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Abstract—Security-oriented error detecting codes are used to show that the worst error masking probability of the codes
detect fault injection attacks on cryptographic devices. Tiese s related to the entropy of the code. The bounds presented
codes are usually designed for uniformly distributed codewrds; here define the entropies for which robust codei to

i.e.,, for codes that have maximal entropy. In practice, the ideth ired Ki babilitv. | h
codewords are not uniformly distributed thus their entropy is providethe required error masking probabiiity. In Such cases,

smaller and their efficiency in detecting attacks degradesThis & Pre-mapping [12] or stronger codes, such as the Algebraic
article analyzes the relation between the entropy of a coderal Manipulation Detection (AMD) code [7] whose error masking

its worst error masking probability. Based on this relation, a probability does not depend on the code’s entropy are needed
method for determining the rate and structure of a code that |, gection IV we show that for non-uniformly distributed
provides the required error masking probability is presented. codes, these stronger codes are not necessarily strorager th
simple codes. We then show how the bounds can be used to
l. INTRODUCTION determ!r)e which type of code has a smaller error masking
_ ) o probability.
_The security of cryptographic devices is threatened bytfaul The article is organized as follows. In the next section
injection attacks .that tamper with the hardvyare [2]. A!IlfauWe define the error masking probability of the code and
attack technologies are based on introducing faults ine throduce the worst case scenario. In Section IIl we discuss
circuit, which in turn, can produce an erroneous outputareCt e relation between the worst error masking probabilitg of
The erroneous output is usually modeled as a correct outglhje and its entropy and provide upper and lower bounds on
distorted by an additive error vector. This could suggeat this probability. Section IV presents a criterion for chingsa
the problem of fault detection is equivalent to the problem e for a given rate and entropy. In Section V we demonstrate
error detection in noisy communication channels. Howevgpe tightness of the bounds on sequential benchmark Greuit
there is an inherent difference between the two problemg,q show that it is pointless to design a security-orientetéc

in fault injection attacks, the error vector is chosen by theijis entropy is ignored. Section VI concludes the paper.
attacker, and hence, it may be of amgight (multiplicity).

Consequently, the efficiency of the code is not measured
in terms of its error correcting capability, but in terms of ) o o )
its error masking probability. From this perspective, erro (?on3|der a combinational circuit that every cycle receives
injection attacks on hardware are similar to jamming asacRn iNPutz, and produces an outputr) € C, whereC C F3 is
on communication channels. Both can be detected by the sdfife Set of all possible outputs of a fault-free circuit. Tlee
type of codes. is called a code, ar_ld the elemen_tsc’lr_are caIIe(_j codewords.
The error masking probability of a code is the probability e refer to the input of the circuit as a discrete random
that an error will map a codeword into the code. The maximjftiableX from a sample space (alphabat) The probability
error masking probability depends on the structure of thieco that this random variable will take the valueis denoted
the encoding, and the probability of each codeword to apped? Pr (X = z). Similarly, we refer to the output of the
Security oriented codes that can detect any (or almost affjcuit as @ random variable’ from a sample space C F3.
error have been presented in [1], [4], [5], [6], [9], [10], he Probability Mass Distribution (PMD) of’ (in a fault-

[19]. These codes were designed for uniformly distributd€€ Circuit) is determined by the PMD of the inputs and

codewords. However, the efficiency of these codes, may sij€ functionality of the circuit. The probability that a dom

nificantly degrade when the codewords are not equally likefriableC will take the valuec; is
to occur [13], [14]. In this article, we evaluate the effiagn plc)) 2 Pr(C=c¢)= Z Pr (X = x).
of codes whose codewords are not uniformly distributed. We

Il. THE HARDWARE SECURITY PROBLEM

r€X,c(x)=c;
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is the probability that an errar is masked by codewords in

