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We propose to analyze the problem of correcting malfunctions in finite automata when errors are
absent in the input signals, We state necessary and sufficient conditions for the existence of such automat »
having a specified memory volume. We show that for the proposed correction methods and for any mat-
function multiplicity there are classes of automata for which correction does not increase the memory
volume. We give asymplotic estimates for the complexity of automata with the correction of malfunctions
synthesized by the proposed methods, We give estimates of the minimum number of absolutely reliable
memory elements for the correction of malfunctions of any multiplicity, We describe the algorithms and
characteristics for the appropriate programs used to implement the proposed malfunction-correction .
methods on a computer, We consider three variants of optimum-encoding algorithms using the methods
for the solution of extremal combinatorial problems,

1. A method of error correction in finite antomata has been proposed in [1], where the "correct”
state of the automaton is reconstructed from its "incorrect" state and from the input signal, which is
assumed to be uninfluenced by errors., A formal statement of the automaton error-correction problem
and necessary and sufficient conditions for the existence of I -error-correcting antomata that realize 2
given automaton transformation and have a specified memory volume are presented in {1]. Throughout the
present article (as in [1]) we understand "errors™ to mean transient malfunctions only. In the case of
catastrophic structural failures the given methods can only be used to detect failures, but not to correct
them, This qualification imposes a significant difference between the statements of the error-correction
problem for automata in the present study and in [2].

In an automaton ¥ with input alphabet {x,, x,, ..., Xn, |, Set of internal states {a;, a,, ..., ana} ,
and transfer function f(x, a) we say that state ap is Xg-attainable if there is a state aq such that f{x¢, ag)

= a,. If a realizable transformation A{x) is given by a corresponding graph or table of transitions for the
minimal automaton ¥.,ipn, the following theorem holds,

THEOREM 1, For the existence of an !-error-correcting automaton realizing the transformation
A(x) and having at most m binary memory elements it is necessary and sufficient that there exist an
encoding of states of Ay,in by codes of length m such that for any xg and any two nonequivalent xg-
attainable states ap, and Ay the following condition holds:

la, Sa,ll 32041, (1}
in which ]2, ® o) is the Hamming distance between the code sets corresponding to states ap and aq of

i"'[r:r:. in-

Theorem 1 states that for the correction of an I-tuple error it is necessary and sufficient to ensure
a distance of at least 27 + 1, not between any two states of Upjn, but only between states that are attain-
abie for one given letter of the input alphabet, This fact enables us in a number of cases to lower signi-
ficantly the redundancy required for error correction,

We denote by ng(xg) the number of Xg-attainable states of %y.i,.
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COROLLARY 1. A necessary condition for the existence of an l-error-correcting automaton realiz-

g 1 transformation A{x) and having at most m binary memory elements is
max n,{x Y A(m, 28 - 1) (2)

ooore Alm, 2, 1+ 1) is the maximum number of words of an m-place code with code length 27 + 1.

We denote
R’y - =] log, max n;(x,)|. (D)
« rr, as elsewhere, IN] and [N] denote the nearest integer not less than and not greater than N,

-y -;rn‘.‘_‘ti‘l'ﬂl}'.

COROLLARY 2, A necessary condition for the existence of an I-error-correcting automaton realiz-
-+ the transformation A(x) and having at most m binary memory elements is

| I
min (m — log, EC’:“ +

(L1

It m {m—l{ m—1
5 Cm C”"‘"[?H - 1|_ 21 L[m]]]] (4)
2% 1T+ ~m ’
7]
m—4f 5 dog, (2 -+ 1), for m >4 -1,

4 - 2 :
T—o—m for m g 4f -1,
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Incquality (4) follows from (2) and the Johnson [3] and Plotkin [4] upper bounds for the existence of
- mi-place I-error-correcting code,

+h

2, We now give sufficient conditions for the existence of error-correcting automata. The proof of
-~ rv conditions is of a constructive nature and generates a corresponding method for the synthesis of
“Ir-correcting antomata,

Let A be a partition of the input alphabet X into nonintersecting subsets A;, Ay, ..., Apy

We say that an automaton state a, is Ag-attainable if there is an Xy € Ag such that a, is xp-attain-
Biv, The number of A;-attainable states is denoted by na(Ag).

