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A method Is proposed for the synthesis-of circuits realizing pa

functions of p-valued Jogic (p a prime number), by means of

i problems of finding the optimal completion of the given function an
transformation of arguments, for which the number of nongero coefficients of

series is minimized, are solved.

|

defined Boolean finctions is one of the most cbnipliéa;ed proble
i
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1. The problem of realizing pattially-
evices.

e ‘arising in the syntheSis of switchmg d . ‘ e
e In the present work methods are used for the synthesls of partially-defined functions, using
- the expansion of these functions {n orthogonal series.: such methods were considered for the realizat

defined functions in {1, 21

Methods based on expansion in orthogonal ser
basic advantages of methods based on expansion in Of
a) in the use of these methods the structure of the device is i
in advance; minimizationof complexity reduces to minimization o

both in the case of realization of one function and,]
practically completely excludig

effective than ci-é“ss,ica} m

1y~
ted with the circum:

ies can sometimes be more
thogonal series. are connec
ndependent of the functions re
f the number of coefficients

b) the problem of minimization,
ation of a system can be solved by analytical methods,

nstructing and minimizing devices realizing Boolean f
alned logic (the only essential difference in this case-

ain p complex values).

realiz

¢) the methods of co

10 the case of functions of p-v
on two real values, hut cert

fonger take
and autocorrclation char:

at the analysis of spectral
s ‘a number of problems, a

Aside from this, it must be noted th
an'functions allow

! expansion in orthogonal series of systems of Boole
of circuits by classica}/means (2], to be very Stmply solved.. RS
9. Let there be given a partially- f.m 'ar'gUme-kits. Letug

L .
R

defined Boolean function 0

ents Xg» x‘i. v Xm-1e We put z== E : x, !

pleting its definition and the number{ng of the argum

sent the given function y = @(Xgp Xy« + +» Xm-1) 10 the form y = o(x/2™.
ary-rational points 0, o-m, 227, ..., (om-- SVARLE of the segment 1o, 1).
wise-constant in the following way: o ‘

(s=0,4. o 2m—1).

(I)(x/(2’")=q>(s/2"‘_). s<r<zt+1 =

Then o(x/2M) belongs to the space L2 (3] and may be repr-escnted in the fouh :
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where {v)(x/Zm)} Is a complete system of orthogonal funcnons._,

Representation (2) gives the pOSSLbillty of reahzmg &(x/2M) by means of a) a generator of basis functlons
{u (x/2M)}: b) a memory block for storage of the coefficients Cj; c) a multiplicatlon and a summation devlce. In. ’
[1] it was pointed out that it is expedlent to take a system of Haar functlons a3 the basls function system for the :
realization of ®(x| 2m), A '

© The nonnormalized complete orthogonal Haar system {H(3)(x/2m)} ls def!ned on [0 1) In the followlng wa)" ;
H°(x/T“)— 1, : : y . -

- , e e [211—2 ' 2}‘-—1) o EEI T A o
\“ om 2+t V2'l+l , W 0. o o
- R (N SN . Tt S 1
" » 2m PR ' ‘ ‘ IR R
0 at other points of the ségment  [0,4) = ‘ L _ (3)"
. ' (l-—-O 1. —’.’l;f='1‘2,...,2').w- ' v / |
'< - R

' Using the Haar functions as the basxs system, the number of nonzero coefflclents of series (2) does not exceed

2m for any &(x/2M), and at the same ttme ‘ Givn T
00 S | AP F S
.(D<x/2m>'=0" o /zm>+220?’ﬂ‘”(x/2m) T TR, Je

C ' 1=0 je=1 '\ : ' o 'lf"

Since H (J)(x/zm) ({- 1, 0,1} for any I, j, x, there is no need for the multlpller in the reallzatton of ¢(x/2m)
by formula (4);and the generator HZ(J)(x/Qm) is realized very simply. From.(3) it follows that for any fixed x*/ oM
€ [0, 1) there exist exactly m +1 basis functions such that' HZ(J)(x /2My = 0, “Thus, if the terms of series (4) are sum-
med by means of an accumulator. then for any x the calculation of &(x/2m) reqmres not more than m+ lcycles

The coefficients of C,(J) are calculated by the formula

’ ’ om_| . : Lo ’ . [

x = , ; , L
. ‘ . i I | . : ! Lo
: oo I T RS PR

Here. ifLyis ‘the number of coefficients Cl(J) (] =1,2..., 2l), then 0 = Li = 2l. In particular, from ) and'v.“' S
(5) we have o . - e o

