Robustness of Security-Oriented Binary Codes
Under Non-Uniform Distribution of Codewords

Osnat Keren and Igor Shumsky Mark Karpovsky
Faculty of Engineering Department of Electrical and Computer Engineering
Bar-llan University Boston University
Ramat-Gan, Israel 52900 Boston, Massachusetts 02215
Email: osnat.keren@biu.ac.il, ig.shum@gmail.com Email: markkar@bu.edu

Abstract—Robust and partially robust codes are used in
cryptographic devices for detecting active side channel attack FoTTT ] T T The attacker has L T !
on the hardware. The codes are usually designed for uniformly : o 'inal S S Y '
distributed codewords. In practice, however, there are codewols : g Nonlinear :
that are much more likely to appear than others. This paper i GEMENEnt encoder i
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| [}
]

addresses the question of how good are existing robust codes in ) Lt 4 d”;”
this context. The worst case scenario is analyzed and a method | informationword | _______|redundancy
that allows the designer to avoid this scenario with a relatively *

A

low cost is presented.

Index Terms—Robust codes; security; undetected error proba- Nonlinear
bility; puncturing; fault analysis attacks; non-uniform distribution; checker
\)
One bit flag

I. INTRODUCTION ' i . -
Fig. 1. A schematic architecture of a circuit component pietcoy

The security of cryptographic devices is threatened @(t?éskt:rmatic security-oriented code. The shaded area issitieeto the

fault injection attacks on the hardware. By injecting fault
an adversary can obtain secret or private information that i

stored in the device. Modern fault injection techniquesvall coon:'f(';ﬂnt
an adversary to introduce faults at any physical point of the _ [ Nonlinear
circuitry. A fault can flip bits, stuck a gate at a certain \glu k-bit "|_encoder
or change data on wires [2], [8], [10]. In turn, an attack can b information word Wi | d:;,‘;’znc
mathematically modeled as an additive (i.e., symmetrigrer U 2 1 y
. . . . Attack on the ! The attacker has | Attack on the

that distorts the correct output of that circuit. Unlike dam .. o — =& e o S B nonlinear part
errors, i.e., errors caused by nature, an error induced by an B e
adversary can be of any multiplicity. NEHTET

Fault injection attacks can be detected with relativelyhhig checker
probability by security-oriented codes. It is convenient t v
classify fault injection attacks by their strength; In weak One bit flag

attacks the adversargannot control which codeword will

appear at the output of the circuitry, whilestrong attackshe Fig. 2. Mathematical model of a circuit component protected bysiematic

can determine the outputs by choosing the inputs.A schemascurity-oriented code.

architecture, which provides robustness against weakkatta

is shown in Fig. 1; Its equivalent mathematical model is show

in Fig. 2. input combinations are invalid and hence cannot occur. The
Codes for detecting weak attacks, e.g., [1], [3]-[6], [11Histribution of the outputs of arithmetic modules is alsgttty

are usually designed under the assumption that the codewdrdn-uniform. For example, it is more likely to have a '0’ agth

are equally likely to occur. However, when the source of thgutput of a multiplier than other values. In arithmetic mledu

information is a computation channel, i.e., a combinatoriand in sequential state machines, the probability of haging

logic or a sequential machine, this assumption is almosgrtain output can be easily computed. A judicious attacker

always violated. Indeed, the distribution of vectors agupli can use this information to choose an error that is hardly (if

at run-time to the inputs of the combinational portion of &ver) detected.

sequential machine is highly skewed due to the fact that someThis paper addresses two questions: a) how good are the

state transitions are more common than others and that sdmewn robust codes, and in particular the Quadratic-Sum



codes and codes derived from the cubic code, against an
adversary that knows the distribution of the codewords, and
b) is it possible to reduce the error masking probabilityhaf t
code without adding more redundancy?

The remaining of the paper is organized as follows. Sec-
tion 1l briefly describes security oriented codes and presen
the Punctured-Cubic and the Quadratic-Sum codes. Section
lll analyzes the worst case scenario. Section IV introduces
methods to avoid this scenario by mapping the set of most
probable words to a predefined set. An upper bound on tllgle. 3. The errore; € F, is always detected Sina N {ex & C} — 2.

error masking probability when using this mapping is alSthe errore, € K, is never detected sin@= {es ®C}, andes is detected
presented. Section V concludes the paper. with probability Q(es) = |C N {e3 & C}|/IC|.

