g = 2,m = 4,k = 2, G = G,*). We see from Table I that G,( f) =
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{(0,0,0,0), (0;:1;0,1), (1,0,1,0), (1,1, 1, 1)} Asabas:swetake:r“—
(0 1, 0, 1) T —(1 0, 1, 0)(51(]‘)—2) Nuwset

/1
T, = g 's0 that G =

0
1
0
A

'::.-:;...-.c:

0

The functions f&) and f3) are also shown in Table L.

32

TABLE I.

i ey ey - s {2) (0 (1

x, T x{ﬂj_ x{l} xl’ﬂ} m[&} f{ll'.l fl.'ll Bf Uﬂ f
0 0 6o o 0 0 -0 - 32 - 0 0
'y o6 -0 . 9 1 1 0 - 16 . -0 0
2 0 0 1 0- 1 0. - -16. 0 0
3 o .0 1 1 1t 16 0 0
4 0 1 0 0 1 -0 16 1 0
5 0 1 0 1 0 0 32 1 0
7 0o 1 1 1 1 0 16 1 0
'8 1 .0 .0 0 1 0 16 1 0
9 1 0 o 1 1 1 16 1 0
1 1 0 1 1 1 0 16 | S |
12 1 1 0 -0 1 1 16 1 1
13 SR CHRE N | R 1 0 16 1 1
14 1 1 1 0 1 0 16 1 1
15 i i 1 1 0 0 1 1

Tt is evident from "Table I that f © and f D o not depend essentially ‘on
x®, x®  Consequently, in acmrdance ‘with- (22); €5 ) = & f g““}) +
&(fo,) = 4, (whereas £,(f) = 8).

A network realizing o, is illustrated in Fig. 2. Thus. the efficiency of the
serial linearization with respect to the criterion ¢, depends only on the order
of the inertia group G4( f ). |

'The class of systems possessing a nontrivial lirniearization with respect to o
is relaﬂvely small. We therefore pruce:ed fo: hneanzatmn with respect to & ;
and &, 5 - | o . |
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(0) - S U R
-X on ! & E—a--
XUy 3 V_I A

(2) - **I NN i
L - 1 . !

(3) J' | S |
IX I ' i -

.y —

—)—?—» gdder mod 2 -

| Fié. '-2. A linear exaﬁlpleof' Example 1.

We ﬁrst cﬂnslder lmeanzatmn Wlth respe:ct to §1 Ls based on use of the

Given a system f (.x;') we construct B ‘21(1-) as befnre (see (18), (19)) Then,
1f TQ vy T 3 € G“’f and T is the m X m- matrix with columns 74 ,..., Tpe_y ,
- we set |

BAAT) = Z B“E’(-rs) : , (23)

THEﬂREM 5 Gwen a wstem f (x) Df k g—waluad logzcal functmm of m
arguments let

(2] (s}
. :re.sq (T) (T1 L) o - (24)
Then | | o
| ﬂ‘l L @ TLL = E (mndg), | : S (25)
f""(f) = yn(g*“mk B;ﬂ’m D (re= 33, . 172 e

- Proof. We ﬁrst shﬂw the-connection: bﬂtwaen the total autocorrelation
function B{¥ and & L—cnmplmty of the systemf

Let N© {31 denote.the number of pairs {x; , x5} such that d; (%, , %) = 1,
and N® (:: = 0, s k - 1) the number of -pairs. {%,; %,} such that |

1 L(-"?'J. ’ *"’2) = 1 ok ﬂﬂd f{ﬂ("" ) ?éfm(”s) (xl x5 € G™).
The:n by (10), (l 8) (19) and (23),

- e—1

N{ﬂ:yﬂq m, Niﬁ} : z B (E)
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Further, it follows fmm (19) that

[ —

a—1

§1,L(f) = Z ‘2’- Z_‘, (q m— Z B; (E))'% valg"mk — BP(E)).
=1 Ci=0 .

Similarly, for any o E*-Eg,

£,.(f) = volg™mk — BE(E)).

