
New Byte Error Correcting Codes with Simple
Decoding for Reliable Cache Design1

Lake Bu
Reliable Computing Laboratory

Electrical and Computer Engineering
Boston University

Boston, USA
bulake@bu.edu

Mark Karpovsky
Reliable Computing Laboratory

Electrical and Computer Engineering
Boston University

Boston, USA
markkar@bu.edu

Zhen Wang
MathWorks

Boston, USA
zhen.boston@gmail.com

Abstract—Most cache designs support single or double bit-
level error detection and correction in cache lines. However, a
single error may distort a whole byte or even more, resulting
in much higher decoding complexity than that of bit-level
distortions. Thereby this paper proposes a new group testing
based error correcting code (GTB code) for byte-level error
locating and correcting which provides much stronger protection
for memories. This new class of non-binary GTB codes is
generated from binary superimposed codes. Since it is encoded
and decoded by binary matrices, no complicated Galois Field
computations in GF(Q) such as multiplications and inversions are
involved. Comparing with popular non-binary error correcting
codes (ECC) such as Hamming, Reed-Solomon and interleaved
codes, the GTB codes achieves up to 42% reduction of the
decoding complexity (hardware cost × latency) for single-byte
error correction, and up to 98% reduction for double-byte error
correction. Moreover, given the length of codewords (e.g. 512 bits
for cache lines), as the size of each Q-ary digit (byte) increases,
the saving increases.

Index terms—error correction codes; fault tolerance;
cache; superimposed codes; encoding; decoding.

I. INTRODUCTION
The semiconductor industry has witnessed an explosive

growth of the digital memories and portable smart devices,
e.g. fast caches and smart phones. As digital devices become
unprecedentedly widely used in people’s daily life, it becomes
extremely important to protect them against errors.

Error control codes are widely used in various applications
to protect devices and signals against random soft errors [1].
In a memory that is byte-organized or word-organized, each
digit contains b bits. A single error can affect many bits and
it is common that multiple b-bit bytes can be distorted [2],
[3]. Therefore much stronger protection than bit-level error
correction are required for reliable design.

Moreover, for latency/power critical applications such as
cache memories and digital communications in handset de-
vices, lower decoding complexity is indispensable [4]. Gen-
erally speaking, the decoding complexity of non-binary error
correcting codes (ECC) is determined by three factors their
error correcting capability m (number of defected bytes to be
located and corrected), the size of the Galois field GF(Q),
where Q = 2b, and the number of bytes in each codeword N.

1This work is sponsored by the NSF grant CNS 1012910.

As m or Q increases, more computations are needed to
successfully detect, locate and correct potential errors, which
results in higher decoding complexity. Most caches nowadays
have a cache line size of 512 bits. For byte-level error
corrections it could need finite field computations over GF(28),
GF(216) or GF(232) for byte, double-byte or word-level error
corrections respectively. Therefore this paper focuses on single
and double error correction on codewords (cache lines) of
64×8-bit , 32×16-bit, and 16×32-bit information digits.

Based on the above criteria, in this paper we will propose
a new class of a group testing based Q-ary error correcting
codes: GTB codes. The check matrices of GTB codes are
generated from superimposed codes. Since the check matrix is
binary, all computations for the decoding of GTB codes are just
bitwise XORs. As Q increases, the computation complexity
only increases proportionally to b = log2Q, which is the num-
ber of bits of each digit in a codeword. However, popular codes
such as Reed-Solomon codes all involve in computations over
non-binary finite fields GF(Q), whose computation complexity
increases proportionally to at least b2 when field multiplica-
tions and inversions are needed. The GTB codes decoding
latency is two clock cycles, while other non-binary popular
ECCs takes much more. For example, the classical non-
binary error correcting Reed-Solomon (RS) codes are based on
Berlekamp-Massey algorithm and Chien search decoding [5],
[6], takes 2m2+9m+3+N clock cycles for m errors locating
and correction in an N-byte codeword [7]. The GTB codes
trade extra redundancy for low decoding complexity, similar
to Orthogonal Latin Square Codes (OLSCs) [8]. And it even
has lower decoding complexity than that of OLSCs. These are
the most significant advantages of the proposed codes over
other ECC codes.