[l. PRELIMINARIES - SECURITY ORIENTED CODES
3) The error will be detected with probability < 1 —

Q(e) < 1. That is, there exists at least one codeword that
detects the error, and there exists at least one codewords
that masks it.

The three scenarios are illustrated in Fig. 3.

A binary codeC(n,k) is a subset of size* of an n-
dimensional binary vector spacBy, (F; = GF(2)). In
conventional coding theory, codes are designed to provide
reliability againstrandom errors i.e., errors of low multiplic-
ity. The codes are therefore characterized by their rate, (i.

k/n), the minimal distance between the codewords, and theDefinition 1 (Robust and partially robust codes): Robust

undetected (random) error probability. All these paramsete odesare codes for which the dimension &f, equals zero,

are determmed by the chosen code; They are |nd|fferentt tat is, no attack is maske®artially robustcodes are codes
the encoding scheme.

. . for which the dimension of<; is greater than zero but less
In cases where the reliability of the system is the mal

than .
concern, asystematic codethat is, a code in which the
information word is embedded in the codeword in its origindd. The error masking equation

form, has an advantage over non-systematic codes since itet C(n, k) be a binary systematic code of length= k +
simplifies the decoding procedure and usually has a lowerand size2*. A codewordc € C(n, k) has two parts: an
implementation cost. However, in security oriented codinghformation part denoted hy and a redundancy paat, which
the most important property of a code is its robustnessts.e js a function ofz. Each part can be referred to as an element
ability to provide immunity against weak attacks. As we showf 3 finite field or as a vector over a finite field. For example,
next, when some codewords are more probable to appear th@# information partz can be considered as a binary vector
others, the encoding (i.e., the mapping between an infoomatin f-dimensional spac&%; It can be also referred to as an
word m € F5 to a codeword: € F3) plays a crucial role in element of the finite field,. = GF(2%). For example, the
determining the robustness of a code. expressionPz?® where P is ar x k matrix, has to be read as:
refer tox as an element iffy. and computer?, then refer to
the result as a vector i5 and multiply it by the matrixP,

Let C be a code and denote hyc) is the probability that the outcome of this operation is an elemenfFisn.
the codewordc € C will be used. The robustness df is Let ¢ = (x,w) € C be a codeword, wheres = w(x). Let
measured in terms of its undetected error probability, Whie = (e,, e, ) be a nonzero error vectot, € For,e,, € For.
is also referred to as therror masking probability The error An error is undetected (masked) by the codewoifdc®e € C.
masking probability is the probability)(e), that a given error Equivalently,e is masked by if
e € 3 will map a codeword onto another codeword, i.e.,

A. Definition of robustness

w(T B ey) = w(T) P ey 1)
Qe) = ZP(C)5(C@ €) Equation (1) is called thesrror masking equationfor
ceC systematic codes. The number of solutions) to (1) and
wheres(z) is the characteristic function of the codéz) = 1  the probability of each determing@(e). Namely, letX (e) be
if z € C and it equal®) otherwise. the set ofz’s that satisfy this equation,
When the adversary induces an ereane of the following X(e) = {z|c(z) ® e € C}.

three scenarios may happen:

1) The error will always be detected)(e) = 0). The set Then,
of errors of this type is denoted b¥,,. Qle) = Z p(x),

2) The error will never be detected)(e¢) = 1). Errors that s€X(e)
are never detected form a group. The group, denoted Wherep(z) is the probability of the codeword= (z,w), i.e.,
K, is called the Kernel of the code. p(x) = p(c).



The error masking probabilities af and error masking Original
probabilities of a coset of are identical. Therefore, without Comn’:O”e”t
loss of generality, we assume that= (0,0) € C. Conse- y k-bit vector
quently, ¢
Property 1: If 0 € X (e), thene € C. . [ Nonfinear
k-bit "| encoder
The error masking probability for uniformly distributed information word wia | rbit
codewords is lower bounded by [6], = ___]redundancy
. Attack on the | M The attacker has : Attack on the
Q(e) > max(2/2k7 2k/2n)- linear part : > access to this area : nonlinear part
Codes that achieve this bound are calgdimum codes \d v
» Nonlinear
C. The Punctured-Cubic code and the Quadratic-Sum code ¢ checker
In this paper, we analyze two robust codes, the Punctured- *
Cubic (PC) code derived from the cubie,z3) code by One bit flag

deleting some redundancy bits, and the Quadratic-Sum
9 y Q (QHSJ 4. A mathematical model of a computation channel proteciec b

code. Both codes are robusystematiocodes of rate hig_her one-to-one mapping followed by a systematic error detecting cade
than one-half [1], [4], [7]. Moreover, both codes are optimu

or close to optimum.

