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The obtained data indicate that the machine performance is optimum, .
The results of these investigations indieate that it is posnible to choose 2 rlochnstic automaltic

- machine with variable structure and optimum behavior in 2 composite medlum, whose gwilching can lc

.. accomplished by its own operations, Studies of machine performance. in media of this lype are useful i
conjunction with studies of automatic administrative models, for example. A description of the mudel o
an administrative network, 28 well as some specific gxamples, c:_agiba found in refercnce 4.
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Methods of Estimating the Correcting: Capacity ‘of _Funﬁﬁons
of the Algebra of“ll;‘.ﬁgié'-_ o

. | M. G. KARPOVSKIY, E. 5. MOSKALEV AND 4. A, TROYANOVSKIY
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Methods of analyzing the correcting capacity of functions of the algebra of
The apparatus of discrete fupctional fransformations 1s

esed to estimate this capacity on the set of arithmetic and nenarithmetic errors,
Certain classes of Boolean functions are examined from-thé point of view of their

correcting capacity for errors of given multiplicity.- .-
' ¥ * & '

logic are described.

rw

1. Suppose that we are given completely determined funotiops of the algebra of p-ary logie:

YO g (x) (=0, fyeeey PRI, | A

.
- +*

where X = (xw}, :-:{1), Ceed xk*l}sx for Xe{0, 1, ..., P~ I}k_ )
By an error for the system of functions defined by (1.1} we

stem of functions {1.1) cnrrects,ithe:s_ét of errors R if and only if f(j}{:f.] =

- * . . = ‘J
méan an ordered pair (x, X'y X", whoi-

x and x' belong to X. The sy

. = f[}}{x‘) forj=o0, 1, ..., I~ 1 and for arbitrary {x, X') R, wh;a"r._e R EXZ.
" Below we shall consider two classes ol errors, the class. of arithmetic errors and the class of n..

arithmetic errors. -
We shall denote a nonarithmetic error {x, x7) (where X, x'e{o, 1, ...,

-

P - l}kj by 1, and we shz .

L ] . "
-

agsume that

y=x--x {mod p).  ~ vt ot . (1.2

(By {1.2) we mean the operation of component-wise suhtrag:;i'pri'ﬁf‘ the yecto;-q modulo p.)
We shall refer to a nonarithmetic error Y as an error of multiplicity 1 if'and only if ‘

: lxx’ll=t (wod P}, .7 L. (1.2
where ||d | is the number of nonzero components of the p-ary {::ec'tﬂr:d..

i ™ - 124 ) - - B
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We choll denode an arithmetie error (x, x') fwhere x, x! {0, 1, ..., p - l}k)'b_',g"fﬂ, with T, =

= x - %', where ¥ and x'" are numbers whose p-ary expansions are respectively the vectors x and x';
| B} t‘ue weight of an arithmetic error 1 we mean the minimum number of nﬂnzem terms in the

I-};;}_f ntation of | X - x'| in the form of an algehram sum of terms of the formea p [where oF {0,
1, ...y p .- 1} fori=o0, 1, ... - 1}. We denote the arithmetic weight by lIx = x"ll . )
We shalt call an arithmetic error 1, an ertor of multiplicity ! if and only if ! X, -—~x ", = 1.

I'hus 1hn set H {(resp. R) of ar1thmet1c {resp, nonarithmetic) errors of mult phml}f I is del'med

. as {ﬂlluws ] <.

-

R‘E{{I, f} II, x'& {D, ‘l._,_‘F—-i}i;.“::—::'“‘=_!}' | . | N - -‘- . (1"4]
R={(x, X} |x, x'€{0, 1,..., P4} lhexXl=1) (mod p). S {1.5)

We denme by E, (p](f) [resp. HRIP}{D} the number of arithmetlc {(résp. nona rithmetlc} errors In the Eet

R,
R, {resp R} defined by (1.4) [Tesp. (1,5)], and we shall call it the correcting capacity nf the system of