The rest of the paper is organized as follows. In Section
II, the properties and constructions of superimposed codes
are introduced. In Section III-A we will introduce the pro-
posed GTB codes and their parameters. In III-B the encoding
algorithm will be explained. In Section IV, we will look
into single error correcting GTB codes and then compare it
with classical codes such as non-binary Hamming, RS and
interleaved codes. Section V introduces double-error correcting
GTB code compares it with RS and interleaved codes. GTB
codes in both sections achieve significant savings in decoding.



II. SUPERIMPOSED CODES
Superimposed codes are defined by the following proper-

ties.
Definition 2.1: Let be the element in row i and column j

in a binary matrix M of size A × N . The set of columns of
M is called an m-superimposed code, if for any set T of up to
m columns and any single column h /∈ T , there exists a row
k in the matrix M, for which Mk,h = 1 for column h, and
Mk,j = 0 for all j ∈ T [9], [10].

It follows that, for all the N columns in M, the Boolean
ORs of up to any m columns are different [11].

A. Notations
Superimposed codes can be constructed from conventional

error correcting codes such as Reed-Solomon codes. We define
the notations below:

nq: the length of codewords in a q-ary (nq, kq, dq)q code
Cq .

kq: the number of information digits of codewords in Cq .
dq: the distance between codewords in Cq .
A: the length of codewords in a superimposed code CSI .
N: the size of a superimposed code CSI .
dSI : the distance between codewords of CSI .
m: the number of errors to be corrected. In this paper we

focus on the cases when m = 1 and m = 2.
l: the maximum Hamming weight of rows in M.

B. Construction of Superimposed Codes
Construction 2.1: Let Cq be a (nq, kq, dq)q q-ary Reed-

Solomon code and q is not a power of 2. Each digit of Cq in
GF(q) is represented by a q-bit binary vector with Hamming
weight 1. Construct CSI by substituting every q-ary digit of
codewords in Cq by its corresponding binary vector. The m-
superimposed code CSI has the following parameters [12]:

A = qnq;

N = qkq ;

l = qkq−1; (1)

dSI = 2dq;

m =

⌊
nq − 1

nq − dq

⌋
=

⌊
nq − 1

kq − 1

⌋
.

All the codewords of the m-superimposed code CSI form
the columns of an A×N matrix M. In every row there are l
1’s and every column nq 1’s.

Example 2.1: A ternary Reed-Solomon code has its para-
meters (nq, kq, dq)q = (3, 2, 2)3. The codewords are:

Cq = {(0, 0, 0), (0, 1, 2), (0, 2, 1), (1, 0, 2),
(1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), (2, 2, 2)}.

Suppose 0, 1, 2 are represented by 3-bit binary vectors
(100), (010), (001) respectively. Then the 2-superimposed code
CSI consisting of the following 9 codewords can be listed as
the columns of a 9× 9 matrix M.

The codewords of CSI forms the columns of M with length
A = 9, Hamming distance dSI = 4 and contains the same
number of codewords as Cq . According to (1), m = 2 and the
code CSI is a 2-superimposed code.

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 2 3 4 5 6 7 8 9

1 1 1 1 0 0 0 0 0 0
2 0 0 0 1 1 1 0 0 0
3 0 0 0 0 0 0 1 1 1
4 1 0 0 1 0 0 1 0 0
5 0 1 0 0 1 0 0 1 0
6 0 0 1 0 0 1 0 0 1
7 1 0 0 0 0 1 0 1 0
8 0 0 1 0 1 0 1 0 0
9 0 1 0 1 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
There are other ways to construct superimposed codes.

When m = 1 the columns of a binary Hamming check matrix
can be selected as codewords of a 1-superimposed code. These
constructions lead to simple decoding algorithms of GTB
codes. This will be explained in details in Sections IV and
V.