Construction 1 (Punctured-Cubic code [1]): where R is the autocorrelation function @, that is,
Let P be a binaryr x k matrix of rankr < k. The code
R(e)= Y d(z)d(z@e).

C={(r,w): 2z €Fopr,w = P2’ € For} z€Fp

is called a Punctured Cub&(k + r, k) code. The error masking probabilities of the PC and QS codes are
the following:
The error masking equation of the PC code is
Theorem 1 ( [7]): Let C be a PC code defined by a binary
r X k matrix P of rankr > 1, Then the kernel of the code is
of dimension0. For odd values ok, Q,,. = 2~ "+!. For even
values ofk, there existP matrices for which@,,. = 27".

Pz ®ey)® = P2® @ ey

Construction 2 (Quadratic-Sum code [4]):

Let .k - 28Thandx = (21,22, -~ ¥25), Wherez; € Fy- for Theorem 2 ( [4]): Let C be a QS code. Then the kernel of
1 << 2s. The code the code is of dimensiof. For k = 2sr, the error masking

C={(z,w):x €For,w =122 B -+ B Tas_1T2s € For} probability is Qe =27".

is called a Quadratic-Sud@(k + r, k) code. IIl. THE WORST CASE SCENARIO
Consider a computation channel that produces each cycle
The error masking equation for the QS code is an output vectorn € F%. Let ¢ be a one to one mapping
s s betweenm and an information word:, i.e., x = ¢(m). To
Z(I%—l D er,2i-1) (T2 D er2i) = Zx%_lx% ® €. provide immunity, each cycle a codeword= (z,w(z)) is
i=1 i=1 generated from the information word (as shown in Fig. 4).

_ The probability that a codeword(z) = c(¢(m)) is used
D. The robustness of the PC and QS codes under unifosfjuals to the probability that the output is produced, that
distribution is,
If the codewords are uniformly distributed, then each code- p(c) = p(x) = p(m).
word may appear on the output with probability fiC|. The

worst case error masking probability under uniform distrib Since for a given codeX () is fixed, and

tion of the codewords is denoted 6y,,.. The subscriptnc ) = z) = m
stands for maximal correlation, since in this case Q) Z p(a) Z p(m),
z€X (e) m, p(m)eX(e)
Qle) = R(e)7 the error masking probability under non-uniform distribat
R(0) of the outputs depends solely gn
and, The following lemma provides a lower bound on the error
_ maxcx R(e) masking probability when the worst is used. In the next

R(0) ’ section we show that if one uses¢athat maps the most



probable vectorsn to apredefinedset S, s/he can reduce the simplify the presentation, we assume that the adversanyatan

error masking probabilities. induce the error4, 1). This assumption allows us to use the
Without loss of generality assume that C(4,3) partially robust PC code.

Assume now that then’s are not uniformly distributed,

(1—€)/5 me{234,6,7}

1> p(my) > p(ma) > -+ > p(maor) >0
and

k

ip(mz) -1 €/3 otherwise

i=1 If no mapping is used (i.eg; = m;), then a judicious at-
Consider the mapping; = m,. For this mapping we have, tacker would apply the errds5, 0) whose corresponding error
masking probability is the maximal)((5,0)) = 3(1 — e).

12 p(ar) 2 plaz) 2 -+ 2 plage) 2 0. However, if ¢ is a Gray mapping, the highly probablen’s

Denote byP(S) the accumulated probabilify, . p(z;) and are mapped to the sét = {2,3,4,5,6}, and the worst case
assume that there is a st C F5 for which P(C \ §) is error masking probability becomés{l—e). As we show next,
negligible In the worst case scenario there exists an egrorn0 better mapping can be found.
such that eithetS C X (e) or X(e) C S. Namely,

IV. CONSTRUCTIVE UPPER BOUNDS ON THE ERROR
MASKING PROBABILITY

For uniformly distributed codewords, the error masking

Lemma 1:The worst case error masking probabili§y,,..,
is lower bounded by

P(S) S| < Qume2F probability of the PC and the QS codes is upper bounded
Que > by Q.... Therefore, any error vector is masked by at most
Q’I"SC‘QICP(S) otherwise 2*Q,,. codewords. Consequently, if the size $f is greater
than 2¢Q,,., then any error will be detected with probability
. of at least
Example 1:Let £ = 3 andr = 1. The eight codewords 25Q e
of the corresponding PC code (represented by their integer 1- S| P(S5) > 0.

