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Optimal Turn Prohibition for Deadlock Prevention
In Networks with Regular Topologies
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~ Abstract—In this paper we consider the problem of construct- which no progress can be made in delivering, not only of the
ing minimal cycle-breaking connectivity preserving sets bturns  current messages but all subsequent messages in the network
for graphs that model communication networks, as a method s network state, in which worms are in a cyclic dependency
to prevent deadlocks. Cycle-breaking provides for deadldcfree f h other's held is k deadlock
wormhole routing constrained by turns prohibited at some nales. or each others held-up resources, IS .noyvn as deadlock.
We present lower and upper bounds for minimal cardinalies ~ WWhen a message from a source is intended to be sent
of cycle-breaking connectivity preserving sets for sevetaclasses to a single destination, the delivery mechanism of such a
of graphs such as homogeneous meshes, p-ary n-cubes, cubemessage is known as unicast. Cycles in channel dependency
connected cycles, hexagonal and honeycomb meshes and to”graphs (CDG), have been identified as the root cause of
etc. _ o deadlocks in wormhole networks for unicast messaging. In

Irjdex Terms—deadlock, livelock, turn prohibition, wormhole [15], [16], it has been shown that necessary and sufficient
routing. condition for eliminating deadlocks is the elimination gttes

in the corresponding CDG. This condition is equivalent to
|. INTRODUCTION eli_m_ination (_)f all "cycles of edges” (as_ d_efined below) in the
S ) original undirected network graph. This is the approactduse
ECAUSE of its simplicity, low channel setup times, angh, the present paper.
its high performance in delivering messages, wormhole copsjderable body of work has been dedicated to designing

routing has been widely investigated [1]5], and recemly \yormnole routing algorithms that prevent deadlocks from
being I‘EVISIted.fOI’ Netvvprks—o_n-Chms teqhnologles [61. [ occurring [1], [13], [15], [17], [5], [18], [19], [20][23] In
Wormhole routing and its variants, [8] virtual cut throughnese proactive deadlock prevention schemes, eitheravirtu
and pipelined circuit switching, PCS, have been used #hannels were added [13], [22], or some resources were
regular topologies from chip-scale networks [6], [7], taka prevented from being used.
packed Blue Gene [9], to irregular topologies formed by 1o provide deadlock-free adaptive routing, Glass and Ni
mtergonnectlng low-cost workstations in an ad hoc manngfg] presented a method that requires neither additional
forming what is referred to as Network Of‘ Works'tatlons Obhysical nor virtual channels. The turn model is based on
NOWSs [10]-{12]. Messages, also known as ‘worms’, are mag@alyzing the directions in which packets can turn in regula
up of flits that are transmitted atomicly, one flit at a ime@fr epworks and the cycles that the turns can form. Prohibiting
node to node in the network. The header flit, containing ﬂj‘@rst sufficient number of turns to break all of the cycles,

destination address is immediately followed by the payload noquces a routing algorithm that is deadlock free anddiviel
data flits [5]. One aspect that makes wormhole routing agge.

routers attractive is that each channel requires buffasdre  The motivation for seeking the minimal fraction of pro-
only a few flits deep [13], [14]. In wormhole routed networkspipited turns is originally due to Glass and Ni [18]. They

messages traverse the network in a pipelined fashion, sygfie found that reduction in the number of prohibited turns

that parts of the message occupy different network ressurcggits in a decrease of average path length and the average
while the header flit requests yet other resources. Wher tbermessage delivery time, thereby increasing the througFijis.

no contention, such as in lightly loaded networks, the l¥enconclusion was confirmed by other authors [24], [25] for
of message delivery varies very slowly with the distance [S}eqgular topologies as well. Experimental data show thate
When a message is blocked, the header and the rest of jthg considerable gain of approximately 7-8% in the maximum

message wait until the blockage is removed. In wormholgstainable throughput in the network, for each percentage
routed networks messages could hold potentially large mmlﬁ)oint reduction in the fraction of prohibited turns.

of network resources while attempting to reserve others. INThe simplest deadlock prevention approach utilizes span-
congested networks with high injected traffic, improperlying tree based routing for message delivery. Since message
designed routing protocols can lead to a network state, jpypagate along the tree edges deadlocks are prevented from
o occurring. However, in this approach a large number of
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The Up/Down algorithm, first introduced in Autonet [26]of nodesN), and, in many cases, i©(1) (i.e., constant).
routing algorithm improves the shortcoming of the spannirnbhe memory requirements for computing the solutions do not
tree approach by using the cross links, non-tree links, undexceedO(log N). The proposed turn prohibition rules can be
certain conditions. Nevertheless the Up/Down approadh stasily implemented for execution in a distributed way.
suffers from the other shortcomings of the spanning treedas It should be pointed out that turn prohibition algorithms
approach. are, in fact, pre-routing procedures; they do no prescrihe a

Sancho and Robles [27] explored all spanning trees wipecific routing policy, but just restrict the set of permsnitt
every node acting as the root node and then selected the lests in routing tables. Therefore, they are compatiblen wit
tree. The selection of the best tree and root combination-is @any routing algorithm, in particular, with the fully adai
complished by two heuristic rules with a run-time complgxitminimal routing (of course, paths that include prohibitechs
of O(N?), whereN is the number of switches in the networkare excluded from consideration).