III. GTB CODES
In this section we will propose a new non-binary linear

code based on check matrix M formed by superimposed codes.
This new class of codes is called Group Testing Based Codes
(GTB codes). Since for a GTB code V, v ∈ V if and only if
M ·v = 0 , where M is a binary check matrix, the encoding and
decoding of GTB codes only involves binary XOR operations.

We define the notations below:
M : the matrix of superimposed codes of size A×N .
Mi,j : the binary element of M in ith row and jth column.
Mi,∗: the ith row of M.
M∗,j : the jth column of M.
N : the number of digits in a (N,K,D)Q GTB codeword.
K: the number of information digits in codewords of V.
R: the number of redundant digits in codewords of V.
b: the number of bits to represent the digits (bytes) of GTB

codewords in GF(Q): b = log2Q.
λ: the maximal number of 1’s in common between any two

columns in M: |M∗,i ·M∗,j | ≤ λ for i, j ∈ 1, 2, ..., N , where
· is bitwise AND [13].

With these notations we will be able to define the new
linear GTB codes and theirs properties.

Definition 3.1: Let M be an A × N binary matrix whose
columns are all codewords of a m-superimposed code. V is
called a GTB code if V = {v|M · v = 0}, v ∈ GF (QN ). M
is the check matrix of V.

When m = 1 this (N,K, 3)Q GTB code V has length
N, information digit length K = N − dlog2Ne, and distance
D = 3 which is able to correct single errors. When m = 2 and
M is constructed by Construction 2.1, this (N,K, 5)Q GTB
code V has length N, information digit length K = N−A+2,
and distance D = 5 which is able to correct double-errors.

Remark 3.1: Since the check matrix M of a GTB code is
a binary matrix, no matter how large Q = 2b is, the syndrome
computation is always as simple as additions in GF (2b)
which are bitwise XORs. No multiplications or inversions
in finite filed GF (Q) are involved in decoding procedures.
This property makes it possible to have dramatic reduce on
hardware and time cost in decoding of GTB codes.

Remark 3.2: For a GTB code V’s check matrix M of size
A × N , since there are A components of a syndrome and
each components involves l additions in GF (2b), the syndrome
computation requires totally A · l additions (XORs). Thus for
a GTB code V with given m and K, to achieve low decoding



complexity, it is critical to minimize A · l. Therefore we will
use A · l as the optimization criterion in the selection on q of
Cq to construct GTB codes’ check matrices M.

A. The Optimal Construction of the Check Matrix for GTB
codes Minimizing A · l

Corollary 3.1: When m = 1 an optimal (N,K, 3)Q
GTB code V can be constructed from a Hamming check
matrix H where H = [H1, H2, ...,HN ] and each Hi is a
binary representation of decimal number i. The redundancy
R = dlog2(N + 1)e and the distance D = 2m+ 1 = 3.

When m = 2 an optimal (N,K,D)Q GTB code V can be
constructed from a superimposed code by Construction 2.1.

Theorem 3.1: When m = 2 and K is given, the optimal
GTB code and its check matrix with minimum A · l can
be constructed by the following (nq, kq, dq)q Reed-Solomon
code:

nq = 3, kq = 2, dq = 2

q =

⌈
3 +
√
4K + 1

2

⌉
ps

(2)

Note: d eps is the smallest integer that is the power s of a
prime number p larger than the value inside d e.

Proof : according to Construction 2.1, we have N = K+R,
N = qkq , R = A − 2, A = q · nq . By substituting N , R and
A to the first equation we have:

qkq − q · nq −K + 2 = 0.

Also, to calculate the minimum A · l, we have:

A = q · nq
l = qkq−1

}
⇒ A · l = n · qkq

Since in Reed-Solomon codes nq ≤ q − 1, the smaller nq
is, the smaller q can be selected. Thus finding the minimum
A · l comes down to the problem of finding the minimum nq
and kq .

When m = 2, according to (1) the smallest nq and kq are:

m = 2 =

⌊
nq − 1

nq − dq

⌋
=

⌊
nq − 1

kq − 1

⌋
⇒

{
kq = 2;

nq = 3.