[y Theattackerhas [ i C;ie.,
I'[" Original access to thisarea ["Nonlinear ! Qe) = Z p(c), Q)
i component Rl i c,cPeeC
[ k-bit -bit 1 ) L
: i,,fo,mati:,,, word ,edtf,,d'a,,cyi where thed sign stands for addition ifi; and thed_ stands
I oy .
“““““““““““““““““““““““ for addition inRR. The set of errors that are never detected
* v form the detection kernelK,; of the code,
Nonlinear
checker Kq= {e : Q(@) = 1}-
1/ . .
_ A code whose detection kernel Is; = {0} is calledrobust
One bit flag

and a code whose kernel is of site< |Ky| < |C|, is called

Fig. 1. A schematic architecture of a circuit component guted by a @ partially robustcode [6].

systematic security-oriented code. The white rectangleesents the original A code is characterized by itsnaximal error masking
circuit and the gray rectangles represent the redundamwaae required probability:

to implement the encode and decoder. The shaded area isibteds the

attacker. The original block and the encoder must work iralpr otherwise

it is impossible to detect attacks. Definition 1: The error masking probability of a code is

defined asg)* = max.¢k, Q(e).

The entropy of a random variabl€ with a PMD p is

X Let () be the characteristic function of a co@gd(7) = 1
denoted byH (C) and defined by

if 7 € C, and equals zero otherwise. The error masking

IC] probability @Q* of a robust code is lower bounded by the
H(C)=H(p) & - Zpi log,(p;) (bits). average@(e) over all the nonzero errors. The average error
i=1 masking probability is denoted b§,,:; a code whose error

The entropy of a binary random variable with PMD= (1 — Mmasking probability equalg),,. is calledoptimum
p,p) is denoted by Property 1: -1

h(p) £ —plogy(p) — (1 — p)logy(1 — p). Qopt = on 7 2)

The random variabl€” is a binary vector that represents  Proof: The error masking probability equals
the values on the wires at the output of the circuit at a aertai
clock cycle. The entropy (C') represents the minimal number Qle) = Z ple) = ZMCWC De).
of wires required to deliver the information carried . cedeeC ecC
The wires of the unprotected circuit may be connected Ide average error masking probability over all the nonzero
different blocks, and each (or some of them) may represéftor Vectors is

a different variable; therefore, no data compression which D eern (o} Q(€)
can reduce the number of output wires of the unprotecte%om = T om_1
circuit is allowed. Moreover, in order to provide reliabjli
) ! . : c molcde)) — c)o(cd0
against random errors of small weight (i.e., errors caused 2cecP( )(266‘2 ( )) 2cec PO )

by nature), and to provide security against fault injection -1 '

attacks, some redundancy should be embedded into thetcirClSinceZegpg d(c@e)=|C| we get Eq. 2. [ ]
A schematic architecture of a trustworthy circuit is shown Note that @),,; does not depend on the PMD of the
in Fig. 1. We denote byt the number of original wires codewords.
at the output of the unprotected circuit, and denoterby  Another parameter that characterizes the code and does not
r =n—k > 0, the number of redundant wires. The differencdepend on the PMD of the codewords is the probabdlty.,
between the number of original wirds and H(C) reflects where the subscripinc’ stands formaximal correlation
overhead required for having a simple and convenient iaterf
between the circuit blocks. The difference betwéeand n Definition 2 ([6]): Denote by R(e) the autocorrelation
reflects the overhead required to have a trustworthy systerfunction R(e) £ Y~ ... 6(7)d(T @ e) = |{c|c,c® e € C}|.
Clearly, the entropy of the codewords is the entropy of thEhe probability@,,,.. is defined by
original outputs, and thus we have,

Qme = ——1>—— 3)

H(C) < logy[C| < k < n. c]

The efficiency of a code with respect to an erroris Note that the value of(e) equals the number of codewords
measured in terms of its error masking probabilitie). Q(¢) that mask the erroe. If there exists a nonzero errer for
which R(e) = |C|, the code is not robust, regardless of how
!We assume that a faulty network (i.e., a faulty combinatiaieuit) is  the codewords are distributed. In this article we are irstec
still combinational. In other words, we assume that a faalhnot turn a . b d . de th d &
memoryless circuit into an asynchronous sequential ¢ir@iherwise, the N fobustcodes, I.e. code that can detect any (nonz_ercr) ao
circuit may become unstable and unpredictable. date, there are only two such codes, the Quadratic-Sum code