Now, by (14), we have for any o €.5,,.

Jolx) =1 (07 ® %) (mod g),
and so, in view of (9) it fﬂllnws frnm Thenrem 3 (24) and (25) that

"”(f) = ¢, Lml L) = mm in y,(q"mk — B, ’(E))

L g mB}”(E)) — vdg mk — max B/(s™))

: t:rEE

= ydlg"mk — BP(Ty,,1)),

and o1 ® Ty = E (mod g) The proof is complete. .
Thus, the process of Imearmatmn with respect to 51 L amounts to the
following operations: : :

l. construct the total autocorrefation function B{¥(7);
2. determine a matrix T, ; maximizing B‘E’(T) over all Te &, ;
3. invert T, ; over GF(q).

The question of econoinical techniques ‘for calculation B‘E’(-r) will be
dlSCllSSEd later; for the moment we indicate a recursive m-step procedure to
compute the columns +§2,..., 7L of matrix Ty 1 , satisfying (23), (24).

Set | |

#H}mx , B; }(r) = {1 L’)}' R -1
Assuming that +(:0 i,l_f" (s = 1,:: m“—w 1)-are already known, and

letting L, be the set of all vectors 2 e 5{7'31 ) (mod q) ¢; €{0,..., g — 1}

(ea®P = D @ @ L8 ’(mnd q»
- c;

we have

-:21(1_(1 Lr) ~ max x B ’(1-) (s = 1., m — 1). (28)
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Sorne ‘data about the implementations of the above algorithm for the case of
systems of Bnnlean functions ma}f be found in I{arpﬂvsky, Mﬂska.lev (1970).

EKAMPLE 2 Table II deﬁnes a funcl:mn S and the appropriate B¥(7)
(g=3,m= 2,k =1). Using the procedure (27) (28) we have for example,

T} 3

!

The function Jo, , 18 also shown in Table II.

ThEH_

TABLE 11

& T x® | x f B:ﬂﬂ} fal'l'.
0 0 0 0 9 0
1 0 1 2. 2 1
2 0 2 0 2 0
3 1 0 1 2 0
C4 1 1 0 3 2
5 1 2 I 3 0
6 2 0 2 2 1
7 2 | 0 3 2
s 2 2 1 3 1

It is readily seen that, in accordance with (26), £™(f) = 12, whereas
51 {(f) =14 |

The: methods just described for linearization Wlth respect tn & and & 4
were based on the cnrrelatmn characteristics.

‘*’( D=1 Bﬁ-(f).

: : o . 8 t ) ' .

t To calculate Bm}(‘?’) 1tse]f one can use formula (19) and the evenness
relation. (7), but for large m and kK <€ m it is more advantageous to use
Theorem 2, calculating B)(7).in terms of iterated generalized Fourier
transforms over the group G,*. Since the characters of G, are the
Chrestenson functions or, if ¢ = 2, 'the ‘Walsh functions, the generalized
Fourier transforms may be calculated in this case by using the highly effective



SYSTEMS. OF LOGICAL FUNCTIONS 155

algorithm of the fast Hadamard—Chrestensnn or Hadamard—Walsh transform
(Andrews and Caspari, 1970). -

To end the discussion for 51,. , , we observe that an optimal linearization
with tespect to & ; is always optimal with respect to &, (but not conversely),
and so the class of systems admitting a nontrivial linearization with respect
to £; ; always contains the corresponding class for &, .

We now consider linearization with respect to the criterion & 4, based on
the use of the Hamming metric.