I
values) are Obviously, if the size ofS is smaller than that, the probability

(0,0),(1,0),(2,0),(3,1), (4,1),(5,1),(6,1),(7,0). that the error will be masked increases. In what follows we
discuss the case where

S| < min|X
5] < min | X (e)],

Table | shows theX(e) of each error vector.

TABLE |

THE ERROR VECTORS AND THEIR MASKING CODEWORDS . . .

- XETTXE and present mappings for which any nonzero error will never

©0) ) T 25 be masked.

(0,1) 0 -

(1,0) 4 0,145 - -

1,1) 4 2,3,6,7 A. Sufficient conditions fof) < 1

g(l)g j (l)gg? In cases whergS| = 2, no mapping can help; An adversary

3,0) i 1256 who knows the two most probable outputs, say andm.,

23,1; 4 0,347 and the mapping may choose an error

4,0 0 -

4,1) 8 all «’'s e =c(p(my)) D cle(ma)),

@nl 8 Ll (p(m) & clp(m2)

(5.1) 4 0,145 for which Q(e) > P(S) =1 —e.

Eg% j é’%'i’é The following theorem suggests a lower bound on the size

ORI 0347 of S for which there exists a mapping that can reddxe).

(7,1) 4 1,2,5,6

Theorem 3:Let C be a PC or a QS code. Then, there exists
The rows of the table are written in pairs. In each pair, orst least one sef of sizes,
error vector is a codeword and the second is a non-codeword. k41
By Prop. 1, an error vector whosg(e) contains the all-zero loga(Qme)
word, is a codeword. It is clear from the table that the code g2\ me
is partially robust since the non-zero errdft, 1) is masked such thatS'\ X(e) # ¢ for all non-zeroe.
by all codewords. However, all the remaining error vectors
are either always detected or they are masked by half of the
d ds. Theref f if \v distributed d d A Gray code mapsn = (mg_1,...mo) t0 z = (Tx_1,...20) @S
coaewords. erelore, O_r uniformly IStI_’I uted codeveyrdoigys: x; =mip1 &m; fori=0,...k—1wheremy = 0. For example
Qmc(e) = 0.5. Although this paper deals with robust codes, te. = (010) is encoded tq011).

+1<s< Inin(2kac, 2’“*2),



Example 2:Let £ = 16 andr = 4. Assume that twenty 1
vectors (out of the2!6) may appear with probability — ¢ at
the output of the device to be protected. Since there exists
error for whichmin(|X (e)|) = 22, and20 << 2'2, in the
worst case scenario the error will not be noticed. For a F
code we have,

16 +1
1 _+1 +1 < |S] =20 < min(2'3,21672). g5

therefore, by Theorem 3, there exist a subSebf twenty
vectors such that any error is detected with probability tof a
least 12_06. Fig. 5. The probability that a random mapping for a QS code Witk 6
Although Th. 3 states that it is possible to find a set thapdr = 3 will provi_d_e a_me_lximal error _masking probability smaller than
. . . (e) for ten probability distributions havingS| = 7. The red dots denote
can detect any error, it does not provide an efficient way %}e) achieved by Const. 3
do so. In the following sections we introduce two mappings,

i.e., two sets, for which any non-zero error can be detected.

Therefore, by mapping the$60 m’s to a setS C B¢ 3) that
consists of binary vectors of Hamming weight less or equal

We .dgfine a generalized Hamming ball as folloyvs: to three, one can reduce the error masking probability to
Definition 2: Let V' = {v;}*, C F5 be an arbitrary set 3 kel
of u, u < k, linearly independent vectors. A generalized |SNX(e) < Zj:o(' j )

PIOD(Q,, (e)< Q(e)

B. Generalized Hamming ball mapping

Hamming ball B, .,, € FX is a set (or a coset of a set) Qe) < |S| - |S| = 0.58.
that consists of the vectors
“ " Note that if|.S| > k, then the size 06N X (e) decreases as
Zai“i | a=(au...a1) €F3, wty(a) <w the number of linearly independent vectarincreases. More-
=1 over, as|S| increases, the required increases. The following
wherewty (a) stands for the Hamming weight af construction, presented in [9], is not optimal, howevergsiit

uses binary vectors of weight one, it is simple to implement.