In [28] a version of the turn prohibition algorithm was used A few particular regular topologies have been considered
that enabled generalizing the application of Network Clalsu in several papers [18], [39]-[44], [13]. This paper present
to arbitrary topologies. methods applicable to a number of classes of popular regular

Virtual channels have been introduced and considered graphs, such as homogeneous meshes, p-ary n-cubes, cube
a tool to avoid deadlocks in a number of papers [4], [29¢onnected cycles, hexagonal and honeycomb meshes and tori.
[30], often in combination with the dimension-ordered iogt ~ The dimension-ordered routing (DOR) [31] has been pop-
(DOR) technique [31]. However, as pointed out in [29], the usular for meshes. However, as shown in Section lll, the use of
of virtual channels may have a negative effect on the messagy®R algorithm results in prohibition of much larger fractio
latency. of turns in the network than the approach developed in the

A variant of turn prohibition algorithm, called Tree-Basegresent paper. For multi-dimensional meshes, the fraafon
Turn-Prohibition, TBTP, where it [32] has been shown teurns prohibited by DOR tends ty2. Our methods guarantee
have polynomial-time complexity and to be backward comhat the fraction of prohibited turns never exceddd. We
patibile with the IEEE 802.1d standard. Authors claim thafote also that for the DOR approach in meshes some of the
the throughput has been increased by a factor of up to 2.4fhessages will not be delivered even with just a single link

A distributed version of the TBTP algorithm is reported ifailure. For the routing techniques based on turn protubiti
[33]. With an upper bound of /2 for the fraction of prohibited approach described in this paper, in the case of n-dimealsion
turns, the shortcoming of the TBTP approach is that it coulleshes all messages will be delivered as long as the number
potentially restrict the use of a large number of turns. of faulty links does not exceed — 1. Thus the proposed

A hybrid methodology using both proactive and reactive agechniques provide for a higher reliability than DOR.
proaches was proposed in [34] , in which, routing restrietio  Section Il includes definitions, notations and lower bounds
are adjusted dynamically based on network congestion.  on the number and the fraction of prohibited turns. Then we

Another class of deadlock-preventing algorithms, the Sfntroduce and analyze embedded graphs and homogeneous
called, tree-free cycle-breaking algorithms, was devetbim  meshes in Section Il followed by analysis of a number of well
[19]-[21], [24], [25], [35], [36]. These algorithms (TP andknown regular topologies in Section IV. Finally in Section V
SCB) have been proved to create a minimal (irreducibl@e discuss dilation as a result of turn prohibitions and @mes
set of prohibited turns the size of which never excegd® our conclusions in Section VI.
of the total number of turns in any graph. They have been
shown to outperform the tree-based algorithms with respect
to three basic characteristics: fraction of prohibitednsyr
distance dilation, latency and the saturation load. Foresom Similar to Duato, Glass & Ni and others [4], [14], [15], [18],
broad classes of network topologies, those algorithmsigeov throughout this paper, we use the general abstract model of a
an optimum solution of the turn prohibition problem [36]communication network as an undirected graph, in which, ev-
The computational complexity of the tree-free algorithas iery node incorporates a local processor and a router. Nodes a
O(N2%A), whereA is the maximum node degree (number ointerconnected via full duplex and symmetric communigatio
neighbors) in the graph. The algorithms are topology agnostchannels. We note that in our model, the graph represetiteng t
However, the application of those general algorithms may betwork is not a CDG but the undirected graph representing
still unnecessarily complex in the case of graphs with aertathe topology of the network. The transfer of flits which takes
regularities in their structure. place over the communication links, are under tight worrahol

This paper deals with certain classes of networks witlandshaking protocol between the nodes. When a header flit
regular topologies. Here, we do not use general algorithagives at a router, either from the local processor or from
developed previously for arbitrary topologies, e.g., [B]> an adjacent node, the router would determine if the outgoing
[13], [15], [17], [19]-[22], [26], [27], [32], [33], [37], B8], communication channel necessary to forward the flit is busy
[24], [25], [35], [36]. Instead, we present optimal or asympor not. If the channel is busy, the flit waits until the channel
totically optimal solutions of the turn prohibition proloke is freed up. If and when the communication channel is freed
for general classes of special topologies. These solutoas up, the message with the waiting flit takes ownership of the
obtained by application of simple rules, run-time complexi channel and the flit is transferred to the adjacent node.itn th
of which does not excee®(N) (i.e., linear in the number paper we are dealing only with the wormhole routed networks.

II. DEFINITIONS, NOTATIONS, AND LOWER BOUNDS
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We do not consider resource dependent or message depenthentturn (a,d, k) it is a cycle-breaking turn. Note that if

deadlocks [45] which may appear associated with IP blocls prohibit an additional turn at nodg, namely the turn

in NOCs. We do not consider additional features, such &s f, k), we would have a set of prohibited turfig,; (G) =

in-network synchronization, priority discipline, creddgic, {(a,d,h), (b, f,k)}. This set would break the two simple

arbiters, virtual channels, and other more complex methocigles but it does not break all cycles. A set of prohibitadsu

of fighting deadlocks, as in [46], [47]. Strategies thatim®d W5(G) = {(a,d, h), (d,e, f), (b, f,k)} is a cycle breaking set

additional flit buffers or additional control circuitry thare but it is not a connectivity preserving set since it discase

used to implement virtual channels or escape ports or gggewéhe graph. Finally the séts(G) = {(a,d,h),(f,b,9)} is a

to avoid deadlocks are viewed as costly approaches. minimal connectivity preserving cycle-breaking set ofrigir
Let us consider an undirected connected grépl, E),

with N = |V| vertices (nodes), denoted hyb,..., and a

M = |E| edges, denoted bya,b), etc, to represent a

communication network. Here, each nodez V represents

a router and a processor, and each edgé) € E represents

a bidirectional communication link between nodesand b.