Given a system f(x) = {f“¥(x)} of & g—valued logical functions of m
arguments, we construct the characteristics f{9(x) (see (18)) (¢ = 0,..., £ — 1;
t = 0,..., g — 1) and the total autocorrelation function B{#*{r) on the group
G,™:

g1

BY(r) = ) BOn =Y ¥ 1% — 27 (mod g).  (29)

F.8 ﬂ.'-EGm p=0

Furthermore, if T is the m X m matrix with columns To yeers Tm—z » THEDN
‘**’(T) = z B, | (30)

THEDREM 6. waen a system f of k g-valued logical functions af m arguments,
assume that |

max B(T) = B/ (T1.n). )

Then |
| o0 Tyw=E - (mod g), | (32)
EHS) = "k — BA (D). (3

The pmnf is analogous to that of Thenrem 5; to find oy ; one can emplny
a procedure similar to that used for:oy ; . The only difference is that Bi*(r)
should be replaced by Bi?() (for Boolean functions, oy, = 01,5)-

ExampiE 3. Table III defines a function f and the appropriate B3
(g = 3,m = 2; k = 1). Using the procedure (27) (28), we have T 5 = (3 2) |
and then oy y = G 1); the corresponding fo_ . is also shown in Table III.
In accordance with (33), we have & f ) = &rulfo, ) =4 ‘whereas

’le(f)"_'f;

‘To conclude this section, we generahze thﬂ above linearization pmcedures
to the case-that ¢ is not a prime.
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TABLE 11}

x0  x@

R
~

Sty
l
o

. - o - o
el S N = 5 B R e B =
) o

RN s QOO |
NP Q MRS RO
TN O R ONS OO
WS WWe 0w

’ EE .‘,: Tk

00 ~1 G W oh W N =&

Let R, denote 'the ring:of residue classes modulo ¢. In the previous case
(g 2 prnne) the &’s were linear operators in an m-dimensional vector space
over GF(g); in the case of cnmpnsﬂe g, they will be linear operators in an
m-dimensional vector space over the ring R, (i.e., in an R,- mndule) We know
- (Lang, 1965) that under these circumstances a matrix o over R, is invertible if
and only if its determindnt ] o |, and ¢ are relatively prime ((} o {q ; q) =1,
where (a, b) denotes the greatest common divisor.of a and b). '

Thus, we have ¢ € 5, if and only if (| o |4, ¢) = 1. The theorems established
above remain valid (except that the relations (27), (28) can no longer be used
to find T ; or T} p).

ExampiE 4. We carry out the linearization pmcedure for the 4-valued
logical function defined-by: Tabie IV- (q =4, m=2k=1).

The functions. Bm’(-r) and :B9(r) = B#(r) are also shown in Table IV.
Since G{( f) = {(0; 0)}, there is no nontrivial linearization with respect to £, .
In accordance’ with::Table IV, and (24), (31), we put Ty, = Tig =
i 3(T1L€E,, since [ Ty 1 [, = 3 and (3, 4) = 1).

Thenoy ; = a3, = o3 = (3 3). The function fo, 18 shﬂwn in TableIV. By
(26) and (33); we have &) = &,1(f,)) = 20, & f) = &unlf) = 7.
wheress £ (1) = 27, b.u(f) = 8.

. ‘For the case of functions of one argument, which is of nnpnrtance in
apphcatmns o €{0,...,g — 1}, and o€ &, if and only if (o, g) = 1. In this
case it 1s wnrth noting that linearization w;lth respect to £ ; minimizes the
number Z¢=u | f(x) — f(x © D] (mod ¢) of discontinuities of the function
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TABLE 1V

x® - x@ |

-

o |
IH .

-

SOCC
TAODO ONCO COaG coc o

VW NOAMAE W= |

10
11
14
15

’

R R e R -h-_::hﬂli-ﬁn-'!q-l Lo .= b
._'_""""-‘*-.‘.'—1 -h-;-uba W W W B B e R

_;_m_H_H-ﬁ UJI}\JI-I-Q Lﬂhh‘l.l—iﬂ h-lb&l—l':':-'
MW MmO NWweak W W

CTWR RN NN NN e e e

f(x), tlns is: usefu} f@r Example when one js calculatmg f (:xr) by summation
mnd q of 1ts finite differences. - L .

qf(x) u.f(m) -f (x s D (mdf) O

IV. PARALLEL LINEARIZATION OF SYSTEMS OF LOGIGAL FonNcTions

We ﬁrst fnrmulate the paraHeLhneanzatmn pmbiem fur the case nf greatest .
practical importance—systems-6f Boelean: fénctions {¢ = 2). .