» Mmaxeo R(e)



[5], [8], and the Punctured-Cubic code [1], [9]. The Quaidrat )‘(4_|—\
Sum code is optimum fok = 2r; i.e., Qe = 27". The Qe i((f—l_/ LD_,_D* C1
of the Punctured-Cubic code is smaller or equal2tg*!, 3

depending on the code’s parameters [9]. XZ:D | i % Cp

The value of@Q,,. (which equals@* for uniformly dis- X1
trlbuFed codewords) characterizes the set of codewords. Th X4 o e
maximal number of codewords that mask a nonzero error >_<2:D

equals@,,.|C|. This defines the worst scenario.

Fig. 2. Logic scheme of the circuit in Ex. 1
Definition 3: The worst error masking probability of a code
with a PMD p, wherep; > p;1, is denoted byQ,,.. and is

defined as: . » The worst error masking probability 9., = (8 + 3 +
sy . 2 +2)/16 = 15/16.
Que = ; pi: ) o The (true) error masking probability of the codE =

Qe =6) = 11/16.
Note thatC is robust, but it is not optimum as it does not meet
its lower bound. In fact, for this code we have

Note thatQ ... > Q..., and equality holds iff the codewords
are uniformly distributed; i.e., iftf (C) = log,(|C|). The worst
error masking probability is used to characterise the code,
practice the (true) error masking probability of the cagé Qopt < Q" < Qe < Que.
can be significantly smaller. Methods for avoiding this wors
case scenario were presented in [13], [12].

Although @,,. lower boundsQ,., it is not necessarily In practice, it is difficult to calculate the error masking
smaller thanQ*. The following example clarifies this state-probabilities of codes with large:, especially when the
ment. codewords are not uniformly distributed. Therefore, thdeco

to be used (equivalently, the number of redundant bjtsy be

Example 1:Fig. 2 shows a logic scheme of a circuit thahdded) needs to be chosen such at. is acceptable. The
generates non-uniformly distributed codewords. The dirclyuestion we address is thus:
has an inputr = (z4,23,22,71) € F3 and produces an )
outputc = (c3,c2,¢1) € F3. The legal output combinations L€tC be a robust code characterized ¥,,.. Assume that
(codewords) are H(C) is known. What can be said abo}t,.?

¢ = {000, 010,011,110, 111}.

For convenience we refer to an output by its integer value;
namely,C = {0,2,3,6,7}. For uniformly distributed input ~ Ill. BOUNDS ON THE ERROR MASKING PROBABILITY

(H(X) = 4), the PMD of the codewords in a fault-free circuit qnsiger a circuit that generatég| different codewords

s with a PMD p = (p1,p2,...pjc|) Wherel > p; > py--- >
8/16  ¢1 =0 (since eight inputs pic| > 0. Assume that the code designer does not knpow
produce the output "0") but he knows or can estimate the entropy, and he krn@ws
p(c) = 3/16 c2="6 . of the code to be used. In this section we introduce lower
2/16 c3 =2 and upper bounds 0@, as a function ofH(C) and Q..
2/16 ca =17 In order to simplify the presentation and make the text more
1/16 c; =3 readable, instead of introducing lower and upper bounds on
The parameters that characterize the set of codewofdse: We introduce upper and lower bounds &H(C) as a
(ignoring the probability of each to appear) are: function of Qe and Q.

Let us start by defining the (non-symmetric) distance be-
tween two PMDs:
Definition 4 ([3]): The distance between two PMD@psand

« The optimal error masking probabilitg),,: = 4/7.
« The autocorrelation of the code.