By substituting them into qkq − q · nq −K + 2 = 0: and
solving the quadratic equation, the optimal q to achieve the
minimum A · l is (q has to be power of a prime number):

q =

⌈
3 +
√
4K + 1

2

⌉
ps

Corollary 3.2: For a given K, a double-error correcting
(m = 2) GTB code V over GF (Q) minimizing decoding
complexity has (N,K,D)Q = (q2, q2 − 3q + 2, 5)Q where
q is defined in (2).

Remark 3.3: From (1) and (2) it is easy to have the rate of
GTB codes = K/N = K/q2 and when K →∞, rate→ 1.

B. Encoding
Single-error correcting GTB codes can be encoded by the

following Corollary.
Corollary 3.3: When m = 1, if H = [H1, H2, ...,HN ] is a

binary check matrix for a (N,K, 3)Q GTB code V described
in Corollary 3.1, then by permuting the columns of H, it can
be transformed to the standard form H ′ = [P |IR], where IR is

an R×R identity matrix. Then for v = (v1, v2, ..., vN ), v ∈ V ,
it can be encoded by P · (v1, ..., vK)⊥ = (vK+1, ..., vN ).

Encoding double-error correcting GTB codes involves
transformation of the check matrix M. For convenience we
define the concept of blocks in M:

Definition 3.2: For an A × N m-superimposed code con-
structed by Construction 2.1, it can be equally partitioned into
nq sub-matrices, such that each sub-matrix has exactly q rows.
Each sub-matrix is called a block Bt which is a set of q rows
where Bt = {Mi,∗|di/qe = t}, t ∈ {1, 2, ..., nq}. Each row in
a block has exactly l 1’s and each column has exactly one 1.

Since the sum of all rows in every block is the same: an
N -bit vector of all 1’s. According to (2) every M constructed
from a 2-superimposed code has 3 blocks, then by removing
one row from any 2 blocks all A− 2 rows left will be linear
independent and can be transformed to standard form.

Corollary 3.4: When m = 2, if M is a binary check
matrix for a (N,K, 5)Q GTB code V , the A − 2 linear
independent rows of M can be transformed to a standard form
M ′ = [P |IR], where IR is an R × R identity matrix. Then
for v = (v1, v2, ..., vN ), v ∈ V , the redundancy is encoded by
P · (v1, ..., vK)⊥ = (vK+1, ..., vN ).

Example 3.1: A GTB code V over GF (Q) has K = 2
information digits and is able to correct single and double-
errors. According to Corollary 3.2 it can be constructed from
the (nq, kq, dq)q = (3, 2, 2)3 Reed-Solomon code. Code V has
the parameters of N = 9, A = 9, R = 7,K = 2,m = 2, l = 3
which are the same as Example 2.1.

After removing m = 2 rows from M and transforming it
into standard form (IR is a 7× 7 identity matrix) we have the
encoding matrix:

M ′ = [P |IR] =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
IV. SINGLE-BYTE ERROR CORRECTING GTB CODES
The concept of the support of syndromes is introduced to

help with single-byte error correction.
Definition 4.1: For a GTB code V = {v|M · v = 0} over

GF (Q), where M is an A×N binary matrix, if a codeword
v = (v1, v2, ..., vN ) is distorted by an error e to ṽ = v ⊕ e,
ṽ, v, e ∈ GF (Q), the syndrome S = M · ṽ = M · e. There
are A components in S = {S(i)|i = 1, 2, ..., A}, S(i) ∈
GF (Q). Then the support of syndrome Ssup = {Ssup(i)|i =
1, 2, ..., A} is defined as:

Ssup(i) =

{
0, if S(i) = 0;
1, if S(i) 6= 0.

Corollary 4.1: According to Corollary 3.1, a single er-
ror correcting GTB code V has the following parameters:
(N,K,D)Q = (N,N−dlog2(N+1)e, 3)Q. The support of the
syndrome Ssup is the error location and e = S(i), S(i) 6= 0.

