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Abstract—In recent years parallel computing has been widely
employed for both science research and commercial applications.
For parallel systems such as many-core or computer clusters, it
is inevitable to have one or more computing node failures due to
random errors or injected attacks. Usually a diagnosis mechanism
is able to locate several defective nodes through a number of tests
and the analysis of those test signatures (syndromes). Although
this covers the cases caused by random errors, sophisticated
attacks are still able to manipulate the outputs of each node,
so that they will be masked and pass the diagnosis. Therefore
in this paper we propose a hybrid self-diagnosis mechanism. We
adopt a new type of analysis with the linear syndromes, which are
able to locate up to a certain number of defective nodes caused
by random errors. In addition to this, we introduce a new type of
robust analysis of the non-linear syndromes, which is capable of
detecting the attacks undetectable by the linear syndromes at a
probability close to one. Moreover, since this hybrid self-diagnosis
mechanism is on the data level which makes little distinction
among different operating systems and programming languages,
it can be migrated onto any other platforms conveniently.

Index terms — self-diagnosis, error locating, error de-
tection, attack detection, OLSC, robust codes, coding theory,
parallel computing, linearity, nonlinearity.

I. INTRODUCTION
The speed of microprocessors has increased rapidly from

the mid 1980s to the early 2000s at a growth of 50% per year.
However, from then on the growth has decreased to less than
20% per year due to the limitation of clock frequency and
the transistor integration [1]. Therefore, instead of building
faster single processors, assembling multi-processor parallel
systems has become a mainstream solution. It also yields a
better performance on power consumption and heat generation.
This solution is ubiquitous in the modern computing realm
from smart phones, to multi-core CPUs and GPUs, and to large
computing clusters such as the recent headline maker Google
AlphaGo which uses parallel computing in the implementation
and training of its deep neural network.

Parallel computing breaks down a task to many indepen-
dent threads for its processors which operate concurrently.
Since parallel computing involves many cores or processors
(nodes), it is unavoidable to have one or more erroneous nodes
due to random errors or even injected attacks. Thus it is crucial
to have a self-diagnosis system to identify the errors.

The “straightforward” method for self-diagnosis consists
of a test pattern generator and stored reference values of all
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correct test results. During a test session it applies a test to
all N computing nodes and compare their outputs with the
reference values one by one to locate the defective nodes.

However for the most common cases, the number of de-
fective nodes are much smaller than the total number of nodes
for any given test session. Therefore advanced self-diagnosis
would compress the reference values of all N correct outputs
into reference signatures (syndromes) of a much smaller size.
The reference signatures are computed by multiplying the N
reference values by an (A × N) check matrix M of an m-
error correcting code (ECC) with Hamming distance 2m+ 1.
During a test session, the self-diagnosis system takes the test
outputs and re-computes the syndromes to be compared with
the reference syndromes. The inequality of the two syndromes
indicates the existence of errors. Then the error locating
algorithm of the ECC can locate up to m defective nodes.
If A� N , the compression will result in a noticeable saving
in storage space for reference values.

However, the self-diagnosis system based on this type of
linear data compression has several limitations. Firstly if there
are more than 2m + 1 defective nodes, it is possible, though
not highly probable, that they will not even be detected. More
dangerously, if an attacker knows the matrix M , then a set
of carefully selected errors can be injected to the nodes, so
that they will always pass the syndrome analysis. This type of
attack can succeed with probability of 100%.

Therefore in this paper we propose a new hybrid self-
diagnosis mechanism. It consists of analyses of both linear and
non-linear syndromes. The major contributions of the diagnosis
mechanism are:

• It proposes a new type of syndromes linearly compressed
from the test results. Its analysis algorithm costs much
less time and storage space then other methods such
as the straightforward method and Reed-Solomon codes
based method;

• It combines with the linear syndrome a non-linear syn-
drome, by which it is able to detect the errors invisible
to the linear syndromes.

The rest of the paper is organized as follows. Sections
II establishes a model of parallel computing system to help
demonstrate the proposed mechanism. Section III introduces
the analysis algorithm on the linearly compressed syndromes.
Section IV explains the vulnerability of this analysis. Section
V is on the analysis of the non-linearly compressed syndrome
to detect attacks. Section VI describes the work flow of the
entire hybrid mechanism and summarizes its advantages.