R(e) = Y d(m)i(ree ¢ (also called the Kullback - Leibler divergence or the infor-
TEFS mation divergence), is denoted @y(p||¢), and defined as:
5 e=0 _
= 4 ee{l,45} ) D(pl|q) = Zpi log <&) > 0.
2 ee€{2,3,6,7} - & i
« The error masking  probability Q.. = The distance between two binary distributigns- (1 — p, p)
maxco R(€)/|C| = 4/5. andg = (1 — ¢, ¢) is denoted byDj (p||g), and defined as:
The parameters that characterize the code and depend on
probability of each codeword to appear are: Dy( a p _ 1—p
b(pllg) = plog + (1 =p)log{ —|.
« The entropy of the code i (C) = 1.95. q 1-
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Fig. 3. The accumulated probability,, for uniformly distributed codewords,

the actual PMD of the codewords, the PMD used to derive theuppund

on H(C) (Theorem 1), and the two PMDs used to derive the lower bound

on the entropy (Theorem 2).

The entropy of the code in terms afandv is

||

Z Uq - ch IOg(Uzch)

i=1
IC|—|Al

+ZUJ

(Q wc) + ch

H(C)

- ch))
(2)-

ch IOg(UJ (

( ) (1 - ch)

8

The entropy of a random variable is maximized if it is

uniformly distributed. Therefore, we have:

h(ch) + ch ]0g2(|A|)
+(1 - ch) 10g2(|B|)
Db(ch' |ch)-

H(C) <

= log, |C| -

For the proofs of Theorems 1 and 2 presented below, in _ _
addition to the PMD of the code, we use another PMD, say Remark: A table with@,,. values of known security

g, which like p has the following two properties:

QmelC|
¢ >q¢s and Y g

i=1

= ch-

oriented codes can be found in [18]. ¢f is an arbitrary
set of vectors, or if itsQ,,. is unknown, the computational
complexity to compute the bound @(n2™).

We now turn to develop a lower bound on the entropy of
C. For this, we need the following three lemmas.

Figure 3 shows the PMDs that were used to derive the uppelLemma 1:Let Z be a discrete random variable over an

and lower bounds on the entropy. To simplify the graph, th@phabet of sizeV. Denote byp, p; > ps >

Y -axis represents an accumulated probabilty,= >":" | p;,
and theX-axis represents the index The X-axis is divided

P -2 pn >0,
its PMD. Let1/N < t < 1. Then, the minimal entropy over
all the PMDs that satisfy the restrictign < ¢ is denoted by

into two parts; in each part, the slope of the curve that cotne{, (N, t), and is achieved when

the P,’'s does not increase as grows. This reflects the

requirement that;; should be greater or equal g, ;.

Theorem 1 (Upper bound).et C be a code characterized

by Q... and H(C). Then,

H(C> < 10g2 |C| - Db(ch||ch)~ (6)

Proof: Denote byp the PMD of the code. Letd be the
set of Q,c|C| most probable codewords, and [Bt= C \ A.
In the worst case scenario, there exists an eerdhat is
masked by all the codewords iH; i.e., Que. = Y2 p;
Defineu = (u1,...,uja) andv = (v, ...

or B (respectively) is used:

a— 1<i <A

we

U; =

Dj+]A| (7)

o, L<i<[Cl-lAlL

v =
Clearly,

Zui:Zvj =1.
i J

U|C\—\A\) as the
conditioned probabilities that a specific codeword from 4et

¢ i <w=|1/t]
pi=< l—w-t t=w+1
0 1>w+1

Proof: Assume that the entropy is minimized by a differ-
ent PMD, sayq, t > q1 > ¢q2 > --- > qn > 0. Since the two
PMDs differ, there exist at least two indices where they have
different values. Denote by, the minimal index for which
q; < p;, and denote by, the maximal index where; > p;;
see to Figure 4. Clearlyi, < i,. Define asi. the minimal
index for whichgq;, > ¢; and byi,; the maximal index for
which ¢;, < ¢;. Let e be

0<e< %min(pia ~ iy Gia = Qies Qi — Pips Tig — Giy)-
The following two PMDsb and/ fulfill the order require-
ment:

qi + icfia 7;a § 1< Z.c
bi: (Ii*lb iq Zd<Z§Zb B
Qi otherwise
and
qi — ici'ia 7;a § 1< Z.c
li: qt+2bizd Zd<Z§Zb
qi otherwise

Note thatq = 3 (b + [).