[unctmns of the algebra of logic on the set of errors R, (resp. R). We denote by § Im[i“} [resp. ﬂltp)(f}]-_

the cnrreetmg capacity ¢f the system of functions on the set of all arithmetic {nnnarlthmetm} errors uf
n‘lulf.lj]llﬂlf.}? 1, “
"In.the presént article, we shall consider problems of analyzing the cnrrectmg t’:apamty for differ-
ent classes of Systems of functions of the algebra of logic, and different classes of errors.’ :
2. For the systems of functions of the algebra of logic (1.1), let us cnnstruct the lattice function

[lly- f(x}, with | . X
) . - . : , . - T- .
z—Zz"‘ r-it ynzymiﬂ"" ' L ""-__‘ T
' Py —s . LT
Let u';_the.n: ctffns;tfuct t.hé system of characteristic functions {fs{:-:}} fors=20, 1, ‘_t;" j:-r'- (R i
: L pw={y TR |

otherwise, . N

'Then frnm the definition of correcting capacity of functinns of the algebra of Iﬂgicﬂﬂ{p}m on the get R

of nﬂnarlthmehc errors, we get:

' 'I‘heﬂrem 1, ~ PRI .
| ‘ ' - o ’i ' o
. m” =3, ), Bty S L e
. . . ‘ TER o=t + a -. .-- - : ..
: H,.¢(1}=Zf.{z}f.(r*ﬂ (mod p). A 2 )

{Here and below, when there is no ambiguity, we denote numbers and the vectors curresmnding to their

p-ary expansions in the same way.)
" We.shall r.:all the function Bp (1) 2n autocorrelation function modulo p of the cl}ara_ctenslic fune-
Cae

ucmf {x} .. | : . N

Exqmple " The table shows one function f{x) of ternary logic of two argumentﬂ (k=2 p=3, r=1), 1

the.chara uterlstlc functions fﬂ{x}, 1{:{], and fz{x}, the autocorrelation functions. [mﬂduln 3). ]E':3 l[f, and

21_‘:} {B3 ﬂ( v) = 0}, and their sum. From the table we get Hy ( }(f} = 20 and 8 {3}ff) . 12

+*

-

(2.3)

y 'Theb'r'e'm1 2.

L |

B, (1) =8,.(0—1) (mod p}.

(p)m

qutiun {2 3} enables us to cut in half the amount of calculation for fmdm.g'l

As one can easily nole from (1.1), (1.3), and (1.5), the set of sets of arg‘[m Lnts of the system
of fuu.umna nf the algebra of log}c together with the set of nonarithmetic errors of multlplicit}' {

“ L

. -
= 4 -
et -
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.+ (2.2) reguires pzk such operations {3).

_tive group isomo

" . tra of its expansion
{for analysis of the correcting 2

" original function fsix}, its autocorrelation function Ep' 5
tion type [3] on the group Gk Therefore, the connection between the uﬁg_'i:da‘._l functiun_f'atx) and the func-

'thé construction of Bp 5[1).

- 1ation of the autoecorrelation fu

' [3]. Krestensnn's functions are the charactiers ¢

where j= ¥ -1, and mm and xﬁ}r are the cnmpﬂnehts nf?he p-ary Expangfpnﬁ' of ® and X,

" where (%

z . -
T :(ﬂ'] 1{1] I (x} 14X hl=z) [$4] Faalr) B,.dT} E H:.’ '-”“:II ’

amm*—aaum:

™ —

-br-l:;al-l-u--mrhm.r.'- 1
1

)
y
.
4
2
2
4
2
2

mummhwuwa :
MHHP‘-__;:&QQ
Ml-'-v::rb-:r--t:-tab-a
rad R B TR e e B
ﬁﬁﬂﬂﬂ@ﬂﬂﬂ
e = e (Y (D e ke ) R _