Given a:. systemy: f{w) = { f QP xm-UR . (§ = 0;..., k — 1) of 'k
Bunlean functions dependmg essentmlly on all thE.‘H' m arguments let -

{fr(ﬂf)} =

l!

@f‘ﬂ’ ‘3’} (mndZ)(me{O 1} f—-0 b= 1)_-_

be a system of snme b hnear Bm}lean functmns I there emst t E{O I} and
f m(m) such that DU ' '

"b—1'

f‘*}(m) f‘”(:v) I (f;(x) ew G
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(mod 2) (7 = 0,....k — 1), (x = (29,..., xm1), then we shall call #(x) —
TTr—o (4,(%) ©1,) (nod 2) a parallel linearization. for f(x). o

A network realizing f(x) may be obtained by connecting in parallel net-
. works implementing the linear functions t(x) @ 1, (mod 2) (r = 0,..., b — 1)

and the nonlinear part f o (x). | S |
- There exists a nontrivial linearization for S ®(x) if and only if 3, f¥)(x) <
271 In order to extend the problem to the case 2o f (%) > 271 we need
only replace the multiplication operation in (34) throughout by logical
addition (this follows from the DeMorgan laws).

The linearization %,(x) will be called a best linearization with respect to a

criterion &, if it minimizes the complexity {,(fg) of the nonlinear part
falx) = {f Q).
.- We now generalize: the parallel linearization problem to systems f(x) =
tf P} (f =0,.., k — 1) of g-valued logical functions (where ¢ is an
arbitrary integer 2> 2, not necessarily prime), depending essentially on all
their m arguments. Let |

6(®) = @ 4% (mod D7 €0, g — 1}, 7 =0,.... 5 — 1)

be a system of some b linear g-valued logical functions. Let {dy(£(x))} (t =0,...,
q — 1)-denote 4 system of characteristic functions for £,(x):

W) =y 5

(if ¢ =2, we:have: d{f(x)) = £4x)D1 (mod 2), d(x)) = x). -
It there exist 7, €{0,..., g — 1} and f¥(x) such that |

(35)

b—1

FO@) = F2) [1 d(4i2) G =0, k — 1),  (36)
then f’(x) = HErdtr(t’,(x)) is a parallel linearization for f (x), and we denote
S S el 29 37

Our problem is to determine a best linearization with. respect to 2 criterion
(=0, LL;L,H.
Let Fo denotedihic st of systems fip(d) = { £ Y (x)} satisfying (37) for
given f(x) and L(x), and > -
S P N

5 . T oy . m. "
TR ‘:%} ;}éj AT SR R S _ -

- - o S I ﬁ_- - _ ga‘r » . . (38’)

r :.f :_-. ff' \1__ 1w 1..": f B > -!_'a- #(m)_; B . 'f) f . .

. - O I N ﬁﬁy ST 1‘:_:!'.-'*,-" RS T Cee
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We shall say that a linearization &, is best if it minimizes (. 7). As before,
we let £%( f) denote the 5 ~~complexity £,( f# ) of the nonlinear part. for a best
linearization %, .

- In constrast to the previous treatment, the solution nf the problem wili
involve not correlation functions but rather spectral characteristics of the

system { f “¥(x)}.
By Theorem l the characters of the gmup G = G, are

| | m-—l |
xm(:m) = exp ((Zﬂ-/q) i Z xis}w{s}) ,
(x= (xO ... 5" D); @ = (wm} ’w{m—I).. WESRE E{O ,q— ). (39)

Let ¢, _(l“”, 4L

I“""‘”) cG. We stipulate that £, € Gg( f ) 1f and ﬂnly if
there exist ¢, € {0, .,q — 1} and fg(x) = { f t""‘1‘(;:::)} such that |

e =f.,%3(x)'-d¢,.(@ A949)  (mod ) (= 0,k = 1). (40

=0

Then Gg(f) is a subgroup of G, which we call the linearity group of
f(m) = {f )

