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Abstract—Security-oriented error detecting codes are used to
detect fault injection attacks on cryptographic devices. These
codes are usually designed for uniformly distributed codewords;
i.e., for codes that have maximal entropy. In practice, the
codewords are not uniformly distributed thus their entropy is
smaller and their efficiency in detecting attacks degrades.This
article analyzes the relation between the entropy of a code and
its worst error masking probability. Based on this relation, a
method for determining the rate and structure of a code that
provides the required error masking probability is presented.

I. I NTRODUCTION

The security of cryptographic devices is threatened by fault
injection attacks that tamper with the hardware [2]. All fault
attack technologies are based on introducing faults into the
circuit, which in turn, can produce an erroneous output vector.
The erroneous output is usually modeled as a correct output
distorted by an additive error vector. This could suggest that
the problem of fault detection is equivalent to the problem of
error detection in noisy communication channels. However,
there is an inherent difference between the two problems:
in fault injection attacks, the error vector is chosen by the
attacker, and hence, it may be of anyweight (multiplicity).
Consequently, the efficiency of the code is not measured
in terms of its error correcting capability, but in terms of
its error masking probability. From this perspective, error
injection attacks on hardware are similar to jamming attacks
on communication channels. Both can be detected by the same
type of codes.

The error masking probability of a code is the probability
that an error will map a codeword into the code. The maximal
error masking probability depends on the structure of the code,
the encoding, and the probability of each codeword to appear.

Security oriented codes that can detect any (or almost any)
error have been presented in [1], [4], [5], [6], [9], [10],
[19]. These codes were designed for uniformly distributed
codewords. However, the efficiency of these codes, may sig-
nificantly degrade when the codewords are not equally likely
to occur [13], [14]. In this article, we evaluate the efficiency
of codes whose codewords are not uniformly distributed. We
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show that the worst error masking probability of the codes
is related to the entropy of the code. The bounds presented
here define the entropies for which robust codesfail to
provide the required error masking probability. In such cases,
a pre-mapping [12] or stronger codes, such as the Algebraic
Manipulation Detection (AMD) code [7] whose error masking
probability does not depend on the code’s entropy are needed.
In Section IV we show that for non-uniformly distributed
codes, these stronger codes are not necessarily stronger than
simple codes. We then show how the bounds can be used to
determine which type of code has a smaller error masking
probability.

The article is organized as follows. In the next section
we define the error masking probability of the code and
introduce the worst case scenario. In Section III we discuss
the relation between the worst error masking probability ofa
code and its entropy and provide upper and lower bounds on
this probability. Section IV presents a criterion for choosing a
code for a given rate and entropy. In Section V we demonstrate
the tightness of the bounds on sequential benchmark circuits
and show that it is pointless to design a security-oriented code
if its entropy is ignored. Section VI concludes the paper.

II. T HE HARDWARE SECURITY PROBLEM

Consider a combinational circuit that every cycle receives
an inputx, and produces an outputc(x) ∈ C, whereC ⊆ F

n
2 is

the set of all possible outputs of a fault-free circuit. The set C
is called a code, and the elements inC are called codewords.

We refer to the input of the circuit as a discrete random
variableX from a sample space (alphabet)X . The probability
that this random variable will take the valuex is denoted
as Pr(X = x). Similarly, we refer to the output of the
circuit as a random variableC from a sample spaceC ⊆ F

n
2 .

The Probability Mass Distribution (PMD) ofC (in a fault-
free circuit) is determined by the PMD of the inputs and
the functionality of the circuit. The probability that a random
variableC will take the valueci is

p(ci) , Pr(C = ci) =
∑

x∈X ,c(x)=ci

Pr(X = x).

We write the PMD of a code as a vector,p =
(p1, p2, . . . , p|C|), wherepi is the probability that the discrete
random variableC will take the i’th value. For convenience,
we order the codewords so that

1 ≥ p1 ≥ p2 · · · ≥ p|C| > 0.
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Fig. 1. A schematic architecture of a circuit component protected by a
systematic security-oriented code. The white rectangle represents the original
circuit and the gray rectangles represent the redundant hardware required
to implement the encode and decoder. The shaded area is accessible to the
attacker. The original block and the encoder must work in parallel, otherwise
it is impossible to detect attacks.

