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The traveling salesman problem in the space Z} of all n-dimensional binary
vectors can be formulated as follows. |

Given: A set C(n, M) of M n-dimensional vectors over GF(2) {M points in
zZ2).

Find: A Hamiltonian circuit for C{n, M) of minimum Hamming length, i.e.,
a cycle with minimum sum of Hamming distances between connected points
(henceforth called minimal cycle).

This problem is encountered in various situations related to the design and
testing of computer hardware. In contrast with "unrestricted” traveling sales-
man problem, the length of the minimal cycle in Z} is always upperbounded

by that for the *worst” possible configuration of M points. Hence we come to
the following variational problem.

Problem: Kor any number M of points in Z} find the function L(n, M)
defined as follows:

M
Lin, M) = max min dlz:}, Zi1(mo \ 1
M) = et P(G(n.MJ); (@i it (moass) )
where z3, . . . , zp are the points comprising a binary code C(n, M),

d(x,y) is the Hamming distance between points z and y, P(C(n, M)) is the set
of all possible permutations of the codewords, and the maximum is taken over
the set of all possible binary codes of size M and dimension .

The problem is still open, but partial results are presented below.

Lemma 1. For given n, L(n, M) is 2 monotonically norn-decreasing function
of M.

Theorem 1. For any M, such that 2"~ < M <27,
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L(n,M)=2". | (2)
Theorem 2. {(Lower bound) For any n and M,

L{n, M) > d{u, M)-M, (3)

where d{(n, M) is the distance of the best code of size M, i.e., of the code of
length n with the largest minimum distance.

Conjecture: The best codes are the worst configurations for any given n and
M.

The conjecture is known to be true for M > 271 (see Theorem 1) and
for some other cases considered below. However, it 1s not & trivial question,
whether (3) is attainable even in the cases when the best codes are the worst
configuration. Indeed, 1t is easily seen that, in general, it is impossible to build a
Hamiltonian circuit for a code using only edges of length equal to the minimum
distance. However, as we will Shﬂw in the next theorem, this is always possible
for a cyclic code.

Theorem 3. The length I(C) of a minimal cycle for any cyclic code C =
C(n, 2%, d) with distance d is equal:

| —
1

I(C) = d-2*. (4)
Theorem 4. (Upper bound). |
%'ﬁ‘f_ﬂl, for even M

L(n, M) < (5)

(M +1), forodd M.

The upper bound (5) is attainable for small M (M < n+1), when the worst
configurations are equidistant codes, and all Hamiltonian circuits are minimal
cycles.

A family of such codes can be obtained by deleting the zero column in
a binary (2% x 2*) Hadamard matrix and concatenating the obtained code
with iiself m times, These equidistant codes have the following parameters:
n=m{2* — 1), M = 2%, d = m-25~1, where m = 1,2,.... Then L{n, M) =
m-22%-1 = dM = MM;T%! thereby satisfying lower bounds (3) and upper bournd
(5). Another family of equidistant (generally nonlinear) codes can be described




as follows. Let each bit be covered by a different list of M /2 codewords. Then
n = (M /2 ), d = ‘;j !22 ,). By concatenating such a code with itself we obtain

codes with parameters: n = m(}; 72 ),d = m(3 J2- 2 ;). Codes in both families

have even numbers of codewords. Codes with odd M that satisfy both (3) and
(5) can be obtained from those codes by deleting one codeword.

For large M (logM = ©(n)) the gap between (3) and (5) becomes too large,
which calls for better upper bounds.

Theorem 5. (Improved upper bound). For any M > 4,7n > 3,

M Z
L(n, M) < zn+2 Y d(m, m). (6)

m=5h

Using the Hamming upper bound dgy(n, M) for the minimum distance

logos M

n

de(n, M) = E'H.h_'l(l

),

where h=' is the inverse to h(z) = —zlogaz — (1 — z)log,(1 — z), performing
integration, instead of summation, in (19) and taking into account the convexity
of dg{n, M) for approximation, one can obtain:

nM

L{n, M) < 2dg(n, M)(M - 1) n. ~ (7) .

InM
For codes with rates smaller than 1 (R = '—”ﬁLﬂ{ < 1), the ratio of the second
term to the first one is of the order O(n™?).

For the lower bound (3), one can use the Varshamov-Gilbert lower bound

on the minimum distance dyg(n, M) = %d,q (n, M). Thus, the lower and upper
bounds differ in a factor of 4.
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