- -—--—((———")-—(—“——-))(i:)

and 0 = Lyp-y = 2M° 1

According to (4) the complexxty of realtzmg d>(x/2m) is baswally determined by the complextty of the me-
) - i ‘ m-—l : .
mory block, which it is natural to assumne to be a monotomcally lncreaslng functlon of Z L, ('I'hls ls connected

(=0 '

with the exponential dependence of the memory block complextty onm for almost all functlons. whlle the com-
plcxmes of the other blocks dcpend linearly on m). : : :

The methods of tompletmg the function and of numbering the arguments substantially mfluence ¢>(x/2m) and, @ -
consequcntly, the number of coefficients of the corresponding series. ln this connection it is useful to consider
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the probienl O VpR=M=s. =

minimized. . \\‘ ; v ‘ . SRR ;
3. We assume that the method o of numbering bthé" argurﬁénté is ,'ﬂxéa; and we shall find the optimal comple-

tion of the given function. since 0 = Ly =2l, we shall seek the completion in the following way. We first find the

class Km.y of completions for which minimum Lg-y is-attained, then in Km-y We determine the subclass Ky

= Km.1 of completions, in which minimum Lm-2 {s attalned over ail completions in Km-1 etc. In this an absolute

“minimum is reached for L~y and certain relative minima for Lm-z Lm-ges s oo Ly

The class Km-y 18 constructed in the following wWay. If % {s the initial partially- defined function for a given . i
method g of numbering fts arguments, then Km-1 s composed of all functions obtalned by the completions ofy,y T

for which, 1f Rg(m-1 € Km-1 then the number of vectors (R Xgo ++ 09 Xm=2) such that ..~

RV ‘ (m=1) SN S T e
‘(’m ’(xo,’$|,...,'2m—-2.0)’f‘=Ro (30.31.--1 ’:M—ﬁoi)v D e M

is maximal over all completions of ¥+ . ; D ST

N

The class Km-2 & Km-1 8 formed by all functions Ro(m'z) of the class K.y for which the nufnber of vectorse -

(Xgo Xyp o0 oo Xm-3) }s such that o . /

"O)+1‘2¥’n-2) (x01zl"ﬂ~v'zm'-4'0'1) o R :

s T
(m~12)
4 (x()’ Tlyeos 1+ Tm—3s

2, k v ) m—2
:Rém )(xnylw--vxmf—Sviyo)""Rg v)(zO,zl,.u'xm—&ipi),

is rr_\_aximal over allvcompletlons of the class Km-1- The classes Km-s 2 Km-4= L. DK, are constmctéd analog-
ously. Any function ¢o in K, is found for prescribed ¢o relatively simply and does not require search. Thus, from.
~given partiauy-defin\:d function and chosen g one of the completely-defined functions Rg 0) is constructed such that, .

"t is completed anal_ogcusly to (1) to 2 piecewise—constant &y (x/2m), and then represented in the form of serles
(2) in the system {Hl(l)(x/zm)}, then, as is evident from (3), (5),and (6), for Lyy-y an absolute minimum fs attained,
and for Lyg-2 Lm-3v -+ L, certain relative minima. L : ' RIS

. Table 1 preseﬁts an example of an initial function ¢g, for which the classes Kg Ko Ky Ko and the function .~

Rc(o) are constructed.

we shall now find a numbering‘of the arguments for which the piecewise-constant function d:o(x/Zm), con-

m=1

structed above, would have minimal E L;. Here for arbitrary o the above- descr_ibed method of completing the

{=0

functipﬁ ¢y O piecewise constant &5 (x/ omy is conserved. letus fix a certain numbering of the argumef\ts x (Xg
Xgo oo o0 XM=+ Then any other numbering can be obtained by premultiplying the vector x by a matrix containing
a single one in each row and each column, and zeros otherwise, (Here and below all matrix operations are under~
stood in the ficld of residues modulo 2.) Thus, the problem of finding an optimal numbering can be cgnsidcred as .
the problem of finding the corresponding matrix of ones and zeros.

we shall solve a general problem, in which a single constraint is imposed on the class & ‘of matrices of zetos
and ones under consideration, consisting in the condition that the matrices of class = are not degencrate. premulti-
plication of xbyo € & requires aspecial plock at the inputto the ‘device; it canbe shown that this block s always
realized in not more than (‘ZmZ/ log, m)— 2m adders modulo 2. The block diagram of the entire device consists of

the series connection of two blocks, reatizing the functions o and ¢ .