The major competitors of GTB codes when m = 1 are
non-binary Hamming codes, Reed-Solomon (RS) codes and
interleaved binary Hamming codes [14]. The GTB codes and
interleaved Hamming codes have R = A = dlog2(N + 1)e



as their redundancy, while non-binary Hamming codes have
R = dlogQ[(Q− 1)N +1]e, and Reed-Solomon codes always
R = 2 [15].

Non-binary Hamming codes and Reed-Solomon codes both
have less redundant digits (R) than GTB codes. However,
decoding of non-binary Hamming codes and Reed-Solomon
codes always requires finite field multiplications and divisions.
In contrary, GTB codes check matrices are always binary and
so the computation of syndromes are just bitwise XORs.

In our experiments each cache line (512 bits) is treated as a
codeword’s information part. The digits of each codewords can
be bytes in GF (28) field, double-bytes in GF (216) field, or
words in GF (232) field. And so the number of information
digits are correspondingly 64, 32, 16 and m is always 1.
The experimental results based on the parameters below are
collected on a Xilinx Virtex4 XC4VFX60 FPGA board.

The figure below shows that the GTB codes achieve
less complexity over non-binary Hamming and Reed-Solomon
codes because of its simple decoding computation which only
requires XORs instead of finite field operations, although it
costs more redundancy than Hamming and RS codes.

Fig. 1: Savings in complexity of decoding for GTB codes over
Hamming or Reed-Solomon codes when m = 1. The larger the
number of bits in each digit is, the greater the saving.

The GTB codes and interleaved Hamming codes both use
XORs only in decoding and they have the same rate and
redundancy, but the GTB codes still save more by having only
one set of decoder while interleaved Hamming has to have b
sets of decoders.

Fig. 2: Savings in complexity of decoding for GTB codes over
interleaved Hamming codes when m = 1. The larger the number
of bits in each digit is, the greater the saving is.

V. DOUBLE-BYTE ERROR CORRECTING GTB CODES
Double-byte error (”double-error correction” for simplic-

ity) usually costs much more time and space to be located and
corrected than single errors. However, GTB codes are very
time and cost efficient in double-error corrections.

Let the columns of matrix M in size A × N be the
set of all non-zero codewords of a 2-superimposed code
constructed by Construction 2.1 from a (nq, kq, dd)q Reed-
Solomon code Cq . Let Ssup be the A-bit binary vector
representing the support of syndrome S = M · ṽ = M · e,
e = (0, ..., 0, es, 0, ..., 0, et, 0, ..., 0), s 6= t. Let u be the error
locating vector for GTB codes such that u = Ssup×M , where
× is the arithmetic multiplication and u = (u1, u2, ..., uN ). Let
U be the set of components in u and U = {ui|ui = nq = 3}.
Denote Bt as a block in M as in Definition 3.2. The GTB
codes’ double-error locating algorithm is introduced in the
following theorem:

Theorem 5.1: If u = 0, |U | = 0, there is no error.
If |U | = 1, there is a single error and if us ∈ U and us = 3,

s is the location of the error.
If |U | = 2, there is a double-error and if us, ut ∈ U and

us = ut = 3, s and t are the locations of the double-error.
If |U | > 2, there are more than two errors.
If u 6= 0, |U | = 0, then there exists one and only one

block Bh, 1 ≤ h ≤ nq , where Ŝh = Ssup(q(h − 1) + 1) ∨
Ssup(q(h − 1) + 2) ∨ · · · ∨ Ssup(q(h − 1) + q) = 0. Find
W = {i|ui = 2} and note that |W | = 4. Denote by s, t ∈ W
the indices that correspond to a pair of RS codewords in Cq

whose hth elements are identical. Then s and t are the error
locations.

Proof : When m = 2, from Definition 2.1 we know that no
single column s will be covered by the bit-wise OR of up to
2 columns other than s. Moreover, the number of 1’s in each
column of M is exactly nq = 3. We have ui ≤ nq and there
are at most m = 2 indexes i such that us = ut = nq = 3.
Then these two indices correspond to the error locations.