The entropy of a random variableC with a PMD p is
denoted byH(C) and defined by

H(C) = H(p) , −

|C|
∑

i=1

pi log2(pi) (bits).

The entropy of a binary random variable with PMDp = (1−
p, p) is denoted by

h(p) , −p log2(p)− (1− p) log2(1 − p).

The random variableC is a binary vector that represents
the values on the wires at the output of the circuit at a certain
clock cycle. The entropyH(C) represents the minimal number
of wires required to deliver the information carried byC.
The wires of the unprotected circuit may be connected to
different blocks, and each (or some of them) may represent
a different variable; therefore, no data compression which
can reduce the number of output wires of the unprotected
circuit is allowed. Moreover, in order to provide reliability
against random errors of small weight (i.e., errors caused
by nature), and to provide security against fault injection
attacks, some redundancy should be embedded into the circuit.
A schematic architecture of a trustworthy circuit is shown
in Fig. 1. We denote byk the number of original wires
at the output of the unprotected circuit, and denote byr,
r = n−k ≥ 0, the number of redundant wires. The difference
between the number of original wiresk and H(C) reflects
overhead required for having a simple and convenient interface
between the circuit blocks. The difference betweenk andn
reflects the overhead required to have a trustworthy system1.
Clearly, the entropy of the codewords is the entropy of the
original outputs, and thus we have,

H(C) ≤ log2 |C| ≤ k ≤ n.

The efficiency of a code with respect to an errore is
measured in terms of its error masking probabilityQ(e). Q(e)

1We assume that a faulty network (i.e., a faulty combinational circuit) is
still combinational. In other words, we assume that a fault cannot turn a
memoryless circuit into an asynchronous sequential circuit. Otherwise, the
circuit may become unstable and unpredictable.

is the probability that an errore is masked by codewords in
C; i.e.,

Q(e) =
∑

c,c⊕e∈C

p(c), (1)

where the⊕ sign stands for addition inFn
2 and the

∑

stands
for addition in R. The set of errors that are never detected
form thedetection kernelKd of the code,

Kd = {e : Q(e) = 1}.

A code whose detection kernel isKd = {0} is calledrobust,
and a code whose kernel is of size1 < |Kd| < |C|, is called
a partially robustcode [6].

A code is characterized by itsmaximal error masking
probability:

Definition 1: The error masking probability of a code is
defined asQ∗ = maxe/∈Kd

Q(e).

Let δ(τ) be the characteristic function of a codeC, δ(τ) = 1
if τ ∈ C, and equals zero otherwise. The error masking
probability Q∗ of a robust code is lower bounded by the
averageQ(e) over all the nonzero errors. The average error
masking probability is denoted byQopt; a code whose error
masking probability equalsQopt is calledoptimum.

Property 1:

Qopt =
|C| − 1

2n − 1
. (2)

Proof: The error masking probability equals

Q(e) =
∑

c,c⊕e∈C

p(c) =
∑

c∈C

p(c)δ(c⊕ e).

The average error masking probability over all the nonzero
error vectors is

Qopt =

∑

e∈Fn
2
\{0} Q(e)

2n − 1

=

∑

c∈C p(c)
(

∑

e∈Fn
2
δ(c⊕ e)

)

−
∑

c∈C p(c)δ(c⊕ 0)

2n − 1
.

Since
∑

e∈F
n
2
δ(c⊕ e) = |C| we get Eq. 2.

Note that Qopt does not depend on the PMD of the
codewords.

Another parameter that characterizes the code and does not
depend on the PMD of the codewords is the probabilityQmc,
where the subscript’mc’ stands formaximal correlation:

Definition 2 ([6]): Denote by R(e) the autocorrelation
function R(e) ,

∑

τ∈Fn
2
δ(τ)δ(τ ⊕ e) = |{c|c, c ⊕ e ∈ C}|.