LEMM.A 1. A4 system f (x) (x =G mr) is Exp?'ﬂi‘ﬂblﬁ n ka fmn (40) ;f and
only if
T .Sf{i}(fr) = g—miﬂ:{p(—@ﬂr{q) ity Y FOx), | (41)

mEG’“

where S ;1 1S the sper:tmm of the Fourter expanswn nf f N (x)in tem ﬂf ckamctefs
of G,™. |

Proof. In view of (39), we have

fn:»(ff"r = g me “i(x) xf(x)
=¢™ Y f ‘”(:r) exp (—*(21'-'/9); D £ “’")
| geG™ | =0
(mod ¢) and therefore )
Sl = g™ esp(—QRmD)jt) Y, fOF)

mEG"“

if and only if @7 £Px® =1, (mod ¢) or d; (Dry J’{s’x”}) =1 for any x
such that f®©(x) 5 0, hence if and only if c:nndﬂmn (40) holds.
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Lemma | provides a simple procedure for constructing the linearity group
Go(f): I, € Go( f) if and only if T .

| S, = max | S (@) = S @(0,.,0) = g T fOa)

m
ﬂ:EGq

(6 =0,...k—1). (42)

Comparing (42) and (20), we see that whereas the maxima of B (1) defined
the inertia group G,(f) of f(x), the maxima of 3, | Sru{w)| define the
linearity group Gg( f) of f(x). Moreover, if ¢ is a prime, then for any f‘9(x)
(x € G,/) the number of points at which Bih(r) and | Sy(w)| assume their
maximal values is always a power of ¢; hence we have yet another simple
check on the correctness of a calculation of autocorrelation characteristics
and spectra. | - | |

Gl f) of f(x) = {f D)} (xe Gm; 5 =0,k — 1), and
S okt =g exp(—Q2mig)jt) ¥ fO(x)

"THEOREM 7. Let ¢y ..., 4, -1 be an arbitrary basis for the Lnearity group

mEGEm
(r =0,.,02(f)—1; i=0..,%k—1) (43)
Then
b(7r)—1 m—1 @ (o
5=() .

r={)

() < m—balf);

VGRS e (UR M0 B LS
a(f) < kg™ E O m — bo(f)).

Proof. It follows from Lemma 1 that
L EpRERNREY CERILi -

>

BT N VAR 1
Hont(x) =[] A | D4 (mod g)

e .t - . z . .
SPiky THETET: e 8==0)

1s a linearization. N | -
Set x € #-I(1) if and only if f’(#)_: 1. Then, by (36), (38), if (1) C
Z3(1), we have £k fgﬁl}*‘?ﬁ&(ﬁgﬂ) @=0;1,L;1, H). If P(x) is a lineariza-

tion for f(x), then 4y ,...;:4,4 & G F)7and; since 0 3o0y Lo plH-1area basis for
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G.{f), it follows by Lemma 1 that (1) C Z2(1), £f) = &S E’upt) and
ZLopi(x) is a best linearization (« = 0; 1,(L; 1, H).

We now .prove that £,(f Lot ) sim — by f ) whence the mequahues (45)
will immediately follow. -

For that we first construct the function f 2, () satisfying (37) for given
f(x), Lx) = Fopi{x) and depending essentlally ON NO more than m—bg{ f)

arguments.
Consider the following nonsingular system of by(f) linear equations

over GF(q):

m—1

@J,‘F’x‘*} ,  (modg) (v =0,...be(f) — 1)

=)

There exist 7, (s = O,..., bo(f) — 1)such that xtis — g (2@, .. xtm1)) where
the g, are some linear functions over GF(g), each of which is independent
of all the arguments x%? (s = 0,..., bg(f) — 1). Furthermore, if f(x)
fo (%) - ZLopt(x), we substitute the function g, fnr xts in f Lorl®) (s = 0,...,
bg?p_;") — 1), to nbtamff () such that |

F6) = fle, (%) - Ei’upt(x)
Elflr,,) <m—bolf),

and consequently

8V = Ef fe,) < fu(ff’m) < m = by(f).