éunstitute 1 commutative group Gk with subtraction modulo p 28 group operation. Thus the system of

functions can he represented.in the form of a linear combination of qh‘arﬁ'ﬂ'fe'x;si [2] of the group Gk' The

coefficients of this combination are the Fourier coelficients [3]1. BY virtue ‘of the completeness and

orthogonality of the sysiem of characters, and also since the system of chal:-ac':ters forms a
rphic to Gk‘ it is convenient to use discrete functional tfansfnrmatiup;_ assigning to
the original system of functions (the operand of the transformation). a, ,setménqé of coefficients (the spec-
in a generalized Fourier series of the characters of the group Gk {the transformy,

pacity ﬂl{p} (H. A discrete functional trans[hﬁmatiuﬁ assigning, to the

{(y), is 2 mnctiﬁnal i ransformation of the convolu-

tinn.Bp 5{1}, in terms of the dual spectral ¢ransformation of the funetion IE{:-:}, ‘is usefuil for gimplifying
We now present @ spectral method of analysis of the currecting"capaqitg ﬁI{p}m, based on calcu-

nctions B _(1) in terms of the dual spectral tiqns{urmaiinn of Krestenson

P, 5 . s
{ the group G, and they are defined for arbitrary natural

sumbers @ and K by

9 A—1 S - *
11" {I) == gXPp (—n—-j E m{l—l-lem )_' IR * .
P et - * .

———

Krestenson's transformation of the lattice function £(x) for X E{_h; 1, .. p -1}) assigns the

P - _

(PX(f) = S(w) (for we{0, 1, ... X _ 1)), where 8@} = pt er(:};‘:‘ (z) and 1({P) ts the com-
A T

plex eonjugate of x[m . - . ‘ .

Theorem 3. . : . .

B,..(1}==p“(x"‘)"(x"'U'}?”U)]L*g}. '_-"_. . L (3.1)
' (r)

{p}}-l ig the discrete functional transformation inverse to the tfansfnrmat{un y Ahlhi
Theorem 3 provides a comparatively simple method of calculating the correcting capacity of sys-

tems of functions of p-ary logic by repeated application of the "fast" Hadamarﬂ—l{re'stensnn transforma-

spectrum X%

"

‘tion {3]. Application of the fast Hadamard-Kresienson transformation, Enf'cqlculaling Bp 5[1) from

formula (3.1) requires pk+1{k + 1) arithmetic operations, whereas 'c:alr;-u_‘.latibn of -Bi)’s[ﬂ from formula

{mm.

!“"

W now present in {nportant proporly Df"lI _
Pa gt b SHARE it e frte ghven thie Hour BYE trena of functions of the algobra of joglc JUE

e

fz{:{}, fa{x}, fq(::{}, where ,

R T S\ S RO RN A AT )& (0; 4zenip 1)

--r

-+
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| f00)==f{x-a) Cmod p) {a=s(0 %,..., p—1}"), r_ 3 (3.2)
LT fs{x}=f(ax), | . )
* Jfl{x] =ft{x] _B {[ﬂﬁd FJ‘ {BE {Dt f----fF_i} r}: K ‘

| ,'._._i{‘-.;.rc 0 is a permutation of [x[m, :-:(1}, xizj, . x{k-l)}. Then, for arbitrary !, {#iih 1<iss k,

i ()= y=n” G =n" (2. SR

o L T]1éofcm 4 indicates the invariance of the correcting capacity TI:(F}{I) undér_d'i_s*pj:ricemems with

- respect 1o the- modulus and under permutations of the arguments of the sy'stem_t.::f _‘Bnn'iean functions.
Let us look briefly at the case in which the set R of errors consists of arithmetic errors of

_ ﬂ]u]tiplici[}: ;. One can easily show that, for the case of arithmetic errors, a_ll' tﬁg rélatinnships given
JLove remain valid, except that the operation of subtraction modulo p is replaced with.the operation of

L3

subtraction’ modulo pk.-- The autocorrelation function B {13} is also connected with tﬁe function fs[x]
. . - ' . p \ E ) .

a duﬂll'disc;ete transformation. This connection has the same form as in (3.1).

by
. _ ; _
In conttast withﬂrip}{f}, Eiip}{f) is not invariant under permautation of the arguments. With regard