II. A MODEL OF PARALLEL COMPUTING SYSTEM
Parallel computing systems can scale variously from two

computing nodes to thousands of nodes. The world’s fastest
supercomputer Tianhe-2 has as many as 16,000 nodes.

For the sake of illustration and analysis, in this paper
we take a 25-node parallel computing system named PCS-25
shown in Fig. 1 as the study example.

Fig. 1: A 25-node parallel computing system processing up to 25
tasks simultaneously. All the outputs of either computing projects or
tests will be sent back to the Master for futher processing.

Our proposed hybrid self-diagnosis procedure is as follows:
• The Master’s diagnosis system will generate a test for all

the nodes to compute. The returned results are possibly
affected by random errors or injected attacks;

• The test results of all the nodes are linearly compressed
into A syndromes (linear syndromes) to be analyzed for
locating up to m defective nodes;

• The test results are also non-linearly compressed into
a one digit syndrome (non-linear syndrome) to verify if
there are more faulty nodes, or even worse - attacks that
the linear analysis fails to discover.

Fig. 2: The proposed hybrid self-diagnosis can be launched during
any idle periods. It is able to locate up to m defective nodes caused by
random errors with a probability of 100%, and detect hidden attacks
with a probability close to 100%.

To help describe and evaluate this hybrid self-diagnosis
mechanism, we introduce the following notations:

• N : the total number of computing nodes;
• m: the number of nodes distorted by random errors;
• e: the random errors or injected attacks to all the N

nodes: e = (e0, e1, · · · , eN−1);

• ṽ: the N -digit test outputs probably distorted by errors
or attacks such that: ṽ = (ṽ0, · · · , ṽN−1) = v⊕e, where
v is the reference outputs and ⊕ is the bitwise XOR;

• A: the number of components in a linear syndrome;
• SA: the A-digit linear reference syndrome vector;
• Sω: the one digit non-linear reference syndrome;
• b: the number of bits of each node’s output.
In order to study the most general cases in parallel systems,

we base our research on two assumptions:
1) For random errors, the most probable cases are m� N .

The cases when m is large is much less probable;
2) For attacks, an attacker is able to manipulate the outputs

of any number of nodes but not the timing of tests.

III. DIAGNOSIS WITH LINEAR SYNDROMES FOR
DEFECTIVE NODES LOCATING

In this section we will propose our diagnosis for the most
common case that the outputs of m nodes (m � N ) in the
parallel computing system are distorted by random errors.

This diagnosis is based on the syndromes compressed by
Orthogonal Latin Squares (OLS). It is modified from Hsiao’s
Orthogonal Latin Square Codes (OLSCs) [2].

A. Hsiao’s Binary OLSCs
An OLSC code has N = q2 information bits and A =

2mq redundant (parity) bits, where q is an integer and m is
the number of errors to be corrected. This makes the overall
length of an OLSC codeword (N + A) bits. The OLSCs use
majority voting to correct the m errors in the N information
bits only, and leave the A redundant bits uncorrected. It uses
more redundant bits than other codes such as BCH or Reed-
Solomon, but achieves a much lower decoding complexity [3].

The (2mq× (q2+2mq)) binary check matrix H = {Hj,i}
for an m-error correcting OLSC code is as follows.

H =

∣∣∣∣∣∣∣∣
M0

M1 I2mq

...
M2m−1

∣∣∣∣∣∣∣∣
The q×q2 sub-matrices M0, · · · ,M2m−1 are derived from

Orthogonal Latin Squares of size q× q and I2mq is a (2mq×
2mq) identity matrix. Thus the first N columns in M have 2m
ones each and the last 2mq columns have only 1 one each.

Also, if λ denotes the maximum number of ones in
common between any two columns of H , then λ = 1 in H .