The probabilityQmc is defined by

Qmc ,
maxe6=0 R(e)

|C|
. (3)

Note that the value ofR(e) equals the number of codewords
that mask the errore. If there exists a nonzero errore for
which R(e) = |C|, the code is not robust, regardless of how
the codewords are distributed. In this article we are interested
in robust codes, i.e. code that can detect any (nonzero) error. To
date, there are only two such codes, the Quadratic-Sum code
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[5], [8], and the Punctured-Cubic code [1], [9]. The Quadratic-
Sum code is optimum fork = 2r; i.e.,Qmc = 2−r. TheQmc

of the Punctured-Cubic code is smaller or equal to2−r+1,
depending on the code’s parameters [9].

The value ofQmc (which equalsQ∗ for uniformly dis-
tributed codewords) characterizes the set of codewords. The
maximal number of codewords that mask a nonzero error
equalsQmc|C|. This defines the worst scenario.

Definition 3: The worst error masking probability of a code
with a PMD p, wherepi ≥ pi+1, is denoted byQwc and is
defined as:

Qwc ,

Qmc|C|
∑

i=1

pi. (4)

Note thatQwc ≥ Qmc, and equality holds iff the codewords
are uniformly distributed; i.e., iffH(C) = log2(|C|). The worst
error masking probability is used to characterise the code,in
practice the (true) error masking probability of the codeQ∗

can be significantly smaller. Methods for avoiding this worst
case scenario were presented in [13], [12].

Although Qmc lower boundsQwc, it is not necessarily
smaller thanQ∗. The following example clarifies this state-
ment.

Example 1:Fig. 2 shows a logic scheme of a circuit that
generates non-uniformly distributed codewords. The circuit
has an inputx = (x4, x3, x2, x1) ∈ F

4
2 and produces an

output c = (c3, c2, c1) ∈ F
3
2. The legal output combinations

(codewords) are

C = {000, 010, 011, 110, 111}.

For convenience we refer to an output by its integer value;
namely,C = {0, 2, 3, 6, 7}. For uniformly distributed input
(H(X) = 4), the PMD of the codewords in a fault-free circuit
is:

p(c) =































8/16 c1 = 0 (since eight inputs
produce the output ”0”)

3/16 c2 = 6
2/16 c3 = 2
2/16 c4 = 7
1/16 c5 = 3

.

The parameters that characterize the set of codewords
(ignoring the probability of each to appear) are:

• The optimal error masking probability,Qopt = 4/7.
• The autocorrelation of the code.

R(e) =
∑

τ∈F 3
2

δ(τ)δ(τ ⊕ e)

=







5 e = 0
4 e ∈ {1, 4, 5}
2 e ∈ {2, 3, 6, 7}

(5)

• The error masking probability Qmc =
maxe6=0 R(e)/|C| = 4/5.

The parameters that characterize the code and depend on
probability of each codeword to appear are:

• The entropy of the code isH(C) = 1.95.

x2

x4

x1

x4

x2

x3

x3
x4

c1

c2

c3

x3
x1

Fig. 2. Logic scheme of the circuit in Ex. 1

• The worst error masking probability isQwc = (8 + 3 +
2 + 2)/16 = 15/16.

• The (true) error masking probability of the codeQ∗ =
Q(e = 6) = 11/16.

Note thatC is robust, but it is not optimum as it does not meet
its lower bound. In fact, for this code we have

Qopt < Q∗ < Qmc < Qwc.

In practice, it is difficult to calculate the error masking
probabilities of codes with largen, especially when the
codewords are not uniformly distributed. Therefore, the code
to be used (equivalently, the number of redundant bits,r, to be
added) needs to be chosen such thatQwc is acceptable. The
question we address is thus:

Let C be a robust code characterized byQmc. Assume that
H(C) is known. What can be said aboutQwc?

III. B OUNDS ON THE ERROR MASKING PROBABILITY

Consider a circuit that generates|C| different codewords
with a PMD p = (p1, p2, . . . p|C|) where1 ≥ p1 ≥ p2 · · · ≥
p|C| > 0. Assume that the code designer does not knowp,
but he knows or can estimate the entropy, and he knowsQmc

of the code to be used. In this section we introduce lower
and upper bounds onQwc as a function ofH(C) andQmc.
In order to simplify the presentation and make the text more
readable, instead of introducing lower and upper bounds on
Qwc, we introduce upper and lower bounds onH(C) as a
function ofQwc andQmc.