A turn in G is a triplet of nodes(a,b,c) if (a,b) and

(b,c) are edges inG and a # c¢. In an undirected graph

turns (a,b,c) and (c,b,a) are considered to be the same p,

turn. If the degree of nodg is d;, the total number of

turns T'(G) in G is given by T(G) = Zjvzl (dQJ) A path  Fig. 1. An example of a simple network with = 9 nodes,M = 10

P = (Uo,vl, L 7UL71’UL) of Iength L, L > 1 from node bidirectional communication links an#l = 13 turns.

a to nodeb in G is a sequence of nodes € V' such that, et ¢ be a connected graph with minimum degrée

vo = a andvy, = b, and every two consecutive nodes argonsider a set ofz cycles inG such that no more than

connected by an edge. Subsequences of the fefmy, vi)  cycles are covered by the same turn. Then [25], the number

are not permitted in a path. Nodes and edges in the pgfiyronibited turnsZ(G) and fraction of prohibited turns(G)
are not necessarily all different. A turfu, b, c) belongsto  gatisfy the following inequalities:

b

3

k

path P = (vo,v1,...,vp) if (a,b,¢) = (vi,Vi41,0i42),

i =0,...,L —2. A set of turnsW(G) is called theset Z(G) =M —N +1, (1)
of prohibited turns and any path that includes turns from R

W (G) cannot be used for communication (such a path is called 2(G) = "T(G)’ )
prohibited). This set is calleadtonnectivity preserving, if for

anya,b € V there exists a path iG: that is not prohibited. and 5—1

Path P = (vo,v1,vs,...,0k, vo,v1) in G is called acycle Z(G)2M-N+(5)+1, §>2. 3

If no proper subset of nodes of cycle forms a cycle, we  Bound (3) is tight. For example, in the Petersen graph (see

call P asimple cycle SetW (G) of prohibited turns inG is  Fig. 11 b) withM = 15, N = 10, andd = 3, the number of
calledcycle-breakingif every cycle inG includes at least one prohibited tunsZ(G) = 1.

turn from W(G). The minimum cardinality of connectivity
preserving setlV(G) for a given graphG is denoted by I1l. EMBEDDED GRAPHS AND HOMOGENEOUSMESHES
Z(G) and the minimum fraction of prohibited turns is denoted Consider a grapl? = (V, E') which is embedded in the
by z2(G) = Z(G)/T(G). Since prohibition of turns imposesn-dimensional real spadg”, so that each node is a point
routing constraints, by preventing certain communicagiaths in R™.
from being used during the routing of messages in the network Definition 1: Given a neighborhood seb = {+a;,i =
it must be done in a way that minimizes the fraction of link, ..., ¢}, wherea; are vectors ilR", an embedded graph is
pairs (i.e. turns) that are prevented from being used. ahomogeneous mesh, if each nodex has a degreé = 2¢, and

In Fig. 1 these concepts are illustrated using a simpiex € V, then its neighbors are nodesta;,: =1,2,...,t.
example of a graph with nine nodes and 13 turns. The turnFor example, for an infinite 2-D Mesh) = {+a;,+as}
at nodea for example is(c,a,d). If a turn is prohibited wherea; = (0,1), az = (1,0).
we denote such a turn graphically as an arc drawn centeredeveral important topologies, such as multi-dimensional
at the node and ending on the two edges of the turn. Foeshes and tori, can be embedded into n-dimensional real
example, the turra, d, h) is shown to be prohibited. A path spaces and can be considered as homogeneous meshes.
from nodea to nodef is P = (a,b,¢, f), and an alternative We calla € D positive, a > 0, if the first non-zero
but non-minimal path i” = (a,c, h,d, e, f). A simple cycle component ofa is positive, otherwisea is negative,a < 0.
in the graph would be’; = (a,d, h,c,a,d). Note that in For example, in a two dimensional spgéel) > 0, and
our definition of a cycle, one edge, here the edged) is (—1,1) <O0.
repeated at most once in the same direction as the path is
traversed. Because of the prohibited turn at natleif a A. Infinite Meshes
message is to be routed from nodeto nodeh it would Consider the following turn prohibition rule for homoge-
have to be sent out via node Since the cycle’; includes neous meshes. Turfx;,x2,x3) = (X2 — X1,X3 — X2) IS
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prohibitediff x; —x; < 0 andxs — x2 < 0. Let W(Mp) be [ ]

a set of prohibited turns for a homogeneous mash. Remarkably, the result (4) does not depend on the choice
Theorem 1:As described, the turn prohibition rule has th@f the coordinate system and on the particular topology ef th

following properties. mesh. For example, Fig. 2 shows two different non-isomarphi

topologies which have the same node degtemd, thus, the
1) Forany mesh\/p and anyx,y € V' there exists a path samez(G).

from x to y not containing any turns frofi’ (Mp).

2) For any cycle inMp there exists a turn which belongs
to the cycle and also belongs ' (Mp), the set of N ] NI AT AL AN
prohibited turns. ( ( ( ( ( (

3) The set of prohibited turns is minimum

4) The minimum fraction of prohibited turns for a homo- ) ) ) )
geneous mesh/p with size of D equal tod is ( ( ( (

J RARRRY
1 1
G=-(1-——]). 4
(6 =1 (1- 727 @ a
Proof: é A AN AW 4E 4
1) Consider a pathP? = (xo,x1,...,x;) from nodexg
to xj, where Xi41 = X; + by i = 0,...,k—1, Fig. 2. Different non-isomorphic topologies with the samegited = 6

b, € D. The corresponding sequence of edges {gve the same(G).
S = (bp,b1,...,br_1). Note that pathP is prohibited
iff there exists a pair of consecutive eddés_1,b;)
in S such thatb;,_; > 0 and b; < 0. It follows

It is interesting to compare (4) with the fraction of prohib-
ited turns when one uses the popular DOR algorithm [31].

from Definition 1 that if S forms a path fromxg For the case of an n-dimensional mesh & n) the

to xi, then any permutation obg, b;,...,br_1 also fractign of prohipited turn§ given by (4) '5’(;;—*11) The D_OR
corresponds to a path fromy to xy, since the mesh is algonthm prohibits a portion of the turns equal $6-%, i.e.,
homogeneous and, = Xo+Zf:_01 b;. Then there exists tWice as large as our approach. We note also that for the
a permutations’ = (b, b'y,...,b's_1) of S in which DOR approach in m_eshes some pf the_ messages will not be
all negative vectors (if any) appear before all positivgehve_red even with just a smgle_ I!r_lk failure. For the rogti
ones (if any). The corresponding paftf = (xo,x'; = tef:hnlques _based on turn prphlbltlpn approach described in
xo + b0, ..., xr = x's_1 + b's_1) has no prohibited this paper, in the case of n-dimensional meshes all messages
turns and thus, nodes, andx;, are connected. will be delivered as long as the number of faulty links does