{0 :Iisplflc*m{m:ﬁt, we have; ' -
" Theorem 5. Suppose that fl{x) fZ{x}, and fa{x} are three systems of functions of p-ary logic of k

arﬁuméﬁts, and that for every x={0, 1, ..., pk - 1} we have fz(x} =‘f1(x ~a) {mod 'ﬁk)'(far ae{ 0,

1, pE - 1)) and f3(x] = fl{:u:} = fl(:c} - 8{mod p} (forpe {0, 1, ..., pr - 1}']. Th‘e'n_for every I,
1«1 k, we have EI{D}{fl} = E’I(p}{fz} = EI{p}[fﬂ}. '
‘. 4, Because of its practical importance, let us look in greater detail at the case.in which the sys-

tem of functions (1.1} is a system of Boolean functions {p= 2), and let us examine the' properties of
P

qI{E?{{} for several classes of Boolean functions. .,
' . \We note that (3.3) tmpiies Invariance ﬂfqltz}(f) under inversion and permutation of the arguments

of tho Boolean functions, and also under inversion of the individual functions of the system. Equation

| '(3-_'1] with'p = 2 is put in the form BE 5{1'} = zsz[WE{fE}]{T), where W is the Bpeptrél‘tr:inafnrmatinn of

‘Jl.falsh {3].- : _ LT .
] Before analyzing the correcting capacity of particular frequently used classes of Boolean {unctions,

we point out the connection between the complexity and the correcting capacity of the _syétem of Boolean
{unctions. It was shown in {1, 4, 5] that it is expedient to take as criterion N(f) of‘cbmplexity of a Boolean
function the number of unordered pairs of constituents of unity fglued" with respect to some variable,
(Since the possibility of simplifying the expressions by gluing increases with increase in N(fy, it would

be ‘more accurate to call N(f) the eriterion of simplicity of the Boolean function.) The complexity of the
“system of Boolean functions is equal to the sum of the complexit‘ies of all Iunctinns-_apppai*ing in the sys-

tem. Then, for an arbitrary system of Boolean functions F(xj, we have .

L N(F) =T (F). SUURPERSEE B

. It Iuifnxifs from (4.1} that increasing the number of identical errera to be ci:i:jfyegted"‘increases the
value of the criterion N(F), so that the complexity of the minimal scheme realizing the given system of

', 1Py i o
i PR mE b wmar s — e

" :Béoléan functions almost always decreases asymptotically. oo .

" . I s -

. 'Lei; us now look at the question of Boolean functions having a given power || f{x)H = E f{x), and a
m.a;-:im;ql correcting capacity. We denote by I]{E){f] the total number of errors of all mnltiplicities ex- .
ceeding zero corrected by the function f{x): - C

k - . ) :
ﬂ"’(ﬁﬁz'q:" (f). Lo
,. fom b .
'_l“hearefn &. For a Boolean function f(x) with power |l {{x), S .
T]t.“[ﬂ =2“—2‘-—2‘+1|U{I} II +21”(I] “l_ ] ‘ * . ..:._l + {4' 2}
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. b . F e0re 1 - ] ves & ;,jl‘l*ﬂﬂtin{-'; Ciafn ke . .
It follows from 1{2}([} However, {or a {ixed [J{Jx‘;Lr,'tlh o1 that of others in 2 region of €vrors
- . . T & i .
{otal number of errors ql r;gi““ of errors of small 11111]11:11{-':1;';_1 mg funclions 6): .
_ cun be concentrated ”L;:L s look, for exawple, at the nonin ' .
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of high multil

- i

- -
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e {4.3) ;. ;
- fh{ﬂ=[nfm x>t T A
o - | (xe (0, 1} 7, 1= {0, e BT S . ir
.r _ i
F.Ui‘.fflnb;-i{}ﬂﬁ Rt(ﬂ satisfying (4.8), We haves ; A
) B ‘~'_ rT‘riEﬂTﬁm 1. e ot o e ., '." (4.4) i';
s (H.)-n::EZ,JE‘”CI*-i”u;i;I o e “, ‘
“where ' I th gy, =r=i-2tT ’ :
L “”L:‘“E'. xetl, 1 -

t d
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k-is rather QTIOVS,

HE
- L]

S @5
ﬂf” (n)=2 2 ﬂi—l:|+2 ):: cx'“* e | \

_..—-._,..,,_n.n—d"-'-r--—'l'l'l'l"-" e
.