However when m = 2, since λ is defined as the maximal
number of 1’s in common between any 2 columns in M , by
Construction 2.1 and 2, λ = nq−dq = nq−(rq+1) = kq−1 =
1. Thus for double-error e = (0, ..., 0, es, 0, ..., 0, et, 0, ..., 0),
s 6= t, there are chances that when es = et, there exists one
and only one row Mh,∗, such that S(h) = Mh,∗ · e = es ⊕
et = 0. This is referred to as error masking. Denote the block
which contains Mh,∗ as Bh, then this block can be identified
according to Definition 3.2, where S(i) = 0 for all Mi,∗ ∈ Bh.
Since by Construction 2.1, all blocks are generated from the
elements of codewords in Cq , the error masking must happen
between 2 codewords whose hth elements are identical. Then
the indices of these 2 codewords in Cq are the locations of es
and et. �

For any located double-error es and et, they always can be
corrected by the algorithm in the following theorem.

Theorem 5.2: Let code v over GF (Q) be distorted to ṽ
by a double-error e = (0, ..., 0, es, 0, ..., 0, et, 0, ..., 0), s 6= t.
Also let S be the A-digit syndrome where S =M · ṽ =M · e
and S(i) ∈ {S(1), S(2), ..., S(A)}, S(i) ∈ GF (Q). Then for
any es and et, there must exist row Mf,∗ and Mh,∗ in M such
that:

∣∣∣∣Mf,s Mf,t

Mh,s Mh,t

∣∣∣∣ = ∣∣∣∣1 0
0 1

∣∣∣∣ .



Thus S(f) = Mf,∗ · e = es and S(h) = Mh,∗ · e = et.
Codeword v can be corrected by vs = ṽs ⊕ S(f) and vt =
ṽt ⊕ S(h).

Proof : according to Definition 2.1, in a matrix M whose
columns are codewords of an m-superimposed code, within
any set T of columns, |T | ≤ m+1, for any column h, h ∈ T ,
there must exist a row k in M , where Mk,h = 1 in column
h, and Mk,j = 0 for all j ∈ T, j 6= h. Since this is true for
all columns in T , there exists an (m+ 1)× (m+ 1) identity
sub-matrix for any given m+1 columns. Surely this property
also applies to m columns or less. This m ×m identity sub-
matrix will provide the indices of the components in syndrome
S which are affected by each single error only for all m errors.
�

Example 5.1: A Q-ary GTB code V has Q = 23, (b = 3),
length N = 9, information digits K = 2 and is capable
to correct double-errors (m = 2). Code V ’s check matrix
is constructed by a (nq, kq, dq)q = (3, 2, 2)3 Reed-Solomon
code, which is the same M in Example 2.1.

By representing every 3-bit digit in octal, a legal message
is:

v = (1, 2, 3, 3, 1, 2, 2, 3, 1).

Suppose v is distorted by a double-error at digits 4 and 5:

e = (0, 0, 0, 5, 7, 0, 0, 0, 0).

Then:

S =M · ṽ = (0, 2, 0, 5, 7, 0, 0, 7, 5);

Ssup = (0, 1, 0, 1, 1, 0, 0, 1, 1);

u = Ssup ×M = (1, 2, 1, 3, 3, 1, 2, 1, 1).

It is obvious that u4 = u5 = nq = 3, |U | = 2, which
indicates that digit 4 and 5 are distorted. To correct the double-
error, according to Theorem 5.2, the identity matrix can be
found in M : ∣∣∣∣M4,4 M4,5

M5,4 M5,5

∣∣∣∣ = ∣∣∣∣1 0
0 1

∣∣∣∣ .
Thus we have e4 = S4 = 5 and e5 = S5 = 7. �
For a double-error in bytes s and t, if es = et, there is a

chance that es and et will mask each other in a component of
syndrome. In this case the double-error can still be located by
Theorem 5.1.