Eqg. 8,
t H(q) = h(t)+tH(u)+ (1—t)H(v)
> h(t) + tHy(w, s/t)
+(1—=t)H1(N —w,s/(1 —1)
1N = H(p). (10)
This contradicts the assumption. ]

Note that in order to comply with the restriction that >
pi+1, the value ofs should be in the range
1-—1t t
<s<
N —w ~— —

Fig. 4. lllustration for the proof of Lemma 1.

w

The entropy isconcave therefore, we have

1 1 Theorem 2 (Lower bound)et C be a code characterized
H(g) = H(zb+30) by H(C) and Q. then
1 1
Z iH(b> + §H(D H(C) Z gng HQ,,,LC|C\ (|C|a S, ch)7 (11)
8] SS8SSh
> min(H(b), H(l)), Where o
(equality holds only ifb = /). This contradicts the fact that S1= (1— an)c|c|’
achieves minimal entropy under the above restriction. ® and
Sh — QU}C
Lemma 2:Let Z be a discrete random variable over an QmelC|
alphabet of sizeV. Denote byp, p1 > pz > --- > py >0, The proof of the theorem follows directly from Lemma 3.

its PMD. Let0 < t < 1/N. Then, the minimal entropy over Note that forQue = Qe the upper and lower bounds on
all the PMDs that satisfy the restrictigny = ¢ is denoted by the entropy meet, and we ha¥&(C) = log, |C].

Hn(N,t), and is achieved when Example 2: Consider the circuit of Ex. 1. From Theorem 1
the entropy of the code which equdl®5, is upper bounded
by H(C) < 2.21. Following Theorem 2, we have = 4,t =
15/16,s, = 1/16, and s, = 15/64, and the entropy of the

The proof of Lemma 2 is similar to the proof of Lemma 1g:ode is lower bounded by
H(C)> min H4(5,s,15/16) = 1.31.

s1<s<sp

pi =

1-(N-1)t i=1
t 2<i<N

Lemma 3:Let Z be a discrete random variable over an
alphabet of sizeV. Denote byp, p1 > p2 > --- > py > 0, IV. HOW TO USE THE BOUNDS TO CHOOSE A CODE
its PMD. Then, the minimal entropy over all the PMDs that
satisfy the restrictionp,, = s and )" , p; = t is denoted by b
Hw(N,s,t), and is achieved when

In the previous section we introduced upper and lower
ounds on the worst error masking probabilif,. as a
function of the code’s entropy and i3,,.. In this section
t— (w—1)s i=1 we show that the entropy of the code plays a major role in

its design.As before, we assume that the only information

s 2<i< N’
Pi=19y 1_ (t + (N' — w)s) i :_NTJF 1 available to the code designer is the entropy of the infoionat
0 otherwize words.

In general, there are two types of security oriented codes:
where N’ = w + [ 1=t ], codes that are assumed to deteetak attacksn which the
Proof: Assume thatp does not minimize the entroon_atta_cker cannot control the chewqrd to be used, and codes
Then, there exists another PMD, say that fulfills the re- de5|gned to (_jetecsttrong attacksn wh|ph the attacker chooseg
strictions and minimizes the entropy. Defineand v as the mformaﬂon Word_ to be transmitted. Robust_ codes with
or without pre-mapping [9], [12], [13] are considered as a
countermeasure against weak attacks, and Algebraic Manip-
(9) ulation Detection (AMD) codes [7] are considered to be a
countermeasure against strong attacks.