This proves the theorem.

Thus, the linearity group G¢{ f) generates all parallel linearizations for
the system f» the best parallel linearizations with respect to &, , &1 , and & g
coincide, and they may be determined by a procedure involving the following

operations:

compute the spectral characteristics Sf{ﬂ(ﬂ-") (¢ = 0, vk —1);
using condition (42), construct the Imeanty gruup Gy f );

select an arbitrary basis in Gg(f); |
use formulas (43), (44) to compute the best linearization

WMo

'gzmt—f EL—-$1H

As befnre the most convenient tool for calculatmn uf Ehe spectra S,-m is
the fast. Hadamard_Chrestensm transfnrm T
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- Exampre 5. Table V defines a 3-valued logical function f(x) (¢ = 3;
m = 2,k = 1) and its spectrum Sy(w) (we use the notation {; = exp(2=j/3),
Ly =-exp(4mj(3)). We have Gg(f) = {(0,0), (1,2), (2, 1)}. As a basis we
can take, say, the vector (1, 2) (bo{f) = 1). Since SKI,2) = (5{9)?,’1 =
3~2 - exp(—(2#/3)52) - 5, it follows from Theorem 7 that .

Lopt(x) = dox® @ 24M)  (mod 3)

and

{n} ( f) ’ g(ﬂ) 3, g(ﬂ}

The functmns do(% & 2x) (mod 3) and £ >, (;xr) are also shown in Table V
We see from the table that £M(f) = I, f“”( =2 &% =1, whereas
fu(f)_z flL(f)—lz §1H(f)—'6 | |

i

TABLE V
4y @)
na &0 F g5 modd) a0 fo
0 0 0 0 5 0 0 2
1 Qs 1 2 — i i 1 1
2 0 2 0 — {4 0 2 2
3 1 0 0 —& 0
4 1 By o -1 0
5 | S 1 52, 1
6 2 .0 2 —4 1
7 iy LR SH B | ' 5'§2 O

..........

We now generallze the: paraﬂel lmeanzatmn procedure to arbitrary com-
mutative grnups & .

Let G = G, X - X-Gg Where :the group G, contains the elements
{0,..., g, — 1}, g, Is prime (s = 0 , M — 1) Cnnmder a system { f D(x@, .,
2N (1 =0,..,k—1; a9 e {0 s Gs —-l}) (A system of this type may
describe, for example the operation of nétwérks ~constructed on elements
with a different number of stable states, networks operating in systems of
restdue classes, and so on.) All the complexity’ criteria introduced previously
may be apphed to systems of this class. The- defmitions of &, and &, ; are
entirely analogous to the previous definitions, whlle &1.64(f @) is the total
numbert_'of 'sequences {x, ,.. %yt (8§ = 0,...,m— 1} of argument vectors
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- which differ only in their sth component and have the property: there exist
a, B €40,..., g, — 1} such that f(x.) 7 f{x)- - | ;

~ Let. O denote the lowest common multiple of ¢4 yeey Gm—y and Oy = Qfg;

(s = 0,-.., m — 1). Our class of linear functions in this case will consist of

the functions | | -

mn—1

L) = @OL%®  (modQ), where 47 € {0,..., g, — 1) (46)
' s=0 .

The characters.ﬂf G :.Gﬂu X o X G;% _are, by Theorem 1,

) = exp (2010)] T, Qe ) (0, 0 (0, Lo g = 1) (4D
s=0 e S

‘Then, as before, the group of linear functions (46) is isomorphic to the

multiplicative group of characters (47), and the set of vectors £, = (£

£ for which there exist ¢, € {0,..., @ — 1} and f @(x) such that

79 =969 4, (DQA%T) =0k — D) (mod0) (&

=0

is a linearity subgroup G g( f)of G; mnrémrer, { f D(x)} satisfies (48) if and
only if
m—1

Sty = (n q) p—QriQ)jt) TfOE = Ok — 1), ()

5=0
where S, is the spectrum of the expansion of % in terms of characters (47).