The optimal matrix dopt ¢ = will be sought by analogy t0 the optimal completion, We first find the class
= 1 of matrices for which Lip-1 18 minimal for the corresponding ¢ (x/2m). Then we find in Em—y the subclass

o

et €= Dty for which L~z i8 minimal, etc.

4. Let us-consider the problem of constructing Em—1: we first assume ‘that the matrix o€ = fs fixed.=

v -
f
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XpeeesXm-pe UE {o,1}: 1 R Re

u“—,—,\o 1y Sy ‘ l l
0o o 0 -0t 4 jod ERE O
0 0 o 1 0 BEVEE T B I
S0 0 10 » IAREE 1 B | IR I T U 20
Vo o040 o | o |0 )0
V0 00 0 e a ol eer e 0 N R U
0 0 0.4 R Y g S0 S0
: 0.\ 0 b .0 0 - 0 S U 0 0
o 041 1 1 A S R
- 1 “‘!' 1 (U 0 * as R 1 I as S0
TR S A T an | o as 0
. A 1 0 » a3 ag as 0
1 1 1 A " as ag . ag 0
1 1y Q 0 » as ay e as .0
4 1 \,: 0 1 * as Qg as 0 .
. 1 £ 1 0 » as aq " ag S0 - L
1 i A i » L as ) ag |0 e
. . : , : , .
a1, a, as, a4, as € (0, 1} as E{e2 as): @ € (e, as)s 68 € {as, a1}

we form for ¢ (Xor 'xl. .4+, Xm-~y) the system of completely defined characteristic functions ¢t.§’(5c) (x}- (Xon . . i

, v

{1 for (pc(xo,x‘,...,zm.,)xt’ 1 vy : ’\ (g) ..
0 otherwise,” . ‘ S S .

Pt (X) =
we construct further the cross correlation function Bg (7) of the function ¢t‘o(x):';
. i R

Ba(t)_____. Z (po,o(x)q?l.“(-xet) ‘ (K}Odz). _ (10)‘.

o \ (0,1}

(Here and below the symbol @ denotes the componentwise sum of vectors x and r the modulo shown at the right of

the expression; {0, 1} is the set of all binary vectors of length m; X, refo,1}m)
Theoren‘]Al. The class S,y iS composed of the nondegenerate matrices om;,', satISfylﬁg the CQn"d(ltion X

i

Om-1 Topt= L l‘ ' i ".' ;‘., (11)

e OO

where v o : By (tom) = min By (%).
*7#(00... 0)

K

It follows from Theorem 1 that the problem of finding the class Em—1 reduces to ﬁndihg the minimum of the

- cross correlation function Bg (7). where the initial matrix o may be arbitrarily fixed.

Let us present still another way to calculate the cross correlation function By(r). Rather thanthe system of Haar - -

functions we take as the basis the system of Walsh functions [3]. The piecewise-constan't function obtained by the -
completion of the sequence of coefficients of the expansion ¢>c(x/2m) in a Walsh basis is denoted by W(Py).

~Theorem 2, Foranyg &8 -

Ba(x) = Z7W (W (@0,0) W(®1,0)), el Can

| where By, o (x/2M); By, o (x/2m) are piecew {se-constant, obtained by completion of ¢y, 0(x),%¢1|o(x).




. transform, : ’ %

O 0 ! : SO oy
"where. “To'ptyz ;)) ;, ' The clyass 8 Is deﬂned by the cond(t[on o,es‘ lf and only if- "0 (1

TABLE 2~

)

‘ufwwm.)[ BEM | o,

i"\‘ 5 o

AW, )

-
e

el i

A % 2 S0 1
S | 2 2 .
W 0 0 )
S0 o o i
A 2 20 e
0 2 SR I L
S0 0 - 0 . Lot L
0 S0 R | pooten
0 "1y o , 0 '
0. 2 L0
0.5 2 0
0 0 0 '{
0 ‘ 0 0,

Theorem 2 gives a mt;thod of calculating the cross correlatfou functfon Bc,(r) ln terms o{ the double Walsh .