Denote an A-bit binary syndrome vector S = H · ṽ where
S = (S0, S1, · · · , SA−1), ṽ as the distorted (N + A)-bit
codeword and ṽ = v ⊕ e = (ṽ0, ṽ1, · · · , ṽi, · · · , ṽN+A−1),
ṽi ∈ GF (2), where v is the legal codeword, and e is the
error vector. By the structure of H , any information bit
ṽi ∈ {ṽ0, · · · , ṽN−1} participates in the computation of 2m
corresponding syndromes {Sk0

, · · · , Sk2m−1
} indexed by:

Hk0,i = Hk1,i = · · · = Hk2m−1,i = 1.

If E = {Sj |Sj = 1}, Sj ∈ {0, Sk0 , · · · , Sk2m−1}. Then:

ei = majority{0, Sk0
, Sk1

, · · · , Sk2m−1
}

where the majority voting function is defined as:

majority{0, Sk0
, · · · , Sk2m−1

} =
{
1, if |E| ≥ m+ 1;

0, else.



The principle of majority voting can be formulated as the
following: for m errors (or less), when one error distorts a
given bit, because λ = 1, the remaining (m− 1) errors can at
most affect (m− 1) out of (2m) syndrome bits corresponding
to the given bit. Therefore, still a majority of (m+1) syndrome
bits will indicate the error’s magnitude in the given bit.

B. Analysis of Non-binary OLS-based Linear Syndromes
Inspired by binary OLSCs, we propose a new type of

syndromes for defective nodes locating. These syndromes are
linearly compressed from test results by Orthogonal Latin
Square (OLS) matrices. However, we have two major mod-
ifications from the OLSCs: 1) error locating with reference
syndromes and without redundant digits; 2) majority voting
for non-binary codewords.

For our proposed diagnosis, since reference syndromes are
stored to verify the correctness of the test outputs, then there
is no need of the redundant digits which are designed for the
same reason. Therefore our proposed linear compression will
only use the (A×N) sub-matrix M from H:

M =

∣∣∣∣∣∣∣∣
M0

M1

...
M2m−1

∣∣∣∣∣∣∣∣ . (1)

OLSCs’ majority voting algorithm is commonly used for
binary codewords. It has been applied to non-binary codewords
in the way of interleaved decoding [4], whose essence is
still concurrent binary majority voting. However here we will
generalize majority voting to non-binary fields.

Definition 3.1 For a set X with t non-binary elements and
X = {x0, x1, · · · , xt−1}, if Ek = {xj |xj = xk}, xj , xk ∈ X ,
then the majority voting function is defined as follows:

majority{x0, · · · , xt−1} =
{
xk, if |Ek| ≥ dt/2e;
0, else.

Note: an efficient algorithm searching for Ek can be found in
[5] with the time complexity O(t).

By this definition, for a non-binary N -digit codeword v =
(v0, v1, · · · , vN−1) whose check matrix is an (A × N) OLS
matrix M , if v is distorted by e = (e0, e1, · · · , eN−1) into ṽ,
such that ṽ = v ⊕ e, where vi, ei, ṽi ∈ GF (2b), b ≥ 1, and if
the syndrome vector is S = M · ṽ, where S = (S0, S1, · · · ,
SA−1), and Si ∈ GF (2b), then base on S:

ei = majority(0, Sk0
, Sk1

, · · · , Sk2m−1
).

Similarly (Sk0 , · · · , Sk2m−1) are indexed by the condition:

Mk0,i =Mk1,i = · · · =Mk2m−1,i = 1.

With these two modifications, we have the following the-
orem to locate defective nodes.

Theorem 3.1: For a b-bit parallel computing system with
N nodes, of which m nodes are distorted by random errors,
these the m nodes can be located by the following procedure:

1) The self-diagnosis system has in storage a test and a refer-
ence syndrome SA =M ·v, where M is an (A×N) binary
OLS matrix and v = (v0, v1, · · · , vN−1), vi ∈ GF (2b) is
the the correct N -digit output;

2) During any idle or diagnosis period, the test is applied to
all the N nodes and the testing results are denoted by an
N -digit vector ṽ = (ṽ0, ṽ1, · · · , ṽN−1);

3) ṽ is then compressed to an A-digit syndrome S̃A =M · ṽ;
4) The non-binary majority voting based on the syndrome

difference S4 = S̃A ⊕ SA locates all m defective nodes.