2) Consider a cycl& = (xq,x1,...,Xx, Xo,x1) and the NOt excee_dm_—_l. Thus the proposed techniques provide for a
corresponding cycle of edge&s= (bg, by, ..., by, by), Nigher reliability than DOR.
whereb; = x;41—x;,i =0,1,...,k—1; by = x0—Xg. A more general situation can be described as follows.
Note that foo b, = 0. Therefore, among vectorsConsider an embedded gragh = (V. E) that consists of
bo, by, ..., b, both positive and negative ones must different types of nodes; = (J,Z, Vi such that all nodes
exist. Since sequencé starts and ends with the saméf type k have the same degrek, and if x € V}, then its
vector (either positive or negative), it must include dteighbors arec+ay;, i =1,2,...,dy. Letd, = dP +d),
least one paib;_1, b;, whereb;_; is positive andb; Wheredgj) andd,(;) are the numbers of positive and negative
is negative. Thus, the corresponding cycle is prohibitedectors, respectively, in the set, = {ax;}. We call such

3) Let us consider cycles of length fouf; = (x¢,x;, €embedded graph®ulticomponent meshes
X2, X3, X0,X1), Wherex; = xg + by, x2 = x1 + by, Suppose we prohibit all turn&, x2,x3), such thatx; —
x3 = X2 —bg = x3+b;. All sets of turns correspondingx, < 0 andxs — xo < 0, or, alternatively, such that; —
to different choices of nodesg,x;,x> are disjoint. x2 > 0 andxs — x2 > 0. Let us call such turns "negative”
Hence, in order to break all cycles, it is necessary o, respectively, "positive”. Assuming that the conneityivis
prohibit at least one turn in each of such cycles. Irpreserved and following the same reasoning, as in the proof
deed, according to our prohibition rule, in the sequencé Theorem 1, we obtain Corollary 1.
of edges(bg, b1, —bg, —b1,bg) exactly one turn is  Corollary 1: Prohibition of all negative or of all positive
prohibited (e.g., ifbg, by > 0, then turn(by,by) is turns in graphG described above breaks all the cyclesGn
prohibited). Thus, the set of prohibited turns is th&he fraction of prohibited turns(G) obeys an upper bound
smallest possible.

4) Obviously, in the seD — {+a;,i = 1,...,t} exactly mind (d§c >)7Z$1pk (d,(gr))
t = g vectors are positive, and the other half are - 2 = 2
negative. Therefore 2(G) = - i , (5
Zk:1 Pk ( 9 )

(d/2) 1 1
z(G) = Z _—(——>. . .
) 4 d—1 wherepy, is the density of nodes of type
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Here, as usual (c.f. [48]), the density. of a subset/;, of
nodes in an infinite embedded graghV, E) is defined as
follows. Consider a balB(R) of radiusR in R™. Then ~

: Vi N B(R)]
P P VN B@®L

Note that ify = x+a, wherea > 0, thenx = y+b, where
b = —a < 0. Therefore3"" | prdi™ =S | prd™). How-
ever, for some structures prohibition of positive vs. nagat
turns can give rather different results, as shown by Exarhple

Example 1The embedded graph in Fig. 3 has three different
types of nodes with degrees 2, 3, and 5, each with a densify 4. A multicomponent brick mesh in which six differentdetypes are
of p = 1/3 . As shown in the enlarged view, all positiveidentified in the enlarged view by the numbers adjacent tonthdes.
turns prohibited at the node of degree 5, and all negativestur
prohibited at nodes of degree 2 and degree 3. Prohibition
of negative and positive turns yields different fractionls dB- Finite and Wraparound Meshes
prohibited turns equal t8/7 and1/7, respectively.

Homogeneous meshes considered so far in this section are
of infinite extent with infinite number of nodes. We will define
now finite D-MeshesMp(p1, ..., p,) and finite wraparound
D-meshesM Y (p1,...,pn)-

Let D = {+ay,*as,...,Ta;}, a, € R", i = 1,2,...,¢
and d = 2t be the degree of every node. Then < t,
(otherwise the mesh can be embedded in a space of a smaller
dimensionality), and there are linearly independent vectors
in D. Henceforth we will assume that there exists a basis
B ={ay,...,a,}, B C D such thatany pointin the mesh can
be represented as a linear combination of vectors fBbwmith
integer coefficients. Denot€ = A~! where A is the matrix

with columnsay, as, . . ., a,,. Then any nod& in the mesh can
be represented in basiasx = Cx = (z(1), 22, ... z("),
Fig. 3. A multicomponent mesh with three different types ofies of degrees Where allz() are integersj = 1,2,..., n.