Let us start by defining the (non-symmetric) distance be-
tween two PMDs:

Definition 4 ([3]): The distance between two PMDsp and
q (also called the Kullback - Leibler divergence or the infor-
mation divergence), is denoted byD(p||q), and defined as:

D(p||q) ,
∑

i

pi log

(

pi
qi

)

≥ 0.

The distance between two binary distributionsp = (1 − p, p)
andq = (1 − q, q) is denoted byDb(p||q), and defined as:

Db(p||q) , p log

(

p

q

)

+ (1− p) log

(

1− p

1− q

)

.
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1

Uniform 
distribution

|A|=Qmc|C|
w

Lower bounds 
on H(C)

Upper Bound 
on H(C)

Actual 
distribution

Pw

u

v

Fig. 3. The accumulated probabilityPw for uniformly distributed codewords,
the actual PMD of the codewords, the PMD used to derive the upper bound
on H(C) (Theorem 1), and the two PMDs used to derive the lower bound
on the entropy (Theorem 2).

For the proofs of Theorems 1 and 2 presented below, in
addition to the PMD of the code, we use another PMD, say
q, which like p has the following two properties:

qi ≥ qi+1 and
Qmc|C|
∑

i=1

qi = Qwc.

Figure 3 shows the PMDs that were used to derive the upper
and lower bounds on the entropy. To simplify the graph, the
Y -axis represents an accumulated probability,Pw =

∑w
i=1 pi,

and theX-axis represents the indexw. TheX-axis is divided
into two parts; in each part, the slope of the curve that connects
the Pw ’s does not increase asw grows. This reflects the
requirement thatqi should be greater or equal toqi+1.

Theorem 1 (Upper bound):Let C be a code characterized
by Qmc andH(C). Then,

H(C) ≤ log2 |C| −Db(Qwc||Qmc). (6)

Proof: Denote byp the PMD of the code. LetA be the
set ofQmc|C| most probable codewords, and letB = C \ A.
In the worst case scenario, there exists an errore that is
masked by all the codewords inA; i.e., Qwc =

∑|A|
i=1 pi.

Define u = (u1, . . . , u|A|) and v = (v1, . . . v|C|−|A|) as the
conditioned probabilities that a specific codeword from setA
or B (respectively) is used:







ui =
pi

Qwc
1 ≤ i ≤ |A|,

vj =
pj+|A|

1−Qwc
1 ≤ j ≤ |C| − |A|.

(7)

Clearly,
∑

i

ui =
∑

j

vj = 1.

The entropy of the code in terms ofu andv is

H(C) = −





|A|
∑

i=1

ui ·Qwc log(uiQwc)

+

|C|−|A|
∑

j=1

vj(1−Qwc) log(vj(1−Qwc))





= h(Qwc) +QwcH(u) + (1−Qwc)H(v).

(8)

The entropy of a random variable is maximized if it is
uniformly distributed. Therefore, we have:

H(C) ≤ h(Qwc) +Qwc log2(|A|)

+(1−Qwc) log2(|B|)

= log2 |C| −Db(Qwc||Qmc).

Remark: A table withQmc values of known security
oriented codes can be found in [18]. IfC is an arbitrary
set of vectors, or if itsQmc is unknown, the computational
complexity to compute the bound isO(n2n).

We now turn to develop a lower bound on the entropy of
C. For this, we need the following three lemmas.

Lemma 1:Let Z be a discrete random variable over an
alphabet of sizeN . Denote byp, p1 ≥ p2 ≥ · · · ≥ pN > 0,
its PMD. Let 1/N < t < 1. Then, the minimal entropy over
all the PMDs that satisfy the restrictionp1 ≤ t is denoted by
H1(N, t), and is achieved when

pi =







t i ≤ w = ⌊1/t⌋
1− w · t i = w + 1
0 i > w + 1

.