Example 5.2: A GTB code V with the same parameters and
the same legal codeword v as Example 5.1. It is now distorted
by a double-error at digit 4 and 5 that causes error masking:

e = (0, 0, 0, 7, 7, 0, 0, 0, 0).

Then:

S =M · ṽ = (0, 0, 0, 7, 7, 0, 0, 7, 7);

Ssup = (0, 0, 0, 1, 1, 0, 0, 1, 1);

u = Ssup ×M = (1, 2, 1, 2, 2, 1, 2, 1, 1).

Since Ŝ1 = Ssup(1) ∨ Ssup(2) ∨ Ssup(3) = 0 in B1, the
error masking happens in the 1st element between 2 codewords
in Cq . Also since W = {2, 4, 5, 7}, we find out that codewords
(1, 0, 2)3 and (1, 1, 1)3’s 1st elements are the same. Therefore
the double-error is located at e4 and e5. Similarly to Example
5.1, they can be corrected by the identity matrix listed in
Theorem 5.2. �

The major competitors of GTB codes when m = 2
are Reed-Solomon codes and interleaved Orthogonal Latin
Square codes (OLSC) [16]. For double-error correction, RS
codes always have R = 4, and interleaved OLSCs have
R = 2m

√
K = 4

√
k, while GTB codes’ redundancy is

R = 3q − 2 by Corollary 3.2 and q is given by 2. Usually
when K is small, interleaved OLSCs have less redundancy.
When K is large, GTB codes have better rate.

In our experiments each cache line (512 bits) is treated
as a codeword’s information part (K). It can be partitioned to
64×8-bit bytes, 32×16-bit double-bytes, and 16×32-bit words.

The experimental results based on the above parameters
are collected on a Xilinx Virtex4 XC4VFX60 FPGA board.

Fig. 3: Savings in complexity of decoding for GTB codes over Reed-
Solomon codes when m = 2.

From the figure above, GTB codes considerably reduce
over 98% decoding complexity from RS codes. The larger the
byte size b is, the more complicated the finite field computation
will be. Thus the saving increases as b increases.

Fig. 4: Savings in complexity of decoding for GTB codes over
interleaved OLSCs when m = 2.

The interleaved OLSCs use majority voting for error locat-
ing and the syndrome is computed by XORs only. The GTB
codes also use XORs only for syndrome computation, and a
matrix multiplication between two (1×A) and (A×N) low-
density binary matrices, together with a few simple controls for
error locating and correcting. The overall decoding complexity



of GTB codes is still much less than interleaved OLSCs. The
larger the K is, the more the saving will be.

When m = 2, the Reed-Solomon codes have the best rate,
while the interleaved OLSCs the second and GTB codes the
lowest. However, in terms of the decoding complexity, the
GTB codes rank the top and save significantly. Interleaved
OLSCs is the second and Reed-Solomon is the worst in
decoding complexity since it involves finite field computations.

VI. CONCLUSION
As multiple bit upsets which result in multiple byte errors

become more probable with new and fast memories, stronger
protection against byte-level distortions is highly demanded.
Therefore we have introduced this new non-binary group
testing based byte-level error correcting codes (GTB codes)
and its application single and double error corrections. For
codewords with digits in Galois field GF (Q), the proposed
new codes’ decoding does not require any multiplications or
inversions in Galois fields. Although the achievement is made
at the cost of larger redundancy, through experiments still costs
much less hardware and time than the popular codes such as
Hamming, Reed-Solomon and bit-interleaved codes.

It is notable that the GTB codes are also decoded in a much
faster speed than other popular codes. For instance, in double-
error corrections, GTB codes usually take 2 clock cycles while
Reed-Solomon codes have to take at least 29 +N cycles.

The comparison among GTB codes and others popular
ECC can be concluded as the following:

When m = 1, the code’s rate:

RS ≥ Hamming > Interleaved Hamming = GTB;

The saving on decoding complexity:

GTB� Interleaved Hamming > RS ≈ Hamming.

When m = 2, the code’s rate:

RS > Interleaved OLSC ≈ GTB;

The saving on decoding complexity:

GTB� Interleaved OLSC > RS.