2, 3, and 5. In the enlarged view we show all positive turnsiited at the it i S R
node of degree 5, and all negative turns prohibited at notieegree 2 and Let p1,p2,...,p. be positive integersp; > 2, <

degree 3. 32 .., T
Definition 2: A graph G(V,E) is a finite D-mesh

Example 2:The embedded graph that we call the "BrickMp (p1, pa,...,p,) if V = {x|ZD € {0,1,...,p;—1}, i =
Mesh” shown in Fig. 4. There are six types of nodes in this...,n}. Then (x,y) € E if C (x —y) € D¢ or
mesh; type 1, type 2, type 3, and type 4 nodes are of deg@e(y — x) € D¢, where Dc = {£+Ca; | i = 1,...,t}
3, and type 5, and type 6 nodes are of degree 4, as shown=in {+(1,0,0,...,0),+(0,1,0,...,0),...,%(0,0,0,...,1),
the insert. The densities of type 1 and type 6 are eégdd  +Ca,1,...,+Ca;}.
and the density of each of the othersli&7. If we consider  Example 3:Let n = 2 and D = {4a;,4ay, +a3} =
the prohibition of the negative turns as shown in the enbhrggi (%’ \/75) S+ ( 1 \/5) S+ (1’0)}_ Note thatas — a; —

view in Fig. 4, we determine that the fraction of prohibite ,, and 22
turns isz = 23/84. The prohibition of positive turns gives a 1
different result:z = 3/14. A= {zg é} ;
Another interesting topology is the honeycomb mesh (see 2 2
Section 1V, Fig. 8b). 1 @
In general, the bounds in (5) depend on the choice of C= 1 @ ’

the coordinate system, in particular, on the order of the
coordinates. and Dc = {+£(1,0), £(0,1), +
Note also that the prohibition rule given above for &/p(5,3) is shown in Fig. 5.
multicomponent mesh does not guarantee, in general, théNext we define finite wraparound meshés}) (p:,p2,
preservation of connectivity. However, it can be shown that.,p.). Let p; be positive integers larger than 2. We will
for a two-component meshn{ = 2) connectivity is always also assume that for the s& = {+ai,+a,,...,+a;},
preserved, provided tha” > 0 andd{” > 0fork=1,2. (a; € R"n < t), vectorsaj,ay,...,a,} are linearly
For example, for the honeycomb mesh (Fig. 8b),= 2, independentand eaeh,.; =3 ;" uWDa; (j=1,...,t—n),
dP =247 =1,d" ="1,d7) =2, p = p, = 1/2 Where ) are integers, such thau("| < p; — 1. Let
andz(G) = 1/6 (see Section IV). U, = (u§1)7u§2)7 . 7u§")) andU, = (uél),u§2)7 . 7u§"))

—~

1,—1)}. The finite mesh
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4,0)

41 “42)

0,0) 0,1

Fig. 5. A finite D-MeshMp (5, 3) with D = {j: (%, @) 4+ (—%,
+(1,0) } and D = {=(1,0), £(0, 1), £(1, —1)}.

(02)

be vectors Withugi),u(i) € {0,1,...,p; — 1}. DenoteU; =
U, @ Uy, if ugf) = ugl —i—uéi) mod p;, 1 =1,2,...,n.

Definition 3: A graph G(V, E) is a wraparound D-Mesh
MY (p1,p2, .. pa) ifV = {x |20 € {0,1,...,p;—1}, i =
1,2,...,n} and the edgdx,y) € E if there exists a vector
h such thatx © h =y, andh = b for someb € D. (Here,
x=Cx,h=Ch,y=Cy, andb=Cb.)

Example 4:Let n = 2 and D = {+a;,tas,+az} =

{i (%, ‘/75) ,+ (—%, @) ,i(l,O)}. As in Example 3, se-

lecta; = (%,‘/75) anday = (-1, @). Then
1oy
c=|_ J|-
3
a3 — a; — ag, and Caz = 53 = (1,—1) With this

neighborhood definition, the wraparound mesf} (5,5) is

shown in Fig. 6. This wraparound mesh has five wraparound

cycles(x,x® (0,1),x®2-(0,1),x® 3-(0,1),x) of length

4, where @ stands for addition of vectors such that first
components are added modulo 5 and the second components

are added modulo 4, four wraparound cydesx®(1,0), x®
2-(1,0),x® 3 - (1,0),x ®4 - (1,0),x) of length 5, and
one wraparound cycléx,x & (-1,1),x ® 2 - (—1,1),x ®
3-(-1,1),...,x @ 19 - (-1,1),%x) of length 20. In the
figure, a path from nod& = (3,2) to nodey = (0,3),
P = ((3,2),(2,2),(1,2),(0,2),(0,3)) is shown using thick
lines.

To construct sets of prohibited turns fdfp (p1, p2, ..., pn)
or MY (p1,pa2,--.,pn) We will introduce a total ordering of
nodes in these meshes.

Definition 4: If x,y € V whereV is the set of nodes in
Mp(p1,p2,---,pn) OF MY (p1,p2, ..., pn), We will say that

x>y if X > () wherei is the smallest integer such that

x() £ (% = Cx, y = Cy).
Theorem 2:For a finite meshMp(p1,p2,...,pn) OF @
wraparound mest/} (p1,p2, ..., pn), let the set of prohib-

o, 0.3)

0,0)
(

02)
)

(CH)] 4,2)

@0 PPV an G @@ @3 Y 4y
Fig. 6. A wraparound D-Mesh MZ‘QV(S,B) with D =
{£ (=3, 4) £ (L0} Do = {(1,0), £(0,1), £, -1}

ited turnsF = {(X,y,2) | X,y,z € V andy > X, y > z}.
Then
1) For anyx,y € V there exists a path fronx to y
containing no turns fron¥'.
2) For any cycle there exists a turn in the cycle that belongs
to F.
3) The setF is asymptotically optimal ifp; — oo (i =

1,...,n), and the minimum fractior: of prohibited
turns for Mp(p1,pa,...,pn) OF MY (p1,p2,...,0n)
with |D| = d is, asymptotically,
1 1
1 =—(1-—].
ifgl}” . < d— 1>
Proof:
1) First we will prove that ifx = Cx = (x(1),x®,
....x") andy = Cy = (yV,y?,....y™), there
exists a path fronx to y in Mp(p1,p2,...,ps) OFin

MY (p1,p2,...,ps) containing no turns fromF'. Let
S.(%¥) = {i|X > ¥} and S_(X.¥) = {i|% < ¥}.
Consider now a node such tha&z® = min (x(V, y(*).
Obviously, there exists a path fromto z, such that any
next node in the path is smaller than the previous one.
Similarly, there exists a path fromto y such that any
next node is larger than the previous one. Now take the
concatenation of these two paths. The turn at nade
permitted, sincez is smaller than the two neighboring

nodes in the path. Thus, there exists a permitted path

fromxtoy.