Proof: Assume that the entropy is minimized by a differ-
ent PMD, sayq, t ≥ q1 ≥ q2 ≥ · · · ≥ qN > 0. Since the two
PMDs differ, there exist at least two indices where they have
different values. Denote byia the minimal index for which
qi < pi, and denote byib the maximal index whereqi > pi;
see to Figure 4. Clearly,ia < ib. Define asic the minimal
index for which qia > qi and by id the maximal index for
which qib < qi. Let ǫ be

0 < ǫ <
1

2
min(pia − qia , qia − qic , qib − pib , qid − qib).

The following two PMDsb and l fulfill the order require-
ment:

bi =







qi +
ǫ

ic−ia
ia ≤ i < ic

qi −
ǫ

ib−id
id < i ≤ ib

qi otherwise

,

and

li =







qi −
ǫ

ic−ia
ia ≤ i < ic

qi +
ǫ

ib−id
id < i ≤ ib

qi otherwise

.

Note thatq = 1
2 (b+ l).
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t

1/N

1 Nia ibic id

p

q

Fig. 4. Illustration for the proof of Lemma 1.

The entropy isconcave; therefore, we have

H(q) = H(
1

2
b+

1

2
l)

≥
1

2
H(b) +

1

2
H(l)

≥ min(H(b), H(l)),

(equality holds only ifb = l). This contradicts the fact thatq
achieves minimal entropy under the above restriction.

Lemma 2:Let Z be a discrete random variable over an
alphabet of sizeN . Denote byp, p1 ≥ p2 ≥ · · · ≥ pN > 0,
its PMD. Let 0 < t < 1/N . Then, the minimal entropy over
all the PMDs that satisfy the restrictionpN = t is denoted by
HN (N, t), and is achieved when

pi =

{

1− (N − 1)t i = 1
t 2 ≤ i ≤ N

.

The proof of Lemma 2 is similar to the proof of Lemma 1.

Lemma 3:Let Z be a discrete random variable over an
alphabet of sizeN . Denote byp, p1 ≥ p2 ≥ · · · ≥ pN > 0,
its PMD. Then, the minimal entropy over all the PMDs that
satisfy the restrictionspw = s and

∑w
i=1 pi = t is denoted by

Hw(N, s, t), and is achieved when

pi =















t− (w − 1)s i = 1
s 2 ≤ i ≤ N ′

1− (t+ (N ′ − w)s) i = N ′ + 1
0 otherwize

.

whereN ′ = w + ⌊ 1−t
s ⌋.

Proof: Assume thatp does not minimize the entropy.
Then, there exists another PMD, sayq, that fulfills the re-
strictions and minimizes the entropy. Define,u andv as







ui =
qi
t 1 ≤ i ≤ w,

vj =
qj+w

1−t 1 ≤ j ≤ N − w.
. (9)

Sinceqw = s and qw+1 ≤ qw, we haveuw = s/t and v1 ≤
s/(1 − t). Therefore, from Lemma 1 and Lemma 2 we have
H(u) ≥ Hw(w, s/t) andH(v) ≥ H1(N −w, s/(1− t). From

Eq. 8,

H(q) = h(t) + tH(u) + (1− t)H(v)

≥ h(t) + tHw(w, s/t)

+(1− t)H1(N − w, s/(1− t)

= H(p). (10)

This contradicts the assumption.

Note that in order to comply with the restriction thatpi ≥
pi+1, the value ofs should be in the range

1− t

N ′ − w
≤ s ≤

t

w
.

Theorem 2 (Lower bound):Let C be a code characterized
by H(C) andQmc, then

H(C) ≥ min
sl≤s≤sh

HQmc|C|(|C|, s, Qwc), (11)

where
sl =

1−Qwc

(1−Qmc)|C|
,

and
sh =

Qwc

Qmc|C|
.

The proof of the theorem follows directly from Lemma 3.
Note that forQwc = Qmc the upper and lower bounds on

the entropy meet, and we haveH(C) = log2 |C|.
Example 2:Consider the circuit of Ex. 1. From Theorem 1

the entropy of the code which equals1.95, is upper bounded
by H(C) ≤ 2.21. Following Theorem 2, we havew = 4, t =
15/16, sl = 1/16, and sh = 15/64, and the entropy of the
code is lower bounded by

H(C) ≥ min
sl≤s≤sh

H4(5, s, 15/16) = 1.31.