AMD codes are usually considered to be stronger than
Sinceq, = s and qy+1 < ¢, We haveu,, = s/t andv; < robust codes since unlike robust codes their error masking
s/(1 —t). Therefore, from Lemma 1 and Lemma 2 we havprobability does not depend on the PMD. this section we
H(u) > Hyp(w,s/t) andH(v) > Hi(N —w,s/(1—t). From show that when the entropy of the code is smaller than|C],

u; = 4 1<i<w,

— Yitw .
vj = 1<j<N-—w.



strong attack detecting codes are not necessarily strahger

the simple codes. To demonstrate the role of the entropy, we
assume that the code rate is fixed and investigate the best way
to design the code

F,"

A. A robust code with Pre-mapping

Pre-mapping is an encoding technique that serves to reduce
the error masking probability of robust codef3], [12].
The two robust codes developed to date, the Quadratic-Sum
code and the binary Punctured Cubic code, share a common
property: the set of information words that mask an (arbjjra Fig. 5. Distortion of codewords by errors.
error form a coset of a linear subspace [12]. Pre-mappirgstak
advantage of this property. It permutes the informationdsor
such that the largest subspace contained in the permutsdtsub Property 2: define a PDMg(s)
of the most probable words is as small as possible. Spetyfical
let V' C C be a set ofhigh-probability codewords, i.e.V
consists of the codewords which are most likely to occur. Let ~ %(5) = | (tw)
e1, ea, e3 be errors withQ,,.(e;) > 0,7 = 1,2, 3. The masking ICT=(w+o)
probability of these errors depends on how they distort th ma sw
codewords fromV. Fig. 5 illustrates the distortion of theW%erew = 2(QmelC| - ) andt = QUi — 4. Then,

1<i<o
c<i<o+w (12)
o+w <i<|C|

® Q=

codewords ofl/ by ey, e, e3. Error ey is detectedwith high H(C) > min Hg, ,‘C|(|C|,S,Q5;2ap))
probability, sinceC N {e; + V} = @. Error ez is maskedwith s1<s<sh
high probability since{ez+V'} C C. Errores is detected with H(C) <  max H(gs)).

variable probability, depending on the cumulative probigbi
of the codewords i€ N{e3+V'}. The pre-mapping techniques
presented in [13], [12] aim to eliminate errors of typethat B. AMD codes

are masked with a high probability. 3 Another technique that can reduce the worst error masking
th';lt is t.he worst error masking probab|.||ty when Pr€srobability is use of nonlinear codes with randomized em-
mapping is implemented? Denote bythe maximal overlap, peqding. In this method, each information word has multiple
i.e. the maximal size o:f_ﬂ {e_+V} over all the nonzero error images. The AMD codes presented in [7], [16], [17] utilizésth
vectors when pre-mapping is employed. In the worst case Pfoperty to protect the system from strong attacks. In stron
mapping will not reduce)... This can happen only if attacks, the attacker can choose both the information wuad a
Qme|C] o 2Qme|Cl—0 the injected error. Therefore, the error masking probigdsli
opi=>pi+ > pi of codes that can detect strong attacks do not depend on the
i=1 i=1 i=Qume|C|+1 PMDs of the codes.

A codeword of a(k,m,l) AMD code withr = m + [
redundancy bits consists of three partsk-bit information
pi=s, forall o +1<1i<2Q,.C|—o. word, anm-bit random part, and ambit redundancy part.
The parameters of an AMD code must satisfy

In other words, pre-mapping will not improve the code if

Denote byQ{"*” the worst error masking probability when
pre-mapping is used. Recall that we require that E<i2™—m—1

Po 2 Po+1 = P2Qu.|Cl—0 = P2Qum.|c|—o+1 > 0. otherwise, no AMD code exists [17].
In general, the error masking probability of AMD codes is

This implies thats is in the rangds; : s;] where lower bounded by [17]

1 _ otman)

_ wc k +m —m
N T Qo QUMD = [ 127, (13)
and
. (map) 1 _ g(mar) Note that fork +r > 7, m = r — 2 minimizesQ“4MD)
S A eIl OmelCl — o Finding constructions for AMD codes with arbitrary