THEOREM 2, For the existence of an I-e I‘I‘DI:-GGI'I‘Eﬂting automaton realizing the transformation
%4 and having m memory elements it is sufficient that a partition A exist for which

max n, (hs) < B (m, 20 - 1), (o)
1log, n, [ m — | log, max ng (A ). (6)

b ey
~ B(m, 21+ 1) is the maximum number of words of an /-error-correcting m-place group code.

\ Proof. We first construct on the basis of the minimum atuomaton Hin realizing the transformation
% a certain equivalent redundant automaton 9,, as follows, We "split" every state ay of %pip into

Rivaleny States Ap.s 3Py caes an of ¥, in such a way that each of the states ap.. (r=1, 2, ..., 9 is
:a.mahle only for one block of the partition A. We juxtapose in one-to-one fashion the blocks of A and

11.l;lll':w&m': classes of 3 certain I-error-correcting m-place group code [see (6)], For each block Ag we
ode ay) Is-attainable states of %, with elements of the corresponding adjacent class for the selected

e [ see {9)]. In this case condition (1} of Theorem 118 satisfied, and, hence, [-tuple errors can be
Cled in A,y
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Theorem 2 yields a methed for the synthesis of I-error-correcting automata; special cases of this
method are the replication {standby redundancy) methods and methods in which the set of states of the
encoded automalion forms one correcting code [2]. These methods are obtained by setting A = I, where | ig
the partition comprising a single block,

COROLLARY 3. For the existence of I-error-correcting automata realizing the transformation Ay
and having m memory elements it is sufficient that a partition A exist for which

1 i
) log,maxn, (A,) | m — log, 3} c . 7
! Immi)

1og, m, [ m -~} log, max n, (A )| : (8)

We define memory redundancy as the difference between the number of memory elements of the minimum
automaton and a redundant automaton with given correcting capacity that realize one particular
transformation,

COROLLARY 4. For any number of states and inputs and any multiplicity of correctable errors
there is a class of automata for which the correction of errors of given multiplicity does not require

memory redundancy,

For example, let the number of states of the minimum auntomaton be 128, and let the number of
input letters be 8, Then for all automata for which max ng(ig) = 16, memory redundancy is not required

for I = 1; Here }LE:{I‘}{S = 1! 2! .y ]:lx) {EEE (?] and {B}l-

It follows from Theorem 2 and Corollary 3 that the memory volume m of an error-correcting auto-
matondepends on the choice of partition A of the set of input letters. The problem of finding the oplimum par-
tition A may be treated as the problem of minimizing the memory volume of the error-correcting automa-
ton, Algorithms and experimental data for the testing of suitable programs for the solution of this prob-
lem are given in [5]. The main shortcoming of these algorithms is the acute dependence of the machine
time on the number of input letters, In the present article we give some alternative algorithms for the
solution of the same problem, along with experimental data on their testing.

Our algorithms are based on the methods of solution of extremal combinatorial problems [6] and
make it possible to augment considerably the size of the transition table for the error-correcting auto-
maton while minimizing the memory volume, In[5] algorithms and experimental testing data are also
given for suitable programs to find the optimum correcting code for a given automaton and for the

enceding of states of the elements of adjacent classes for the resulting code, These programs in com-
bination with programs for the combinatorial synthesis of nonredundant automata form a system for the

direct computer synthesis of redundant automata,

3. We next consider the problem of error correction in the case of correlation between errors,

Let a set of m memory elements of an error-correcting automaton be amenable to partition into
two subsets comprising m' (m' £ m) and m-m' elements, Errors of multiplicity I' ¢an oceur in m’
elements, and errors of arbitrary multiplicity can occur in m-m' elements. We denote the set of

errors of this kind by I’y pt.