C. An Example with the PCS-25 System
Example 3.1: In the PCS-25 system, nodes 7 and 11 are

distorted by random errors. The size of each node’s output is
b = 3 bits. The self-diagnosis system is able to locate up to 2
defective nodes (m = 2) based on S4. It has in storage a test
and its reference syndrome:

SA = (110, 100, 110, 100, 001, 111, 011, 110, 100,

111, 110, 111, 010, 100, 110, 111, 001, 101, 000, 010)

SA = M · v is computed based on the correct result v of
this test and an (A × N) OLS matrix M , where N = q2 =
25, A = 2mq = 20:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 M0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
6 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 M2

8 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
9 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
10 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0
11 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
12 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 M2

13 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0
14 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0
15 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
16 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0
17 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 M3

18 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0
19 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

During a test session, the self-diagnosis system applies the
test to PCS-25, and has the returned 25-digit output:

ṽ = (011, 100, 101, 100, 000, 001, 011,

110, 001, 011, 110, 101, 101, 100, 001, 010, 010,

011, 010, 101, 001, 110, 001, 111, 000)

To locate the defective nodes, firstly the self-diagnosis
system compresses the outputs into syndromes:

S̃A =M · ṽ = (110, 110, 011, 100, 001, 111, 110, 100, 100,

111, 011, 111, 010, 100, 100, 111, 001, 000, 010, 010)

Then it is compared with the stored reference syndrome:

S4 = (S40, · · · , S419) = S̃A ⊕ SA = (000, 010, 101,

000, 000, 000, 101, 010, 000, 000, 101,

000, 000, 000, 010, 000, 000, 101, 010, 000)

Then the linear test analyzer majority votes for each output
to locate the errors. For example, for the error e0 on ṽ0, since
M0,0 =M5,0 =M10,0 =M15,0 = 1, by 4) in Theorem 3.1:

e0 = majority{000, S40, S45, S410, S415}
= majority{000, 000, 000, 101, 000} = (000).

For e7 on ṽ7, since M1,7 =M6,7 =M13,7 =M15,7 = 1:

e7 = majority{000, S41, S47, S414, S418}
= majority{000, 010, 010, 010, 010} = (010) 6= (000).

In the same way we have e11 = (101), and e0 = · · · =
e24 = (000). Thus the defective nodes are node 7 and 11. �



D. An Alternative Test Scheme for m = 1
For an arbitrary m� N , a corresponding OLS matrix can

be generated. For example, to locate single defective nodes
(m = 1) in the PCS-25 system, M ’s dimensions would be
N = q2 = 25, A = 2mq = 10. In this case it is the sub-matrix
consisting of the first 10 rows of the M in Example 3.1.

For m = 1, besides using OLS matrix for M , we can also
use binary Hamming check matrices [6] as an alternative. The
advantage of doing so is that it can result in a shorter syndrome
vector. For example, if N = 25, A = dlog2(N + 1)e = 5:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1
2 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
3 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Example 3.2: In the PCS-25 system, node 24 is distorted
by an error of (101). The stored reference syndrome for a
given test is SA = (000, 000, 000, 000, 000). After the test,
the returned outputs are: ṽ = (000, 000, · · · , 000, 101). And
so S̃A =M ·ṽ = (101, 101, 000, 000, 101) = S4. Since S4 =
(101) · column24, it is easy to locate the error in node 24.

We know that m = 1 is a special case that both OLS and
Hamming matrices apply. For m > 1 only OLS matrices do.

E. Evaluation of the Proposed Linear Diagnosis
It has been stated in the Introduction that this type of

diagnosis saves storage spaces by storing reference values only.
It also has a higher error locating speed than the other methods
based on Reed-Solomon codes or BCH codes. We will evaluate
our proposed linear tests in these two aspects.

1) Saving of Storage: Based on the assumption 1) in Sec-
tion II, in a parallel system m� N . Also since A = 2mq =
2m
√
N , storing the compressed A-digit syndrome could result

in a notable saving over the straightforward method, which
stores all the N -digit reference values of all outputs for one-
by-one comparisons.