(k,m,l) values is a challenging task. In [17] a family of AMD
From Theorems 1 and 2 we have the following relatiofodes based on a Generalized Reed-Muller (GRM) codes was
between the entropy and the worst error masking probabilifjfroduced. The codes are optimal or close to optimal forynan
when pre-mapping is employed. k,m andl. In particular, fork = 2™l —m —2[, m = tl where
t is an integer(t + 1)I = r, the error masking probability of

2Pre-mapping has a drawback in that it produces a non-systeowde. the code equalg; —9-m+l For the special case whete= 1
However, applications, such as circuits implementing tEif8tate Machines oL o :
(FSMs), can employ non-systematic codes. In the next seatedemonstrate and k S 2(22 3) andm =1l= T/2’ the error ma,s,,kmg
the efficiency of pre-mapping on several benchmark FSMs. probability of the codes is greater or equal(ﬁéﬁj +1)2=.



and lower bounds oii7 (C) for two QS codes of dimension

] k = 16. The X -axis represents the error masking probability,
7 and theY-axis represents the entropy. The solid and dashed
lines represent the upper and lower bounds, respectivily. T
dashed lines correspond to = 8 and the solid lines to

r = 4. Note that for uniformly distributed codewords; i.e.,

] when H(C) = k = 16, the upper and lower bound meet.

E This happens whef),,. = Q.... As the entropy of the code

code size (k)
increases

ey decreases the gap between the bounds increases.
05 06 0e or 055 08 08 08 From the figure, in the worst case scenario, foe= 8 an
attack on the multiplier can be masked with a probability of
Fig. 6. The partition of the(code rate,normalized entro, lane l
9 P ( py) P 0.0188 < QUm) < 0.39.

according to the criterion in Eq. 15 for two code sizks= 8 andk = 32.

It is interesting to note that in this casleg, |C| — H(C) =
2.3 information bitswere "wasted” for the sake of simple

C. The role of entropy in code design representation of the product (as a number in b2jseand
It follows from Theorem 1 that if the entropy of the codeat least(n — k) — log,(0.0188) = 2.26 redundancy bitsnay
is larger than be wasted for the same reason. In the worst case scenario, the
B probability that the code witlr = 8 will not detect an attack
1217?;§T 1Og2 |C| Db(QAIVIDHQmC)v (14) on the adder is
it is better to use robust codes such as the QS and PC 0.0045 < Q{44 < 0.08.

code (even without pre-mapping); otherwise, it is better to

try an AMD code as itmay provide a smaller error masking FOr @ given code rate, which code is better, a robust code

probability. with or without pre-mapping or an AMD code? Since a
Moreover, denote by)(GEM) the smallest error masking Punctured Cubic (PC) codes wilf),,. = 27"*! exists for

probability that can be achieved by GRM based codes, afY k andr < k we use it for comparison Figures 8 and

denote byQ,,.. the error masking probability of a robust cod® show the bounds on the worst error masking probability

of the same code rate under a uniform distribution of théersus the number of redundancy bits. The upper bounds on

codewords. It follows from Theorem 1 that, the error masking probability with and without pre-mapping
(Theorem 1 and Prop. 2) are shown in red. The lower bound
If the entropy of the code is larger than (Theorem 2) is shown in blue. THewer boundon the error
(GRM) masking probability of an AMD code (Eq. 13) and the actual
log, [C| — Dy(Q |Qme), (15) error masking probability of the GRM based codes mentioned

hg), above are shown in black.
Note that Eq. 15 suggests a simple way to decide which type
of code will provide better immunity to error injection atkes

The role of the entropy in code design is illustrated in Fig. 6€€ the intersection point between the red and black limes i
The z-axis represents the code rate and haxis represents the figures). In fact, it follows from the criterion in Eq. 14at
the entropy of the code normalized to the code siz&he for both arithmetic modules, if the number of redundancy bit
plane is partitioned according Eq. 15 into two areas: thelstia Must be less than six, a robust PC code (even without pre-
area representéode rate,normalized entropy) pairs for mappm_g) will provide a smaller error masking probabmty.
which a strong MAD code may provide smaller error maskinrgtherw'sea an AMD codenaydo better. Moreover, it follows
probability, and the colorless area represents cases wheré0m the criterion in Eq. 15 that a PC code is better than a

simple robust code always provides better immunity. GRM code for a multiplier withr < 7 redundancy bits and
for an adder withr < 13.

then use the robust code (even without pre-mappi
otherwise, use the GRM based code.