- L BTN | * L]
nrflz]=® w<f

* - [ ! A H
hE pﬂ r - - t :

, :ion [3):
e fumlimnser[giﬂ. Suppose that f(x} 18 8 linear Boolean func:
Theor .

" E
]
]
-
N -
L ] . r "
v .
4 -
L] -
——
L w1 m v e et e ek b e e g—— e T LE ——— .
a
. -
r
.
b 4 -

- »

- . i
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' ' M .
. L 1 << k, : _ |
- : Then, for aevery Il [y . : ,.~. . | . {4-5} ﬂi
' L A Y C'-“ i ..' . oo
. . {}_2 e =atg L] | o '.
e Y ‘)___J | . {
- e l
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’ o2 s derer not exceeding _
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: hows that, : ' . _ i |
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¥

o lovmof o ‘superposition of nondecreasing or nonincreasing functions, Corre spopding to-euch a

l_l.I“-{:*fjl_'l.'rE_ﬁli{H'I, for example, is the realization of a systems of Boolean functions usiqg.'thréshnhl ele-

sents, and, . in-particular, threshold elements with weights in the set{ iz”, 121, cees :l-_zl“,”;} [7].

"~ 3., If it is necessary tocorrect errors of multiplicity k in the scheme realizing a system of Boolean
[unctions, where k-is the number of arguments cf the system, it is expedient to cnn's_truct the scheme in
accordance with the representation of the individual functions of the system in the form of a superposi-
tion of anti-self-duzl functions. . e

i 't. If correclion of errors of even multiplicity is necessary in a scheme realizing a-system of
Boo_ an functions, it is expedient to use *sum modulo 2" for the synthesis elements. e ;!

"5 Spectral methods of analyzing the correcting capacity of Boolean functions can be used for esti-

mating the complexity of the scheme realizing a given Boolean fun. 2. : " K

ll'l-r‘-"'.

APPENDIX

- The 1}1"00-f of Theorem 2 follows from (2.2) on the basis of the velationship

fo(@) fu{z—y) =fa{z+¥) Folz) =fa{z— (0—¥)}) (mod p}. :

-y L

ir

Proof of Theorem 3. Let us denote by Ss{m} the value of x{p}[fﬂ} at the point @, a;ﬁ_ig’-t us denote

by g2} (z) (X @0, 1, ..., p- l}k‘) the value of the © -th character at the point x, Then, by virtue of
relationships for the Fourler coefficients, S ‘, N

S.(m}S.{m}—p'“E f-{1”-{3’}1?’[?}1‘:"[f]- B .

i e, uld,

From this; the relationships X{”(=)= x(*(w) and EIL”{ﬂnr‘ , and the isomorphism betweérn the group G
’ o {- . .

and the multiplicative group of its characters, we have

(Itpr;, =1 {2 (L)) 2 () () = " 23.(:.:-}5.{&1) (1PN g {w) =

i 'EG.

D W WS T T

wel, =, f..d.

E | = ) @) Z"i”{‘“h'l"-?"l- ' e
. T x, rad, wag, . ‘ ':. | :
—P“uE f:{x} 1 (_r"_"."ij"l'P':": E fe (2} s t:t}zﬁ 1“,{:_ [1,}._"—"(-“‘1— | :‘ . ':
=l gy p=d sl . .

- F*“E a2 fu(2—y )= P85 l¥)

:EE.

(allrt'he.'subtra:;tiﬂn_s are modulo p).

Proof of Theorems 4 and 5. We note that (3.2) implies fl(x - n)f‘i{x - -?):;"Il(_:;}f.l {:E. - ¥) {mod f)

(where X; &, veil, 1, ..., D~ l}k]. The validity of Theorem 4 now follows by virtue-of ‘Eqs. {2.1) and
(2.2), and the.fact that under a permutation (displacement modulo p} there will be the sa ie permutation
(displacement modulo p) of the arguments of the summary autocorrelation function of ‘the cofresponding

system of Boolean functions.
Theoréem 5 is proved analogously.