Example. We find for the funcnon (po in the previous example (Table\l) (for g = 54. where E4 Is the 4 x 4'
_unit mamx) the class ;E.,._, = '.., + The functions ‘r’E (po' E,,, w‘ 34. W(<b,,, 54'). W(d&l g‘). 854 are glven In Table 9

YO‘ 0

0 , B
g . The function @0, Is given in Table 2; forityy = 0, wh[le for the lnltlal function ¢E, L,
{ ‘

O oo

10
. 01
Us= OO
0o

5, Let us present a recurrent method of constructing the classes = mep 28, 35, L';, where the

i mamces of class &= E s minimize Lm-s. Sxmultaneously with B, _, we s“zall construct recurrently the system of

‘ auxillary partially- defined functions ¢(S) (x/2m-=s+1y,

The class =, | was constructed in point 4, we put O ‘
. i ) N m—p .o : SR DR
¢ (z/2m) = ¢, mot (T Ty 0y T ) (-‘L‘— Z 1?12"‘”"" Um aEE Eme ) S "(la)i )

' ) . J==0 . [ EPNA L !

i ) )

Let now the class §,,_, and the function o(S)(x /om=sty already be constructed and let us construct & Em- (su)

and g(s+1) (x yom- 5). For this we first construct the function - ,

L\ ol 2 o(ZEHLy e un?
(p()(zm —~3 )_ﬁ(p()( 2m-—c+l )+(P()(2m_,+l ) ; : ‘ ;

(in'(14) we have assumed B+0=22, +4 2z where * Is an indeterminate. value), we form for w(s)(x/2m 'Sy the
system of characteristic funct(ons (/’(S) Xy (t=0,1,...,95 y¢ {0, 1}m-s, by analogy to (9) and the overall cross cor

‘relation function

mm=3 3 mep (x@r) (modé) -
. 1<<q xS(0, j)mae v : (15)
(x,res {O 1}m-a) .
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—; i S A i e & it L it i) ko
ing the condition

(\~
. . |
b . \

Els the s X s unit matrix.

i
'

",‘ (, L

Theorem 3 is a generalization of Theorem 1 and gives a method recurrent in s for calculatlng 0m-(s+1)

- The function (,o(s“)(X/ om-8y g constructed from qz(s)(x/zm S) and o(s) found by Theorem 3 in the following

! 1100y ,0001\ /01401
| _ 0100} fotoo 0100
; 1= %pe=too0to0lttoo0[Tl1000
| 0001 0odo 0010

that if for the initial function L = 6, then after the optimal transformatlon of arguments L = 2,

6. Let us consider the question of the realization of partially-defined functions in p-valued logic.

: First of all we construct a system of functions analogous to the Haar system (3), which it would be useful to
boutilize as the basis for the realization of functions in p-valued log(c We construct the functions K| l(x/pm) {n the

1 following way:

\ L o _ S’ﬁ".’.!-_".. o
N g m-(oﬂ) O ] Lv - 7 . ; :
i v S0,y " i
E : S0 : ' P : S ;
| where o™ r(‘)‘;,t = ) and: B(')(t("’ g = min I)‘(" (1.'), o,,,_, = c.m_,, o( 0) = (ym_b T:)O;))t=‘-'foptr°m =By,
: O 0) ‘ L
' ,1 /” . \,\. . E R ;

L way: ) . : [
<P<’f')(0(’)¥)=¢(” (2"‘"’ ) ’ X=(Io, .‘C],’...',zn."‘-‘;l). P : . ’. 1 , , ’
. v S & . m-—1 Ve { ' ”“'!! Z ' ‘ i o
I +1) e 81 =Z m—-t.—,)., L b ‘i'__“., :
N = ) ¢e(x)  (a= Y2 Cnodihe
i [ . =0 el e
Theorem 3 and (17) gives a method recurrent ins for finding the optimal linear transform Gopt = ol. : ' o
Fur the previous example Q‘Tables 1, 2) Table 3 presents - . IS PR AT T ",_:_ o
i ‘P‘”( m) = g, (20, 71, 22, 2, FOE 5 oY G “’m. @R W =9 =0nBVw., " -
From Table 3 it follows that 1-' opt = 0} . By Theorem 3 we have - .. '
, SN /0010y £1000\ 0004\
owafot0] a[0t00) fo100 0100] - : |
L "100" P=\t1000/'l0001)/={4000/" '
0001 0010/ 0010/
I‘urther, “Table 3 presents ¢(2)(x/8) constructed by formula (1‘7) and for it @ ( )(x/4) and B('” (r) 'r(” (1).