Thus, as before, the maximum meoduli of the spectra define the lineanty
group- G ). Let £ ,...; fﬁf(ﬁ_-l-be- an arbitrary basis-in Gg{(f) (i.e., 2
maximal set of elements of Gg( f) satisfying the condition: $2Z N1 8 =
(0...., 0) if and only if (8 = 0 (mod Q), where | |

9 =4, % s k£, and 0 I, = (0., 0) (s €(0,..., be(f) — 1)),
. --.....--E{.-;;Il-.--"' | -

a;ld' " denﬁt_es: _t]ie group bpﬁratiﬁn in G) -
Then, by analogy with (44),

I o L Gedaa ma |
L) = o) = Lol = Bua) = 1 (@)Qs’f}x‘s’) |

 (mod Q). (50)



- 164 M. @. KARPOVSKY

Note that (49) and (50) generalme the results of Lemma 1 and Theorem 7
to arbitrary commutative groups. The spectra may be calculated using
the algorithm of the:fast Fourier transform for arbitrary finite commutative
groups (Applf: alld Wmtz 1970).

EXMLEG LetG G, X Gy X Gy (o = =2, g = 3and &y x %, = %,
if anid only if x® = x® ®« (mod 2), x§"’ = Y @ xy" (mod 2) and
2P —= x{¥ P ‘:2’ (mod 3) Table VI defines a functmn f (%) (x € G) and its

SPectrﬂm Sf(w) (& = exp(2af/3), L = 4mj/3))-

JEEBIJE“VI

o | | | 4,(3x® @ 3= @
@ m‘“’ | m‘” L F 128, 4%®) (mod6) = fg

—_— .-

L
.
E

- - N =
H',:H' . ' :‘"5 - -r;"" R II . e -: ‘:.l.;_ i,
—ENOP 00 <L N L N O

opt

PR

- 0 3
i 1

.
| 4;;55

| _2 |
L —2:2 L
—2&,

.2
21 -
28y

—4

—4&s
—34

I

. :,r';

LE i XTI .
' - .
“x
il a™® .

T
| e

___ :,,._;;
memm 900 9 *T-‘@

kv
-

M
K
. -'E"'.:-&:._-" R o Lt
. &
T

oy
o . -I_:.,H;__: N it
M ""'I. . .. .t

Iy .-\."_.-:- “F'- !.-'
",a

co0 ORE ORO OO

0
0
0
1
1
1
0
0
0
l
1.
1

H._. O MN=RD N=O Mr—n::n
coc o~ n:-m'.'::y

LS RN ':'!-:':'_ T R
R e e .
sl :

L . - - -\.';."'."..._.- "
B TOO Ty I R T L
L i = L geampe . o= -
LI S . g P ) .i.;, ;:Eﬂi}f_e L L
7 -1 - .
; -

We hﬁé’: ST
Gl f) ~{(9;:0 &m 0,1),(0,0,2)(1, 1,0), 1, 1,1), (L L2

E—Eﬂ" }

As a basis for Gg(f) we' ca:ﬂ take, eg, the vector (1, 1, 2). Since Q = 6,
.-!"":Qn =0;=3,0 = 2, and S}{ar 2) =—3{ =127 - exp(— —(27[6) -5~ 1) - 4,
it follows from (42), (50) that: E’ppt(x) = d,(3x'9 @ 3xV D 4x2)) (mod 6);
'__'d1(3x1“1 @ 32 D 4x?) (mﬂd 6) and f -g: (x) are also given in Table VL

Meshave £7(f) ~ 1, 83 = () =1, whereas &(f) =3,
Hih)= *
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ali the parallel-series networks implementing a given system and containing
only one nonlinear block.
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