IV. H OW TO USE THE BOUNDS TO CHOOSE A CODE

In the previous section we introduced upper and lower
bounds on the worst error masking probabilityQwc as a
function of the code’s entropy and itsQmc. In this section
we show that the entropy of the code plays a major role in
its design.As before, we assume that the only information
available to the code designer is the entropy of the information
words.

In general, there are two types of security oriented codes:
codes that are assumed to detectweak attacksin which the
attacker cannot control the codeword to be used, and codes
designed to detectstrong attacksin which the attacker chooses
the information word to be transmitted. Robust codes with
or without pre-mapping [9], [12], [13] are considered as a
countermeasure against weak attacks, and Algebraic Manip-
ulation Detection (AMD) codes [7] are considered to be a
countermeasure against strong attacks.

AMD codes are usually considered to be stronger than
robust codes since unlike robust codes their error masking
probability does not depend on the PMD.In this section we
show that when the entropy of the code is smaller thanlog2 |C|,
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strong attack detecting codes are not necessarily strongerthan
the simple codes. To demonstrate the role of the entropy, we
assume that the code rate is fixed and investigate the best way
to design the code.

A. A robust code with Pre-mapping

Pre-mapping is an encoding technique that serves to reduce
the error masking probability of robust codes2 [13], [12].
The two robust codes developed to date, the Quadratic-Sum
code and the binary Punctured Cubic code, share a common
property: the set of information words that mask an (arbitrary)
error form a coset of a linear subspace [12]. Pre-mapping takes
advantage of this property. It permutes the information words
such that the largest subspace contained in the permuted subset
of the most probable words is as small as possible. Specifically,
let V ⊂ C be a set ofhigh-probability codewords, i.e.,V
consists of the codewords which are most likely to occur. Let
e1, e2, e3 be errors withQmc(ei) > 0, i = 1, 2, 3. The masking
probability of these errors depends on how they distort the
codewords fromV . Fig. 5 illustrates the distortion of the
codewords ofV by e1, e2, e3. Error e1 is detectedwith high
probability, sinceC ∩ {e1 +V } = ∅. Error e2 is maskedwith
high probability since{e2+V } ⊆ C. Errore3 is detected with
variable probability, depending on the cumulative probability
of the codewords inC∩{e3+V }. The pre-mapping techniques
presented in [13], [12] aim to eliminate errors of typee2 that
are masked with a high probability.

What is the worst error masking probability when pre-
mapping is implemented? Denote byσ the maximal overlap,
i.e. the maximal size ofC ∩{e+V } over all the nonzero error
vectors when pre-mapping is employed. In the worst case pre-
mapping will not reduceQwc. This can happen only if

Qmc|C|
∑

i=1

pi =
σ
∑

i=1

pi +

2Qmc|C|−σ
∑

i=Qmc|C|+1

pi.

In other words, pre-mapping will not improve the code if

pi = s, for all σ + 1 ≤ i ≤ 2Qmc|C| − σ.

Denote byQ(map)
wc the worst error masking probability when

pre-mapping is used. Recall that we require that

pσ ≥ pσ+1 = p2Qmc|C|−σ ≥ p2Qmc|C|−σ+1 > 0.

This implies thats is in the range[sl : sh] where

sl =
1−Q

(map)
wc

(1−Qmc)|C|
,

and

sh = min

(

Q
(map)
wc

Qmc|C|
,
1−Q

(map)
wc

Qmc|C| − σ

)

.

From Theorems 1 and 2 we have the following relation
between the entropy and the worst error masking probability
when pre-mapping is employed.

2Pre-mapping has a drawback in that it produces a non-systematic code.
However, applications, such as circuits implementing Finite State Machines
(FSMs), can employ non-systematic codes. In the next section we demonstrate
the efficiency of pre-mapping on several benchmark FSMs.

Fig. 5. Distortion of codewords by errors.

Property 2: define a PDMq(s)

qi(s) =







t
σ 1 ≤ i ≤ σ
s σ < i ≤ σ + w
1−(t+sw)
|C|−(w+σ) σ + w < i ≤ |C|

(12)

wherew = 2(Qmc|C| − σ) and t = Q
(map)
wc − sw

2 . Then,

H(C) ≥ min
sl≤s≤sh

HQmc|C|(|C|, s, Q
(map)
wc )

H(C) ≤ max
sl≤s≤sh

H(q(s)).