The figure below shows the storage space needed by the
straightforward method and by our proposed diagnosis with
compressed reference values:

Fig. 3: Storage space needed for reference values for diagnosis on
parallem systems to locate single and double defective nodes. The
number of nodes ranges from 16 to 16000 and each node has a 64-
bit output (b = 64). Totally 1 million tests are run. The comparison
is made between the straightforward method of storing all N outputs
as reference values for each test, and the proposed diagnosis storing
only the linear syndromes by OLS or Hamming matrices.

As the number of nodes increases, the saving can be more
prominent. For example, to run 1 million tests for a 64-bit
16,000-node parallel system with one or two defective nodes,
the straightforward method requires 120 GigaBytes (GB) of
space for the reference value. However, our proposed self-
diagnosis system only needs 3.8GB for double defective nodes
locating, and 104MB for single node locating.

2) Saving of Time: A self-diagnosis system with syndromes
compressed by Reed-Solomon codes (RS) was proposed in
[7]. In this way it only needs to store A = 2m reference
syndromes. However, RS’ error locating algorithm has a much
higher complexity than that of the majority voting. Even the
efficient algorithm involves extensive finite field computations
over GF (2b) [8]. For computer systems where b is 32 or 64,
it will result in a much larger latency.

The figure below shows the time cost of detection of m =
2 defective nodes in the PCS-25 system by the OLS-based
majority voting and the efficient RS decoding algorithm.

Fig. 4: Time cost on locating 2 defective nodes in the PCS-25
system by RS-based and the OLS-based syndrome compressions and
analyses. The outputs’ size b of a node ranges from 3 to 32-bit. The
time cost of OLS-based syndrome compression and analysis under
b = 3 is set to 1 as the baseline.

In Fig 4 when the nodes’ output size b increases, the time
cost difference between RS’ decoding and majority voting
increases drastically. Since during a short idle or test period,
the self-diagnosis system needs to finish thousands or millions
of tests, the considerable latency of RS decoding hinders it.

IV. ATTACKS THAT CAN NEVER BE DETECTED BY
LINEAR SYNDROMES

In the previous section, Theorem 3.1 has provided a con-
venient algorithm of locating up to m defective nodes in a
parallel system. However by the assumption 2) in Section II, an
attacker can inject errors to any number of nodes. In addition, if
he or she has known M , the attacker can inject a type of errors
that will never be detected by the proposed linear diagnosis.

A. The Design of Invisible Attacks
According to step 4) in Theorem 3.1, the defective nodes

locating is based on the syndrome difference:

S4 = S̃A ⊕ SA.

If S̃A = SA then S4 = S̃A ⊕ SA = 0. It indicates that
there is no error. However, since:

S̃A =M · ṽ; ṽ = v ⊕ e; SA =M · v;



We have:

S̃A =M · (v ⊕ e) = (M · v)⊕ (M · e)
= SA ⊕ (M · e).

If an attacker injects a carefully selected error e such that:

M · e = 0; (e 6= 0) (2)

Then: S̃A = SA → S4 = S̃A ⊕ SA = 0.
Due to the self-diagnosis system’s linearity, it will report

no error when e 6= 0. Actually any e satisfies (2) will never
be detected by the algorithm described in Theorem 3.1.

In fact, this is the hazard for all self-diagnosis systems
based on linear compression of syndromes.

B. An Example of an Invisible Attack to the Linear Diagnosis
We will take the PCS-25 as an example to demonstrate how

a successful attack makes itself invisible to the linear tests.
Example 4.1: Similar to Example 3.1, in the PCS-25

system, the size of each node’s output is b = 3 bits. The
self-diagnosis system is able to locate up to 2 defective nodes
(m = 2). It has in storage a test session and its reference
syndrome SA which is the same as in Example 3.1:

SA = (110, 100, 110, 100, 001, 111, 011, 110, 100,

111, 110, 111, 010, 100, 110, 111, 001, 101, 000, 010)

SA = M · v is computed based on the same M and the
correct result v of this test:

v = (011, 100, 101, 100, 000, 001, 011,

100, 001, 011, 110, 000, 101, 100, 001, 010, 010,

011, 010, 101, 001, 110, 001, 111, 000)

Now an attacker has acquired M and computed e by (2):

e = (111, 000, 000, 000, 111, 000, 000,

111, 111, 000, 000, 000, 111, 000, 111, 000, 000,

000, 000, 000, 111, 000, 000, 111, 000).