Based on the GTB codes’ fast and low complexity de-
coding, we suggest that this class of codes can serve as
replacement of the current popular error correcting codes
in reliable memory designs requiring small latency and low
decoding complexity, e.g. SRAMs for cache, EEPROM and
Flashes for cryptographic devices [17].

Moreover, GTB codes’ can be easily generalized for locat-
ing and correcting multi-byte m errors for m > 2. Different
from other ECCs whose decoding complexity increases signifi-
cantly as m increases, the GTB codes always adopts the simple
algorithm. This makes it promising to be further researched
and implemented.

REFERENCES
[1] Z. Wang and M. Karpovsky, “Reliable and secure memories based on

algebraic manipulation detection codes and robust error correction,”
Proc. Int. Depend Symp, 2013.

[2] S. Kaneda and E. Fujiwara, “Single byte correcting and double byte
detecting ecc for memory,” IEEE Transactions on Computers, vol. c-
31, no. 7, July 1982.

[3] W. Zhen, M. Karpovsky, and K. J. Kulikowski, “Replacing linear
hamming codes by robust nonlinear codes results in a reliability
improvement of memories,” Dependable Systems & Networks, DSN’09.
IEEE/IFIP International Conference, 2009.

[4] Z. Wang and M. Karpovsky, “New error detecting codes for the
design of hardware resistant to strong fault injection attacks,” Proc.
Int. Conference on Security and management, SAM, 2012.

[5] Y. Wu, “New list decoding algorithms for reed-solomon and bch codes,”
Information Theory, 2007. ISIT 2007. IEEE International Symposium,
2007.

[6] J. Jeng and T. Truong, “On decoding of both errors and erasures of a
reed-solomon code using an inverse-free berlekamp-massey algorithm,”
IEEE Transactions on Communications, no. 47.10, pp. 1488–1494,
1999.

[7] Xilinx, LogiCORE IP Reed-Solomon Decoder, v8.0, ds862 ed., October
19, 2011.

[8] M. Y. Hsiao, D. C. Bossen, and R. T. Chien, “Orthogonal latin square
codes,” IBM Journal of Research and Development, no. 14.4, pp. 390–
394, 1970.

[9] A. G. D’yachkov, A. J. Macula, and V. V. Rykov, “On optimal
parameters of a class of superimposed codes and designs,” IEEE
International Symposium on Information Theory, 1998.

[10] A. M. [10] A. G. Dyachkov and V. Rykov, “New applications and results
of superimposed code theory arising from the potentialities of molecular
biology,” Numbers, Information and Complexity, pp. 265–282, 2000.

[11] W. Kautz and R. Singleton, “Nonrandom binary superimposed codes,”
IEEE Transactions on Information Theory, no. 10.4, pp. 363–377, 1964.

[12] P. Luo, A. Lin, W. Zhen, and M. Karpovsky, “Hardware implementation
of secure shamir’s secret sharing scheme,” High-Assurance Systems
Engineering (HASE), IEEE 15th International Symposium on., 2014.

[13] A. G. D’yachkov and V. V. Rykov, “Optimal superimposed codes and
designs for renyi’s search model,” Journal of Statistical Planning and
Inference, no. 100.2, pp. 281–302, 2002.

[14] Y. Cui and X. Zhang, “Research and implemention of interleaving
grouping hamming code algorithm,” IEEE International Conference on
Signal Processing, Communication and Computing (ICSPCC), 2013.

[15] H. S. Shapiro and D. L. Slotnick, “On the mathematical theory of error-
correcting codes,” IBM Journal of Research and development, no. 3.1,
pp. 25–34, 1959.

[16] G. Yalcin and et al, “Exploiting a fast and simple ecc for scaling supply
voltage in level-1 caches,” IEEE On-Line Testing Symposium (IOLTS),
2014.

[17] S. Ge, Z. Wang, P. Luo, and M. Karpovsky, “Secure memories resistant
to both random errors and fault injection attacks using nonlinear error
correction codes,” ACM Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, 2013.