Theorem 4:Let C be a PC or a QS code. L&t C B, .,
whereu > k + l0g2(Qmc) + 1 andw is the smallest integer  Construction 3 ( [9]): Let p(my) > p(ma) > - >

such thaty 7", (?) > |S|. Then, the cod€ can detect all the p(m,x) Assign to eachm; a binary vectorz; such that the
nonzero errors with probability greater or equal to Hamming weight ofz; is smaller or equal to the Hamming

w (k41092 (Qme weight of z; for all ¢ < j.
S| — ijo (k+logj(Q , )) J

S| ' Note that if, for examplek = 6,7 = 3 and |S| = 7 with
The proof of Theorem 4 follows directly from the fact thathe probability distribution
the PC code and the QS code have the following property: 1—c 0<m<6
p(m) = { —6

|S
€

)

Theorem 5:Let C be a PC or a QS code. TheK,(e) is a

subspace ifie belongs toC and a coset otherwise. then there exist other mappings, which achieve smgien’s
than [9]:
Corollary 1: The minimal size of a set that can detect any
) . . S =1{0,1,2,4,8,16,32} [9] — Q(e) < 0.5714,
non-zero errote with Q(e) > 0 is greater than two and less S = {0.10,21.27,50,55,62} — O(c) < 0.4286.

or equal tok + loga(Qmc) + 2.
Although the mapping in [9] is not optimal, is it much
Example 3:Let ¥ = 16 and r = 4. Assume that650 better than a random mapping. Fig. 5 shows, for ten different
output vectors (out of th@'é possible combinations) occurprobability distributions havingS| = 7, the probability that
with probability of 1 — e. Since for a PC code, a random mapping will provide a maximal error masking
kr 12 probability smaller thaid)(e). The red dots in the figure denote
[ X(e)] 2 2°7" =27 > 650, the error masking probabilit§)(e) achieved by the suggested
in the worst case scenario, there may be an error that wikPping. Refer only to the-coordinate of the dots. The-
be masked with probability greater than- ¢. However, for coordinate has no meaning, the star is placed on the graph jus

w =3 andu = 16 we have for convenience. On average this mapping fixg) = 0.39.
3 The probability that a random mapping will provide error
|B1o.3)| = Z ( _ > — 697, masking probability smaller than that Gs18.

=0



C. Robust-code based mapping

The following theorem states that if the elementsSoére X \ \
the codewords of a robust code, then a nonzero error is ne S P \ \
i AN

masked. °

0.2F

Theorem 6:Let C be a PC or a QS code of dimensién
r redundancy bits, and error masking probabitiy,.. Let .S
be a robust code of length = k, dimensionk = u and error
masking probability), .. Then, the error masking probability

of Cis
Q(e) < V/2QmeQumc2k—. V. CONCLUSIONS

The Punctured-Cubic code and the Quadratic-Sum code are
Corollary 2: Let C be a PC or a QS code of dimensiorsystematic robust codes designed for uniformly distriéute
k, » redundancy bits, and error masking probabity,.. Let codewords. The codes can detect any error with non-zero

Fig. 6. Error masking probability of punctured cubic codehwit= 16 and
r = 4 as a function of S|.

S be a subset of a robust code of lengthdimensionu = probability regardless its multiplicity. In cases wheree th
[log2(|S])] and error masking probabilitg),,... Then, codewords are not equally likely to appear, the performance
_ of the codes degrades significantly and the robustness may
\/QmCQk'(QmCQ“ +1) vanish. The paper addresses this problem. It is shown that by
Qle) < 5] : mapping the most probable data patterns to a predefined set

before the encoding, it is possible to significantly reduce t
error masking probability and maintain the robustness ef th

Corollary 3: Let C be a PC or a QS code of dimensién
codes.

r redundancy bits. Lef be a QS code of dimensiom and
k — u redundancy bits. Then we have, ACKNOWLEDGMENT
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