The distorted outputs of PCS-25 will then be:

ṽ = v ⊕ e = (100, 100, 101, 100, 111, 001, 011,

011, 110, 011, 110, 000, 010, 100, 110, 010, 010,

011, 010, 101, 110, 110, 001, 000, 000)

As S̃A is computed, it will be the same as SA:

S̃A =M · ṽ = (110, 100, 110, 100, 001, 111,

011, 110, 100, 111, 110, 111, 010, 100,

110, 111, 001, 101, 000, 010)

= SA.

Since S4 = S̃A ⊕ SA = 0, this error will not be seen. �
Remark 4.1: For a b-bit parallel computing system with

N nodes which employs the self-diagnosis based on the linear
compression of syndromes by an (A×N) matrix M , then there
are (2b)N−R errors of this type that can never be detected.
R ≤ A is the rank of M .

Therefore, linear diagnosis is not sufficient anymore. We
will need a hybrid self-diagnosis system with both linear and
non-linear diagnosis in order to achieve both reliability and
security.

V. NON-LINEAR TESTS DETECTING INVISIBLE ATTACKS
In response to the invisible attacks, we will design a

diagnosis based on non-linear syndromes.
Definition 5.1 C ⊆ GF (2N ) is the set of N -bit codewords

and M is an (A×N) matrix. C is defined by C = {c|M ·c =
0}. Set Kd is called the Kernel of C if:

Kd = {e|e⊕ c ∈ C, ∀c ∈ C}.

If C is linear, then Kd = C.
For the cases in this paper, Kernel Kd is the set of all

attacks that satisfy (2) and mask themselves in all diagnosis by
majority voting. As stated in Remark 4.1, the linear diagnosis
have a large invisible error set Kd.

Therefore in addition to the linear syndromes, we will
introduce a new type of syndromes non-linearly compressed
by Robust codes whose Kernel Kd = 0 [9]. Thus no error is
able to mask itself for all diagnoses. Robust codes are often
used in cryptosystems for its high security attribution [10].

The Robust Code compresses the reference test results into
a one-digit reference syndrome by its encoding equation [11]:

Sω =


⊕(N−2)/2

i=0 (v2i · v2i+1), N is even;

v3N−1 ⊕
[⊕(N−3)/2

i=0 (v2i · v2i+1)
]
, N is odd.

(3)

(Note: · is the multiplication in finite fields. ⊕ is the bitwise
XOR.

⊕
is the XOR sum in the sub and super scripts’ range.)

This precomputed Sω will serve as the non-linear reference
syndrome to verify if ṽ = v when S̃A = SA.

A. Attack Detection Probability by Sω

We will firstly study the error masking equation for Sω

[12]. We denote the Robust non-linear syndrome computed
from the test results as S̃ω , and the syndrome difference
between S̃ω and reference Sω as S♦. By assumption 2) in
Section II, the attacker can manipulate the outputs of any
number of nodes. Therefore taking PCS-25 as an example,
for a given test, in order to have S♦ = S̃ω ⊕ Sω = 0:

S̃ω = (ṽ24)
3 ⊕

[
11⊕
i=0

ṽ2i · ṽ2i+1

]
= Sω.

Since ṽi = vi ⊕ ei,

(v24⊕e24)3⊕

[
11⊕
i=0

[(v2i ⊕ e2i) · (v2i+1 ⊕ e2i+1)]

]
= Sω. (4)

Substituting (3) into (4), the error masking equation is:

(v224 · e24)⊕ (e224 · v24)⊕

[
11⊕
i=0

[(v2i · e2i+1)⊕ (v2i+1 · e2i)]

]

=

[
11⊕
i=0

(e2i · e2i+1)

]
⊕ e324.