Proof of Theorem 6. The number of errors (of arbitrary multiplicities) to he'cprrecied- in the sets
x for which {{x) = 1 is ef(x)1 (M{(x)¥ - 1}; in sels x for which f{(x} =0, it is [2’? - Hi(x)1) (Z*k' - Hf(x)1 - 1}.
Equation (4.2} Tollows, | | R L .

] P'rbr;;f ::-i' Theorem 7. We note that if Ht(xm], .oy xu-l], 1, x{lﬂ}, e x(k-”} =0 then (4.3)

implies L-hat_Rt'(,'{ﬂ}, s _x{iﬁl), 1, z(i"'l)' Ceny z{kdl]] = 1 for arbitrary z“‘ﬂ}, ceen z(_kfl‘)‘.: Therefore

the number of e1jru;=s of multiplicity ¢ to be corrected in the sets X such that Ht(x}-= 1'is.

i
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e
. . Fuptiers v S xR (D L g then (5.9 tmplies that B (V) Lo, |
RIS (i-1) : k-1 (i+1) (k-1) ‘

D ..., X R ;5(""1}, Caey z{ B ]) = § for arbitlrary z y vy Z . ‘Consequently, the number of
errors of mulliplicity t to be corrected n sets X such that ﬂt{:{] =0is '
"1 -1 |
¥ Y
T T
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T~ . Fquation (1.4) follows, . o
;o ' Dervivation of (4,5), A Boolean function {{x) is said to be nonincreasing {resp. nondecreasing) if
o t f(“{m- L x{iil}. 0, x{iﬂ}. Y K(k_l}};" f(x[u). vere x“_l}, 1, ,.% ..‘?E(k-l}) fresp. [(xlm, e xu_”.
R ¢ H{1+1}, LIRS P f{x(ﬂ], . x{i—ll, 1, «.ns xr‘k_l}}] for arbitrary x{m, x(1) xE1) ond

avbiteary 1 in10, K - 1). It follows from the definition of a nondecreasing function f(x) that if £ = 1,
then f(x") = 1 for every x'< X, and hence the error {X, X'} is corrected.;. The number of such errors of
- multiplicity ! to be corrected for fixed x is 2C, . Analogously, if T{x)+=0, then {{x'} = 0 for every

" X'z x, and the error (X, x'y 1s corrected, The number of errors of this kind of multiplicity ¢ for fixed

x 1s no less than h-pe . Inequality (4.5) follows. oLt
. ; .t

v L " ’ 1
Proof of Theorem 8, A Boolean function {(x) is lincar {1] {f [(x) =E dlxm (mod 2} {di-{ﬂ'. 11},

R It follows that {{x) actually depends only on 1d1 with respect to k arﬁuments.
such errors are corrected in the arguments gn_tv:hich f{x) does not depend, and
1d! arguments op which f(x) does actually depend.

For any fixed x and an crror

. of multiplicity j, €y
ﬂ';fau errvors if j is even, Or no errors if j is odd in the

Now assuming that an error of multiplicity 2i occurs in the argumer*s on Which f(x} actually depends,
* and that an error of multiplicity !~ 2i occurs in the other argumurs,, -and summing over i and over all

"% we get {4.06). . . .
: Proof of Theorem 9. A Boolean function f{x} is said to be self-dual {resp. anti-self-dual} if and

. x{k"l}) [resp. l‘{x(m, N x{k"'n) = f{x_{m, x{k-l}}l for

onty it 1c®, ..., x®V) = <O,

arbitrary x {0, l}k, where f(X)and x denote respectively the pegation of the function f(x) and the i-th
0 .

A " "+ argument. Then it follows from the definitions that BE 5{2 -1y = B2 E[l-|.'l2 = k)= 0 {resp. H2 E{Ek -1)=

. =2 :g: f{x) = 2 » Ek-lj. Equations {(4.7) now follow on the basis of (2.1} and (2.2).

»
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