THEOREM 3. For the existence of an automaton correcting the error set I'yyr 1, Tealizing the
transformation A(x), and having m memory elements it is sufficient that a partition A exist for which

m::lx Ry Bim', 2" + 1), (%)
]lug?mlax n )l m—log,n <m (10

Theorem 2 follows from Theorem 3 form=m' and I =1",



The automaton correcting the error set I'py jv is constructed in the form of a series array of two
tomata, where the first is realized on m' memory elements and corrects [' errors, while the second
« realized on m-m' elements and corrects errors of arbitrary multiplicity {7].

It is inferred from a comparison of the sufficient conditions of Theorems 2 and 3 that if the number
- of memory £lements for the error-correcting automaton is greater than the minimum required number
~* from conditions (5), (8) or {7), (8) for the correction of ! errors, then for

jlog,maxn, (A} [« m—log, n, <o
¥ .

.+ ;x always possible to construct an automaton on rn memory elements that realizes the same transforma-
w.an and corrects I + m-m' errors,

COROLLARY 5, For the correction of errors of arbitrary multiplicity in an automaton m'* = Jlog,
~1x na(A g)l absolutely reliable memory elements are necessary and sufficient.

Coroltary 5 follows from Theorem 3 for m' = Jlog, max na{Ag)l and I' = 0,

4, We now give estimates of the complexity of error-correcting automata, We introduce the follow-
inz notation: ng is the number of states of the minimum automaton ¥, iy realizing A(X): na(a) is the number
-f «<tates of the autormaton EIA obtained by "splitting' of the states of ﬁmin {see the proof of Theorem 2Z);

¢ 15 the number of input letters of Wy jn; ny is the number of output letters of Amin: k, = llog; max

v A {3 and L{%A') is the complexity [8] of an automaton correcting I errors and realizing Ax),

THEOREM 4, For ny — m, n, — o, and { = const

An k
L{"i'f]:ﬁ( "ﬂ{ JHI A [ ﬂa(l}] IDEIHFE .). , {11}

log, (i, (M) ' logy e (A)

»*'r¢ @ is the maximum complexity for two-input logic elements,

The proof of this theorem rests on the asymptotic estimates obtained in [9] for the complexity of
=l-rdetermined functions, The only difference inherent in the proposed method for the synthesis of

"Tror-correcting automata is the dependence of the upper bound of the complexity on the choice of the
-irltion X of the set of input tetters.

-, It follows from Theorem 4 that the complexity of an error-correcting automaton is asymptotically
semendent of the {fixed) multiplicity ! of the errors to be corrected,

_ COROLLARY 6. For n, —~ , 0, — @, log, nx =0 {log, na) and for almost zll automata ¥, in with
- oInnst

L) _ni

LW 7o (12
it follows from Corollary 6 that for
lim =~ 1, log,n, = 0 (log, n,) (13)
agr= fg

fly =ro

L3 .

o :::Eﬂmn of errors of any fixed multiplicity leads asymptotically to an increase in the complexity of

v maton, Condition {13) is satisfied, for example, for A= 1, This result is consistent with the
8OUS resplt given in [10] for combinatorial networks,

- lj':;":"'lﬁ*i‘-*qt.lEI:ti;ly, if (13) isfulfilled, the proposed error-correction method is asymptotically optimal,

EEffieiency of the error-correction method increases with the number of states and the number of
ters for the automaton.