To make a most probable attack satisfying the error mask-
ing equation, it would be making e0 = e1 = · · · = e23 = 0,
and e24 6= 0. Then the above equation becomes:

(v224 · e24)⊕ (v24 · e224)⊕ e324 = 0

For any given e24, v24 has at most two solutions out of 2b
possible values. And sometimes no solution can be found. Also



by Assumption 2) in Section II, the attacker has no control of
the timing of the tests, therefore he/she has to take a guess
for v among all possibilities. If vi ∈ GF (2b), assuming all
the outputs of vi are equiprobable and denoting QATK as the
probability of a successful attack that satisfies (4), then:

QATK =
2

2b
= 2−b+1. (5)

For a parallel computing system of b = 32, QATK =
4.65 × 10−10. Meaning for a given test, the attacker has
less than one in a billion chance to inject an invisible attack
successfully. Moreover, since for the Robust codes Kd = 0,
there is no error able to mask itself for all ṽ except e = 0.
Hence even if an injected error passes one diagnosis session,
the next few diagnoses will definitely detect it [13]. A 64-bit
parallel computing system will be even much more secure.

B. Detecting the Invisible Error from Example 4.1
Taking Example 4.1’s parameters, that by the correct v,

Sω = (111). While the injected error which has made S4 =
S̃A ⊕ SA = 0, the non-linear diagnosis computes:

S♦ = S̃ω ⊕ Sω = (110)⊕ (111) 6= 0

Thus the invisible attack is detected.

C. Evaluation of the Hybrid Diagnosis Mechanism
Based on the system chart Fig. 2, the hybrid self-diagnosis

system consisting of diagnosis with both linear and non-linear
syndromes can be evaluated at immensely severe situations:

An attacker knows M and even the error masking equation
(4), and is able to inject any errors to the outputs of all nodes.
However the attacker does not know the timing of the tests
thus he/she is unable to predict the correct output for each test
session. Millions of tests will be run during a diagnosis period.

Under this situation, denoting PATK = 1 − QATK as
the attack detection probability, Fig. 5 shows the experimental
data of PATK for 1 billion test sessions. Invisible attacks are
injected during every session to the PSC-25 system. However
in our experiments, when b ≥ 16, PATK is already close to
1. When b = 32 and b = 64, there was not a single attack
missed by the hybrid diagnosis system among the 1 billion
tests. Besides, this self-diagnosis system is capable of locating
up to m defective nodes at a probability of exactly 1, protecting
the system from random errors too.

Fig. 5: Under 1 billion tests on PCS-25, the probability PATK of
successfully detecting invisible attacks. The attacks are injected in
every test session. When the computing nodes’ output b ≥ 32 bits,
this hybrid system detected all the invisible attacks.

VI. CONCLUSION
In this paper we propose for parallel computing systems

a hybrid self-diagnosis mechanism providing both reliability
and security against random errors and injected attacks.

The diagnoses are based on analyses with linear and non-
linear syndromes. The linear syndromes are compressed from
test results by a selected OLS matrix M , while the non-linear
syndrome is compressed by Robust Code’s encoding equation.
They are to be compared with the stored reference linear and
non-linear syndromes. S4 and S♦ stand for the differences
respectively. The self-diagnosis uses majority voting on S4 to
locate up to m defective nodes, where m is determined by M .
And if an attacker injects invisible errors making S4 = 0 by
(2), the diagnosis with S♦ will still detect it.

In conclusion, if S4 6= 0 and the majority voting is able to
locate the errors, then there are up to m defective nodes; if not
able then more than m defective nodes. If S4 = 0, S♦ 6= 0,
then a probable attack is reported. If S4 = S♦ = 0, then
there is no error. For a parallel system with b-bit outputs, the
probability QATK of an attack making S4 = S♦ = 0 is at
most 2−b+1. When b ≥ 32, which is the case for modern
processors, QATK → 0. And even if an attack happens to be
so, since for Robust codes Kd = 0, it will be detected by
another diagnosis session without exception.

Besides serving parallel computing systems with both
reliability and security, since this mechanism is on the data
level, it can be migrated to any platforms conveniently, such
as distributed computing and cloud storage systems.
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