B. AMD codes

Another technique that can reduce the worst error masking
probability is use of nonlinear codes with randomized em-
bedding. In this method, each information word has multiple
images. The AMD codes presented in [7], [16], [17] utilize this
property to protect the system from strong attacks. In strong
attacks, the attacker can choose both the information word and
the injected error. Therefore, the error masking probabilities
of codes that can detect strong attacks do not depend on the
PMDs of the codes.

A codeword of a(k,m, l) AMD code with r = m + l
redundancy bits consists of three parts: ak-bit information
word, anm-bit random part, and anl-bit redundancy part.
The parameters of an AMD code must satisfy

k ≤ l2m −m− l

otherwise, no AMD code exists [17].
In general, the error masking probability of AMD codes is

lower bounded by [17]

Q(AMD) = ⌈
k +m

r −m
⌉2−m. (13)

Note that fork + r ≥ 7, m = r − 2 minimizesQ(AMD).
Finding constructions for AMD codes with arbitrary

(k,m, l) values is a challenging task. In [17] a family of AMD
codes based on a Generalized Reed-Muller (GRM) codes was
introduced. The codes are optimal or close to optimal for many
k,m andl. In particular, fork = 2ml−m− 2l,m = tl where
t is an integer(t + 1)l = r, the error masking probability of
the code equals1− 2−m+1. For the special case wheret = 1
and k ≤ r

2 (2
r
2 − 3) and m = l = r/2, the error masking

probability of the codes is greater or equal to(2kr + 1)2
−r
2 .
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C. The role of entropy in code design

It follows from Theorem 1 that if the entropy of the code
is larger than

max
1≤m<r

log2 |C| −Db(QAMD||Qmc), (14)

it is better to use robust codes such as the QS and PC
code (even without pre-mapping); otherwise, it is better to
try an AMD code as itmay provide a smaller error masking
probability.

Moreover, denote byQ(GRM) the smallest error masking
probability that can be achieved by GRM based codes, and
denote byQmc the error masking probability of a robust code
of the same code rate under a uniform distribution of the
codewords. It follows from Theorem 1 that,

If the entropy of the code is larger than

log2 |C| −Db(Q
(GRM)||Qmc), (15)

then use the robust code (even without pre-mapping),
otherwise, use the GRM based code.

The role of the entropy in code design is illustrated in Fig. 6.
The x-axis represents the code rate and they axis represents
the entropy of the code normalized to the code sizek. The
plane is partitioned according Eq. 15 into two areas: the shaded
area represents(code rate, normalized entropy) pairs for
which a strong MAD code may provide smaller error masking
probability, and the colorless area represents cases wherea
simple robust code always provides better immunity.

D. Robustness of arithmetic modules

In this section we show how the bounds can be used to
design two robust arithmetic modules: an8-bit multiplier
whose output is stored in ak = 16 bit register. and a15-
bit adder with a16-bit output. The entropy of the multiplier
with uniformly distributed inputs equals13.7 and the entropy
of the adder equals15.72.

Assume that the multiplication result is protected by a
C(n, k = 16) Quadratic Sum (QS) code [8]. Recall that a
QS code is a robust code of lengthn, size 2k, and has
r = n − k redundancy bits. Fork = 2sr, the code is
optimum, its Qmc equals2−r, [8]. Figure 7 shows upper

and lower bounds onH(C) for two QS codes of dimension
k = 16. TheX-axis represents the error masking probability,
and theY -axis represents the entropy. The solid and dashed
lines represent the upper and lower bounds, respectively. The
dashed lines correspond tor = 8 and the solid lines to
r = 4. Note that for uniformly distributed codewords; i.e.,
when H(C) = k = 16, the upper and lower bound meet.
This happens whenQwc = Qmc. As the entropy of the code
decreases the gap between the bounds increases.

From the figure, in the worst case scenario, forr = 8 an
attack on the multiplier can be masked with a probability of

0.0188 ≤ Q(mul)
wc ≤ 0.39.