2) In every cycle(Xy,Xz, ..., Xy—1),X¢) Wherex_q) =
X1 and X, = X there existsi € {1,2,...,/}
such thatx; > X4-1), Xi > Xg41), and turn
(i(i—l)yiiai(i+1)) er.

3) We will say that the nodex € V is internal in

]\/[D(pl,pg,...7pn) or in ]\/fg/(pl,pg,...,pn) if 0 <
x() < p;—1foralli =1,...,n.If xis aninternal node,
then in each pair of its neighbors,+ a; (i =1,...,t)
one neighbor is larger thak and the other is smaller
thanx. Thus for any internal node exactlyt neighbors
are larger tharx, and exactlyt neighbors are smaller
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thanx. Hence, for every internal node there are(;) I(c), andi(a),(b),!(c) are distances in terms of number of

turns (y, x, z) which belong toF. Thus, hops from nodeg(0,0,...,0) to a,b and c. The number of
(t prohibited turns is equal to
2) 1 1 n n 2 n—2
i < 72 — ). Z(M™) = < > -1 . 9
ié‘llg}mnz_ (215) 4(1 d—1> ( p) 9 (p )°p )
o 2 Then (6) follows from (8) and (9).

On the other hand, similar to the proof of Theorem 1, for any The lower bound for tori is obtained by counting all cycles
internal nodex there are(}) cycles inMp (p1,pa, .. .,py) or with disjoint sets of turns, namely, all cycles of length 4an
in MY (p1,pa, - - -, pn) Which contain 4 nodes each that do notll np"~! one-dimensional cycles.
have common turns. In the union of these sets for all internal T obtain the upper bound, consider in any:ofimensions
nodes any two cycles do not have common turns. Since & direction as positive and the other one as the negative.
most (£) turns are prohibited at any non-internal node, thEhen at each of™ nodes prohibit all(}) turns from positive
contribution of the non-internal nodes # does not exceed direction to negative. Also, to break all one-dimensional
their fraction among all nodes, and, therefore, is infinibeg  Cycles, prohibit turns along each of coordinates of the

whenp; — oo (i = 1,...,n). Thus, it follows that form {(z1,....i—1,p = 2,@is1, ... @), (21, i1, p —
1 1 1,xi+1,...,xn),(xl,...,wi_l,O,xi+1,...,gc_n)} and the val-
lim 2> - (1 _ _) ) ueszy,...,Tr;—1,%t1,---,x, are all possible. To break all
P 4 d—1 more complex cycles, it is sufficient to prohibit all turns
- from the positive direction along one of the coordinates to
The setF — W(Mp(5,3)) of prohibited turns for the the positive direction along another coordinate at the fpoin

9, (o] .
Mn(5.3) with D — { + (1 \)/g L(-1 ¥3) 110 where both coordinates have values equal to1. There are
Mp(5,3) with —{ (577)7 (‘577)7 (L, )} 2(%2)p" 2 such turns.
is shown in Fig. 5. -

IV. SPECIAL TOPOLOGIES
A. Finite Meshes and Tori B. Hexagonal and Honeycomb Meshes

Meshes and tori have been the most widely used com-Next, we considethexagonalmeshes [40], [41], [49] in
munication network topologies for multiprocessors [5]9][4 which each node has up to 6 neighbors hndeycomimeshes
Recently, "TOFU", a 6-dimensional mesh and torus topolegi¢42], [43], [49] where each node has up to 3 neighbors, and
have been used to provide the extremely high performance dhdir corresponding tori. In a hexagonal mesh of siskenoted
fault tolerant interconnection network, achieving 10 flefzs by HeM,, peripheral edges form a regular hexagon where
[50]. In this section, we first consider square meshes, vétihe each side hap nodes. A honeycomb mesh of sigedenoted
inner node connected with 2n nodes, where n is the dimensionH oM, where each side of the mesh hakexagonal cells
of a mesh. Meshes of this type were investigated in [18], @hewhose centers also form a regular hexagon. The hexagonal
only 90-degree turns were taken into account. It was showand honeycomb tori are degree six and degree three regular
that 1/4 of all such turns has to be prohibited. With a moréopologies, respectively.
general turn model, our results are in agreement with asthor In a hexagonal mesitfel,,, there areN = 3p? — 3p +

conclusion in [18]. 1 nodes with label®,1,..., (N — 1) with the center node
Theorem 3:For n-dimensional p-ary mesi/} having the label 0 [44]. Adjacent nodes of any given nodee
(n—1)(p—1)2 id_entifieq to have. labele+1, a+(3p—1),a+ (3p—2) where
2(M)) = 5 (6) arithmetic operations aremod N. In the corresponding torus,
2p(p =2) +4(n - 1)(p - 1) wraparound edges are also identified using the same adjacenc
and for n-dimensional p-ary tori”, with p > 2, rules. Labels of adjacent nodes are shown in Fig. 7(a) for the
case of a sizep = 3 torus.
W < 2(T7) < (n = 1)(* +2) +2p. (7) In a honeycomb torus, nodes that are connected by the
2(2n = 1)p ! 2(2n — 1)p? wraparound edges are those nodes that are mirror symmetric

Proof: To prove the lower bound for meshes we considevith respect to the three lines passing through the ceni@r an
the system of all cycles of length 4. There dte= (;)(p — normal to each of three edge orientations [43]. These axes ar
1)2p"~2 turn-disjoint cycles of this type and the total numbeshown as dashed lines in Fig. 7(b).