»

One adder modulo 2 is reqmred to reah7e the block agpt. Table 4 presents the mmal partlally—defmed func- .
tion yp,, the function Yaoptr their optimal completions R (7)1' R(gz‘ X (cf. point 3) and their expansion coefflcu:nts in

the basis {t,{)(x/16)} in the following order: Co(™, ¢,{, ¢, ¢, ¢, ™, ....c. From Table 4 1t follows o









Thﬁis,points out thc lltili[y ot “smg tiie S)’Sl_t‘-lll 11\, x\_ul\.yp-- ™ Udots LU L‘. AN LLLA LIV UL BUIAC LAV wd }
logie.’ (We note that the Haar system is a particufar case of the system { Mf_’)z‘(x/pm)}_for_ p=2)

YT

7. Let us now éoéglde'r‘ he question ofthe tealization of partfally-defined functions of p-valued loglc using
~ series expansions (n the basl:{M"‘r‘}g(x/pm)}. el : T e : :

We shall complete a prescribed partially-defined function ¢ _ in p-valued logic, with fixed method o of
+ numbering the arguments, by analogy to functions of binary logic. We shall denote the number of nonzero coeffi-

cients of the form C(j)l (r=2,2....,p~1 §=1,2...,ph by L). Then0=L; =< pl(p~1). The class K-y of
N r, ce

R completions minimizing Lpy-,, Is composed of functions obtained by the completion of ¢, for which, if R‘(’m")

€ Kppy.o then the number of vectors (xg, Xy +4 4 Xm-) Such that
. ‘\ N )
‘ -1 (m=1) '
: ((ym ) (xo,z;.~...,xm..z,0)==1fo (10. Ziyee ey Imagy 1)
== Re(zo, 2y Tmen P~ 1)y

\,

(m
B

] AN

is maximal over all completlons of ®g+ The class Ky 3 © K-y for which Ly~ I$ minimized for the Lp., attaln

previously is composed of functions for which, if R((jm\-z) € K- then the number of vectors (Xes Xgp ++ 13 Xm-g) SUC

that | - ‘ p e
/':L;;l . '  \ | 2= ; 2)\ ' et ‘ / :
o (m_z) 8 X (m— { g
LRU (»To.;‘l‘lw‘-...xm—a,0.8)=ZRq (zo,xl,...‘.zm—s, 1,3). "
v 820 ' yrx0 Y : ) s "'
| p-1 A o T E ;
. , ‘=...=2R§m 2)(:t'o,:c,,...,:a:.,..;,p--—1,3), —_— (
\ 5==0 S . .

Is maximal over all completions of the class K,...,. The classes Km-3s DKm-¢ D ... D K by analogy. The functi
p m-1 $28m-¢ 2.2 y 34
Ro(") in the class K, Is taken as the completion of the initial function Pg- :

To find an optimal method of numbering the arguments we shall solve the more general problem, {n which
the class Z(P) of matrices under consideration is composed of all matrices ¢ nondegenerate over the field of resi
dues modulo p. The elements of o are {0, 1, ..., p—1} and, correspondingly, the device realizing premultiplica
by o of the vector X = (xo Xy, ..., Xm-,) is realized by adders modulo p. '

The class Efj’li = B of matrices o minimizing Ly, is constructed ihﬁi‘gfbllowlng way, We fix o ¢
E(P) arbitrarily and from the ¢y obtained we construct the system of characteristic ¢y, o(X).(t = 0,1,...,p—1) b

-analogy to (9). Further we construct the function. By (1), which will be the generalization ‘of the cross correlatior
function (cf. (10)) to the p-valued case . . . . I Lo K

Byt Z :f | . Z ‘ (vp""a(x)m%;al | ;'- \

t.<l1<..‘<f, xe(o.‘l...‘.‘})“”"‘ ': . .‘ o R
X(xe)r)---fptp-e-(xef@.-'@.‘) (mod p). o

p—1

N

Theorem 5. The class E52, is composed of matrices Or(np-)x satisfying the condition _ e

. : s S . . o . 0 ’ '. [ C — [‘ .
, . ', . . ) . , P I T ’ N I
. ! . . . ! 0 o R P S ,!+ EREE ’,“,:, N
% , ' Usle‘fopt =1 |y = SRR
' > 0 By ,

T A gt
where By o(Topt) = min B, ¢ ().
T7(00 ... 0y :
|
|
I
RN !
.
1286 . |
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“r9, M. G. Karpovskii and E. S. Moskalev,

Theorem 5 is a generauzanon of Theorem 1 to the case of p-valued logic.

The classes, 8,53’_’2 =g 2...28 ® minlmlzlng Lm-,. Lm.,. Cv Ll. can be found by analogy to tha

= "‘. for the case p = 2 (cf po{nt 5)

In conclusion the authors express their appreciatlon to V.I. Varshavskil and the members of the laboratory of
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