It is interesting to note that in this case,log2 |C| − H(C) =
2.3 information bits were ”wasted” for the sake of simple
representation of the product (as a number in base2), and
at least(n − k) − log2(0.0188) = 2.26 redundancy bitsmay
be wasted for the same reason. In the worst case scenario, the
probability that the code withr = 8 will not detect an attack
on the adder is

0.0045 ≤ Q(add)
wc ≤ 0.08.

For a given code rate, which code is better, a robust code
with or without pre-mapping or an AMD code? Since a
Punctured Cubic (PC) codes withQmc = 2−r+1 exists for
any k and r ≤ k we use it for comparison3. Figures 8 and
9 show the bounds on the worst error masking probability
versus the number of redundancy bits. The upper bounds on
the error masking probability with and without pre-mapping
(Theorem 1 and Prop. 2) are shown in red. The lower bound
(Theorem 2) is shown in blue. Thelower boundon the error
masking probability of an AMD code (Eq. 13) and the actual
error masking probability of the GRM based codes mentioned
above are shown in black.

Note that Eq. 15 suggests a simple way to decide which type
of code will provide better immunity to error injection attacks
(see the intersection point between the red and black lines in
the figures). In fact, it follows from the criterion in Eq. 14 that
for both arithmetic modules, if the number of redundancy bits
must be less than six, a robust PC code (even without pre-
mapping) will provide a smaller error masking probability.
Otherwise, an AMD codemaydo better. Moreover, it follows
from the criterion in Eq. 15 that a PC code is better than a
GRM code for a multiplier withr ≤ 7 redundancy bits and
for an adder withr ≤ 13.

V. BENCHMARK CIRCUITS

In this section, we present the efficiency of Punctured-Cubic
(PC) codes when used to protect thecombinational partthat
generates the next-state of an FSM.

Several benchmark FSMs from the ACM/SIGDA
(LGSynth91) package were examined. The FSMs’ parameters
and the lower and upper bounds onQwc, denoted byQLB

andQUB, are summarized in Table I. The10th column in the
table shows the error masking probabilityQHB that can be

3Note that ifr dividesk then it is better to use the QS as it has a smaller
Qmc.
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achieved by the Hamming ball state-assignment pre-mapping
technique [13].

A graphical presentation of the experimental results is
shown in Figure 10. The upper and lower bounds (QLB and
QUB) define the range ofQwc. The range is marked by a
blue rectangle. The worst error masking probabilityQwc of
the PC code is marked as a black dot. Note that, although the
gap between the lower and upper bounds may seem large, the
bounds in Theorems 1 and 2 are actually tight; in ’donfile’
FSM, theQwc meets the lower bound and in ’keyb’ it meets
the upper bound.

The Qmc that characterizes the code is marked by a red
dot. Note the significant affect of the PMD on the error
masking probability of the code. In almost all of the FSMs the
error masking probability under uniform distribution (Qmc)
is significantly smaller thanQwc. Hence, it is pointless to
design a security-oriented code without taking into account
its entropy.

Finally, the figure clearly shows that in most cases it is
possible to avoid the worst error masking probability by
using pre-mapping such as the Hamming ball state assignment
[13]. The black triangles marks theupper boundon thereal
error masking probabilityQ∗ when a Hamming ball state
assignment is used. Note that the entropy based upper bound
onQ(map) (Prop. 2) falls within the blue rectangle that marks
the range betweenQLB andQUB . This figure demonstrates
that the assumption underlying Prop. 2 is in most cases too
pessimistic. In many cases, e.g. in ’tma’ FSM, pre-mapping
significantly improves thereal worst error masking probability
(the black triangle is outside the blue rectangle).

VI. CONCLUSIONS

In most circuits, the words at the output of the circuit are
not uniformly distributed; i.e., they do not have maximum-
entropy. This degrades the efficiency of security oriented
codes when they are applied to protect the circuits against
fault injection attacks. Here we show that there is a relation
between the entropy of the outputs and the worst error masking
probability of the code; we present upper and lower bounds
on this probability, and demonstrate their tightness on standard
benchmark circuits. The bounds can help circuit designers to
choose a code and determine the number of redundant bits
required to provide an acceptable error masking probability.
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