of turns in M} is equal to Theorem 4:For a hexagonal mesh of size Hel,, with
" e n . N = 3p? — 3p + 1 nodes,
TOMG) =np=2)p" ' +4(5) (=12 (8)
" . el — 9p? — 21p + 13 10
The lower bound forZ (M) follows now by observing that z(HeMp) = 1507 —90p 1 51" (10)

at least as many turns must be prohibited as there are turn- )
disjoint cycles. and for a hexagonal torus eT), of sizep,

To prove the upper bound of Theorem 3 for p-ary meshes, 9p% — 15p + 10
we prohibit all turns(a, b, c), wherel(a) < i(b), I(b) > Z(HeTp) = B~y 15 (11)
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is now replaced with a complete grapk, with n > d;
nodes whereil; is the degree of node; of the original tree
T’, to obtain the augmented graghV, E') which is locally
complete The locally complete graph has = |V | = N'n
nodes and E| = N’ — 1+ N’(3) edges. Let us denote the
nodes of K,, that replaces node; of the original tree by
vim (m=0,1,...,n—1). Embedding of the complete graph
K, is done in such a way that if the is the parent of nodes
v; anduy, then in the locally complete graph) o is connected
to nodev; , anduy o is connected to node; ,, wherer # s
andr, s # 0 (Fig. 9).

Fig. 7. Examples hexagonal toriise73 in (a), and honeycomb torud o735
in (b) for p = 3, where wraparound links are identified. o

Proof: First, note that total number of turns infleM,
is equal to:T'(HeM,) = 15(3p> —9p+7) + 6(6p — 12) + 18
= 45p? — 99p + 51.

To prove the lower bound, we consider the set of all turn:=*
disjoint 6(p — 1) triangles, and3p? — 9p + 7 hexagons and
observe that we must prohibit at least as many turns as there
are turn-disjoint cycles, e.g., triangles and hexagons. Fig. 9. Embedding a complete gragiti, at tree nodes); = 4 andv; = 5.

Upper bound onZ(Hel,) can be obtained as shown inPort numbers at nodes = 4, v; = 5, and the node numbers of the complete
Fig. 8(a). graph K4 are displayed.

For the case of hexagonal tori witi( HeT},) = 3p*—3p+1
nodes, m(HeT,) = 3N(HeI,) edges, andl'(HeT,) =
15N (HeT,) turns, additionab(2p — 1) turns have to be pro-

Theorem 5:For a locally complete tree-like graph obtained
as described above, the fraction of prohibited turns isrgive
by

hibited to prevent all wraparound cycles. Theref@@p— 1) 1 N'n(n —2)

cycles must be added to the system of turn-disjoint cycles z(G) = 3N ) T AN = 1) (12)
due to triangles and hexagons. Again, observe that we must ) o )

prohibit at least as many turns as there are turn-disjoiciesy Proof: Since the minimum degree nodes will always be

To prove the upper bound, we cut the wraparound cycles@ﬁth_e _Ieaf node_positions of the orig_inal_ tree, the number of
the hexagonal torus and prohibit @(2p — 1) turns at the Prohibited turns in each embeddéd, is given by Z(K,) =

nodes on the border of the resulting mesh. m ("2') +Z(K,-1). Solving this recursion equation, we obtain
Z(K,) = (g) Hence, for the augmented graghwith N’

nodes we have

Z(G) = N'Z(K,) = N'(2).

In embedding ak,, at a tree node of degre&, only d;
nodes of theK,, will be connected directly to the original
tree. This means that embeddingkg, graph at an original
tree node, will create nodes of at most degtea the locally
complete graph. Also, note that when /&, is embedded
at a tree node with degreé, there will ben(",") turns
contributed by theK,, and (n — 1)d; turns contributed by

the d; edges of the original tree. With these observations the

i - _ total number of turns i§'(G) = N’n("gl) + Zf.v_l(n —1)d;
Fig. 8. Prohibited turns for hexagonal (a) and honeycomim@jhes showing ;1 N =
the prohibited turns. =Nn(";)+(n—-1)3>;",d; or

T(G) = %N’n(n ) —2)+2(n—1)(N = 1).

C. Locally Complete Tree-Like Topologies Hence,
!
Locally complete tree-like topologies are hybrid topoksyi 2(G) = 1 - N'n(n — 2) - .
incorporating the properties and attributes of its comptsie 3N'n(n —2) +4(N"—1)
[49]. Consider a treel” = G'(V',E’) with M’ = |E’| [ |

undirected edgegv;,v;} € E' and N’ = |V’| nodesu;, For example, fom = 3 and N' — oo, 2(G
i = 0,...,N' —1 . Assume that each node of the treand forn =4, and N’ — oo, 2(G) = 3
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D. Cube Connected Cycles is flipped, like a pancake [49]. In a 4-pancake, nodes that

We will consider now a binary:-cube connected cycles, @€ adjacent to nodd, 2,3, 4) are(2,1,3,4), (3,2,1,4) and
CCC [49], where each node of an n-dimensional binary culé 3,2, 1)- (see Fig. 11(a)). For this grapty = 24,k = 4
is replaced by a cycle of nodes of degree 3 (see Fig. 1@nd according to Theorem 7 and (3)G) = 2/9.
for n = 3). These interconnection networks are popular, since
they combine the properties of small node degree and small. o b
diameter of the network graph [51]. First, we will establish [ S
upper and lower bounds with Theorem 6 for a slightly larger & %
class of graphs.

Theorem 61f graph G is obtained from d-regular grapt
(d; =dforall i, d > 2) with N(H) nodes by replacing each

14

node by the cycle ofl nodes, then nh e 1‘3}2 j;jj
1 2 1 1 5 143 3412
—+—— < 2(G) < =+ —. 13
6 v =29 =513 (13) (@) (b)

Proof: The lower bound can be obtained fraf(G) >  Fig. 11. 4-Pancake graph with node labels (a), and Petersgh gb).