D. Robustness of arithmetic modules

In this section we show how the bounds can be used to
design two robust arithmetic modules: &abit multiplier
whose output is stored in & = 16 bit register. and al5-
bit adder with al6-bit output. The entropy of the multiplie
with uniformly distributed inputs equals3.7 and the entropy
of the adder equal$5.72.

Assume that the multiplication result is protected by
C(n,k = 16) Quadratic Sum (QS) code [8]. Recall that
QS code is a robust code of lengify size 2*, and has

ro=n = .k; redundancy bits. Fotk = 2sr, the code is  snote that if divides k then it is better to use the QS as it has a smaller
optimum, its Q... equals2~", [8]. Figure 7 shows upper Q...

V. BENCHMARK CIRCUITS

In this section, we present the efficiency of Punctured-€ubi

(PC) codes when used to protect tt@mbinational partthat
; generates the next-state of an FSM.

Several benchmark FSMs from the ACM/SIGDA
(LGSynth91) package were examined. The FSMs’ parameters
gnd the lower and upper bounds @h,., denoted byQ s
a’flndQUB, are summarized in Table I. TH®" column in the
table shows the error masking probabilfy; s that can be



Quadratic-Sum code with k=16

r=4

~<

Fig. 7. Upper and lower bounds on the entropy of the Quad&itim code
as a function of the worst error masking probabil®,.. The dashed line
represents bounds for a Quadratic Sum (QS) code of Zifeand r = 8
redundancy bits. The solid line represents bounds for a @8 ob size2'6

andr = 4 redundancy bits.
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achieved by the Hamming ball state-assignment pre-mapping
technique [13].

A graphical presentation of the experimental results is
shown in Figure 10. The upper and lower boun@s, £ and
Qug) define the range of),.. The range is marked by a
blue rectangle. The worst error masking probability,. of
the PC code is marked as a black dot. Note that, although the
gap between the lower and upper bounds may seem large, the
bounds in Theorems 1 and 2 are actually tight; in 'donfile’
FSM, the@Q.,. meets the lower bound and in 'keyb’ it meets
the upper bound.

The Q.. that characterizes the code is marked by a red
dot. Note the significant affect of the PMD on the error
masking probability of the code. In almost all of the FSMs the
error masking probability under uniform distributio®(,.)
is significantly smaller thar@,.. Hence, it is pointless to
design a security-oriented code without taking into actoun
its entropy.

Finally, the figure clearly shows that in most cases it is
possible to avoid the worst error masking probability by
using pre-mapping such as the Hamming ball state assignment
[13]. The black triangles marks thepper boundon thereal
error masking probabilityQ* when a Hamming ball state
assignment is used. Note that the entropy based upper bound
on Q(me») (Prop. 2) falls within the blue rectangle that marks
the range betwee®);p and Qug. This figure demonstrates
that the assumption underlying Prop. 2 is in most cases too
pessimistic. In many cases, e.g. im& FSM, pre-mapping
significantly improves theeal worst error masking probability
(the black triangle is outside the blue rectangle).

VI. CONCLUSIONS

In most circuits, the words at the output of the circuit are
not uniformly distributed; i.e., they do not have maximum-
entropy. This degrades the efficiency of security oriented
codes when they are applied to protect the circuits against
fault injection attacks. Here we show that there is a refatio
between the entropy of the outputs and the worst error mgskin
probability of the code; we present upper and lower bounds
on this probability, and demonstrate their tightness ondsted
benchmark circuits. The bounds can help circuit desigreers t
choose a code and determine the number of redundant bits
required to provide an acceptable error masking probgbilit
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