5, We now consider the memory-volume minimization problem, which reduces to the problem of
finiding a partition  that will minimize m of the conditions (5) and (6). To find the optimum A we apply
the following iterative solution procedure, In each step we choose from the set of all possible partitiong
of the input letters of My, a subset A of partitions that satisfies one of the inequalities {5) or (6). The
problem now reduces to that of finding a partition A € A which will minimize the Ieft-hand side of the othey
inequality., Inasmuch as the number of code words and the number of adjacent classes of a linear group
code is a power of two, it then follows from (5) and (6) that the number of steps of the iterative procedure
does not-exceed Jlog, ng| if A is chosen from condition (5) and does not exceed |log, n,[ if A is chosen from
condition (6).

Let us consider the set A of partitions of the input alphabet into n, blocks. The number of possible
partitions S{ny, m,) of the set of input letters of power n, into n, blocks is

: it
(— ”f{nh —_ .nn't
FI,

{14)

-

It follows {rom (14} that the determination of the optimum [in the sense of {5}] partitions A by direct
sequential search through all partitions is possible only for small values of n, and n,, So that the con-
struction of efficient approximative algorithms for solution requires an analysis of the structure of the
set A (set of partitions containing exactly n, blocks},

The set of all possible partitions of a given set forms*a lattice M of partitions under partial order.
edness [11), We say that a partition K1) covers a(}) if A{l) > A(}} and a A does not exist such that a{l} > ;
>a), We refer to partitions that cover the null-element of the lattice M as points, We enumerate the
input letters with the numbers 0, 1, ..., Dy,-1 and denote the points of M by pairs (p, q}, marking the
single block of the partition containing the two elements {input letters} p and q,

We represent the partitions as an amalgamation of poinis of the lattice M, For a single-~valued
representation of the partitions we require lexicographic ordering of symbols; specifically, in the amal-
gamation of points {aj, i) of M

A=(a, B Udes B} U ... U (e Bs) (15

the following relations must be observed: o; <58, o % 0. B; 3 B; fori#i(i, j=1, 2, ..., K. The
following theorem is a consequence of the Schmidt-Ore theorem [11].

THEOREM 5, It is possible to set in one-to-one correspondence with any partition A of a set of o,
elements into n, blocks a set of n -0y points that determine this partition by means of relation {15).

We now examine zalgorithms for the minimization of the functional y = max na{ig) determined by

means of (5) and (6) on the set A of partitions, These zlgorithms are based on the above-described
representation of partitions of the lattice M.

1.- Adaptive Random-Search Algorithm

Every point (p, q} of M has associated with it the probability Pp. q of its selection, We constiruct a

generator of a random set of n,-ny points determining a partition A E'ﬁ_ The probability that the generalor

will select the point (p, q) is equal to py, 5. For every constructed partition A € A we compute the value
of the functional p = max Na(Ag).

Due to the complex dependence of the functional u on the set of points entering into the partition we
organize the training procedure, i,e., we vary the probabilities Pp, q in accordance with the results of the

preceding selections,
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We organize the training procedure cyclically after every n steps (in our program we set n equal to
19 to 100), during which is accumulated the information needed to make a reward-and-punishment decision,

. (paining sequence reduces (o a variation of the probabilities py, g of selection of points occurring dur-
.~z one cycle in the composition of "good” or "bad" partitions in more than y percent of the cases {y was

-.;llr';cd from 60% to 80% in our program),  In this case a partition is considered to be "bad” if g = ﬁ and
mod™ if g <p (where i is the arithmetic mean value obtained for the functional over all preceding steps).

The program written in commands of the M-200 digital computer for the realization of the algorithm
r.scribed here occupies 1500; cells. The operation of the program requires four memory banks of length
¢ cells {including a bank for the point-selection probabilities, two banks for the number of occurrences
-fi:l(}intﬁ in ""good" and ""bad" partitions, and an operational bank for the point-selection probabilities),