M — N +1, since forG there areM (G) = 1.5N(H)d edges _ )
andT(G) = 3N (H)d turns. Another graph, which can be analyzed by Theorem 7, is

To prove the upper bound, we label all nodesdiras (i, ), th_e Petersen graph [51], (Fig. 11(b)) which has the smallest
wherei is the number of the cycle containing the nadm diameter (equal to 2) among all regular graphs of degree 3.
@G, and; is the number of a node within each cycle of lengtf©" this graphV =10, k = 2 and by Theorem 7 and (3) we
d, i € {1,...,N(H)}, j € {0,1,...,(d — 1)}, as shown obtainz(G) =7/30.
in Fig. 10. In each cycle, nodes are labeled subsequently. In
cyclei we prohibit the turr((i, d—1), (i, 1), (4, 2)). There exist V. DISTANCE DILATION
N(H) such turns. Also, for each a¥ (H)d/2 edges between Consider now the notion of dilation in a network topology
different cycles (edges between cycles Ghcorrespond to due to turn prohibitions. Paths that involve prohibitedntur
edges inH), we prohibit turn(a, b, ¢), wherea = (i1, j;), cannot be used for communication. Thus, one side effect of
b = (i2, Ja), ¢ = (ia,J3), if i1 < iy andjs = jo +1 mod d. turn prohibitions is that prohibiting certain paths fromirize
Then it follows thatz(G) < % = % + 3%1- m used for message routing may increase distances between

some nodes. The net result of this is that the average destanc
2 6 of the network graph will be increased. To facilitate theeiswv
5o 00)\ o,  tigation of this phenomenon, the notion of distance ditai®
) 22 intrOdgge.d' I . . .
i Na 20 Definition 5: The dilation in a graph, is the ratio of the
o @) average distance after turn prohibition to the averageudcst
without any turn prohibition.
> o/ When the dilation is 1 it implies that the turn prohibitions
wa ) have not caused any lengthening of the average distance. For
«n  example, for complete graphs the fraction of prohibiteah$ur
achieves the upper bound, but the dilation is 1. Similarly
for homogeneous and D-meshes, for hexagonal meshes, p-
Fig. 10. Binary 3-cube connected cycles and their labels ary n-dimensional meshes and, for locally complete triee-i

For example, for the binary-dimensional cube connectedtOpOIOg'eS no dilation is introduced by turn prohibitiors.

cycle (CCC withd = n, N = 27 if n — oo, thenz(G) — 1 Fig. 12 the distance dilations in p-ary n-dimensional tog a

We note that for bina;y cub&” we havez’(Z") _1 6" shown. For these calculations, we used the formulation in
The following theorem is aQQeneraIizatior? of Theorem 6. S€ction IV to identify the turns to prohibit and then detered
Theorem 7if all nodes of 3-regular grapty with N nodes the average distance using the shortest distances betWeen a

can be covered by non-intersectingsimple cycles, then source-destination pairs that do not include any of the iproh
' ited turns. Note that popular West-First, North-Last, ar@RD

(6.1

& (3.2)

(4,0)

Sh o ) @07

@1 (7.2)

l+ 2 <2(GQ) < 1 + i (14 algorithms are not suitable for tori (since they are not dtszd
6 3N~ ~— 6 3N free) and therefore are not included in our calculations. In
Proof: The proof of Theorem 7 is similar to the proof ofcontrast with our algorithm, those routing methods are not
Theorem 6. B applicable to more general meshes (such as hexagonal and

To illustrate Theorem 7, let us consider the 4-pancake grapbneycomb meshes) and other regular topologies. We make
[49]. E.g., in a 4-pancake graph, nodes have labels thatdecl following observations on dilation using our approach.
all 41 = 24 orderings of numbers 1, 2, 3, and 4. For the g- For thep = 3 andp = 4, no dilation is experienced by
pancake, nodél,2,--- ,i—1,i,i+1,--- ,q) is connected to the tori. Forp = 5 andp = 6 the largest dilation occur for
nodes(i,i—1,---,2,1,i+1,---,¢) foreach, i.e.,1,2,--- ;i the one-dimensional cases. As expected, the dilation gefar
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for largerp for the one-dimensional cases with a maximum of
7.5% and diminishing for larger dimensions.

TABLE |
LOWER AND UPPER BOUNDS ON FRACTIONS OF PROHIBITED TURNS
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Z(G), IN MINIMAL CYCLE BREAKING SETS FOR SEVERAL REGULAR AND

SEMIREGULAR TOPOLOGIES

T
- & -3-ary Tori|

1.08F —4—4-ary Tori] Lower Upper
D ald Topology Bound) Bound
on z(G) on z(G)
1.06 4
£ 1odf ] Homogenous meshes L (1 - ﬁ)
s Theorem 1
1.021 4
Complete graph 1/3
P o] I S WA A S S a ] K., n>2,[35], [36]
-di i - (n=1)(p—1)*
08! : : : . - . ) n-dimensional p-ary mesh TICEIET (=Y CEE

Dimension n

M, (6)

Fig. 12. Dilation in p-ary n-dimensional tori due to turn pilition, for
p=3,...,6.

VI. CONCLUSIONS
In this paper we considered the problem of construgt

ing minimum cycle-breaking sets of turns for graphs th
model communication networks. This problem is important fo
deadlock-free and livelock-free message routing in coerpu
communication networks. In contrast to popular DOR alg

rithm, the proposed turn prohibition techniques are coibfeat
with any adaptive routing approach. We present a series
new algorithms that are used to obtain optimal or close

optimal sets of prohibited turns to prevent deadlock foramat
during routing. The results on the fraction of prohibitechtu

are summarized in Table I. We present the results of OUlvg)

calculations for dilations as a result of prohibitions iragy-
n-dimensional tori. We show that meshes do not suffer fro

any dilation and the worst case dilation for tori is less than

7.5%.
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