.( the working capacity is limited to that of the M-220 internal memory banks, the capacity of the latter
1.eg not suffice for the solution of the problem for more than 30 or 40 input letters, The time limitations
tor the formulated program is of the order of ten or twenty minutes, which is adequate for the memory-
~]lume minimization of an automaton having 30 to 35 states, The algorithm described here the refore

i tfors from those described in [5] in that the solution time is not as dependent on the number of automaton

input letters and permits the solution of a problem of larger volume,

2 Local Optimization Method

{n the solution of the problem by this method, for every partition x(1) a set of adjacent partitions is
termined, where a partition A{l) is considered to be adjacent to A{l) if the amalgamations of points cor-
~-sponding to these partitions differ by exactly one point, Then in the usual way [6] an adjacency graph
(1) is constructed, in which a successive descent is made to the region of a local minimum {8]. The
;artition globally minimizing the functional u is sought by scanning of the local minima obtained by the

~-alization of successive descents in the adjacency graph for randomly chosen all),

It is essential to note the following characteristies of the realization of thig algorithm, First, the
-t of all partitions adjacent to A{l) contains a subset that can be discarded at once, namely the subset of
-artitions differing from the given one by permutations of elements between noncritical blocks,

A block Ag of a partition X is said to be critical when it maximizes the quantity na(Ag) for the given
sirtition A, Moreover, in the sc anning of adjacent partitions we can readily determine the lower bound
{u as max (k) , where A g is the s-th block of the partition A obtained by decrementing once the number
{ points in A, -This operation also greatly diminishes the number of partitions that have to be scanned in

e adjacency graph.

The program realizing this algorithm on the M-220 computer includes 1000, commands and is
;ractically unrestricted in the memory of an intermediate-class digital computer, [n a period of the
"Fur of 15 min the program is capable of determining the optimum encoding of states in automata for
sRuich the product of the number of states by the number of input letters is of the order 103, The algorithm
4 %ell recommended for implementation on a computer having a small operational memory.

3
~_Method of Branches and Bounds

e The subset A of admissible partitions is chosen 80 a8 to satisfy inequality (5) for & fixed B(m, 21 + 1).
set \ consists of all partitions A of the set of input letlers into blocks Ag such that

maxn, A)< Bim, 214+ 1). (16)

% k[me this set we pick out the partition having the minimum number of blocks, i,e., we minimize
t-hand side of (6), The problem is solved in two stages,

Boae From the construction of all possible blocks Ag of A satisfying (16) the routine is as follows, Om the
an lattice Z [11] of all subsets of the set of states of the automaton we label n, subsets Aj of xj-atlain-

Wie
E:tites of the automaton UApin. Then on thelattice Z we pick out the set mB of all subsets A;B contain-
atly B élements, For each subset AiB € MP we construct the absorption vector o, whose j-th



component is equal to unity when Ay < AiB, ie,,

I if A ZA7; where B=8 (m, 21--1);
0 in all other cases.

The absorption vectors thus obtained for each AiB form the rows of an absorption matrix, Every
row of the absorption matrix characterizes those amalgamations of automaton input letters in the bloek
which satisfy (5). _

In the second stage of solution of the problem, for the selection of the partition having the minimup,
number of blocks it suffices to choose the minimum number of rows of the absorption matrix so that at
least one unity occurs in each ¢olumn of the submatrix formed by the selected rows, The optimum par.
tition problem can therefore be reduced to the familiar minimum covering problem. The solution of the
latter is carried out by two methods, one approximative and one exact, where the method of branches ang
bounds is used for the exact solution,

The program used to realize the algorithm just described occupies about 1000, cells in the M-220
computer memory, The remaining volume of the operational memory banks is allocated for the rows of i
the absorption matrix,

Unlike the two preceding algorithms, this algorithm has the drawback that the solution time increageg
sharply with the number of automaton states, On the other hand, an increase in the number of automaton
input letters has an insignificant effect on the solution time, About 12 min are required fo seclve the mini.-
mization problem on the M-220 computer for an automaton having 20 states and 35 to 40 input letters,
Consequently, this algorithm is well suited to the memery-volume minimization of automata having a
large number of input letters,
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