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Abstract—Memories used in cryptographic devices are vulnerable to
fault injection attacks. To mitigate the danger of these attacks, error
control codes are often used in memories to detect maliciously injected
faults. Most of codes proposed for memories in cryptographic devices are
error detecting codes with small Hamming distances that cannot be for
error correction. While being able to provide sufficient protection against
fault injection attacks, these codes cannot provide a satisfactory reliability
under the presence of random errors. In this paper we present reliable
and secure memory architectures based on two nonlinear error correcting
codes. The presented coding technique can be used for detection of
fault injection attacks as well as for correction of random errors. The
construction and the error correction procedures for the code will be
described. The error handling methodology used to distinguish between
random errors and maliciously injected faults will be discussed.

I. INTRODUCTION

Memories are critical elements in today’s digital systems. Various
types of memories are widely used in many different reliable and
secure applications and appear in nearly all digital devices. SRAMs,
for example, are often used as caches and internal memories in em-
bedded systems. Non-volatile memories like EEPROM and Flashes
are often used in cryptographic devices to store secret informations
such as the encryption keys and passwords.

In secure applications, the security of memories and the whole
system is threatened by side-channel attacks such as fault injection
attacks [2], [3]. Providing satisfactory security to memories is becom-
ing more and more challenging and important in modern System-On-
Chip (SOC) designs thanks to the ubiquitous usage of cryptography
algorithm in digital devices.

Robust codes and their variants based on nonlinear encoding
functions were proposed in [8], [9], [10] to protect cryptographic
devices against fault injection attacks. Compared to linear codes
based on linear encoding functions such as parity codes, Hamming
codes and BCH codes, nonliear robust codes can provide nearly equal
protection against all error patterns and are more suitable for detecting
malicious injected faults, where the error model is impossible to
predict due to the adaptive nature of the attacker.

One limitation of robust codes is that these codes assume the
information bits of messages or outputs of the device-to-be-protected
are uniformly distributed and are not controllable by external forces,
e.g. by an attacker during error injection attacks on devices. The
reliability and the security of the communication or computation
channels protected by robust codes will be largely compromised if
both information bits of the messages and the non-zero error patterns
can be controlled by the attacker.

To overcome the limitation of robust codes, algebraic manipulation
detection (AMD) codes are presented in [12], [13] for the protection
of cryptographic devices against the strongest attackers. However, the
constructions presented in [12], [13] usually generate codes with a
Hamming distance of 1, which cannot be used for error correction.
While the resulting AMD codes are suitable for protecting the secure
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devices against fault injection attacks, in certain circumstances they
may not be able to provide enough resistance against random transient
errors introduced by the mother nature. In this paper, we discuss two
modifications of AMD codes. These two modifications can effectively
increase the distance of AMD codes so that they can be used for
not only detecting maliciously injected faults but also for correcting
single-bit random errors caused by natural reasons. The proposed
codes can provide a guaranteed level of security as well as a high
level of reliability to the protected device.

The rest part of the paper is organized as follows. In Section II,
previous works on AMD codes are briefly introduced. The definition
of Algebraic Manipulation Correction (AMC) codes is described.
In Section III, we described the construction of nonlinear single-
error-correcting codes based on concatenation. In Section IV, the
construction of algebraic manipulation correction codes the error
correction algorithm are described. The error handling mechanism
used to distinguish between random errors and fault attacks are
discussed in Section V.

II. PREVIOUS WORK

A. AMD Codes

AMD codes are designed to provide a guaranteed level of security
even if the attacker can control both the error patterns and the input
(thus the fault-free output) of a device. Different from regular error
control codes, a codeword of an AMD code contains three parts: k-bit
user defined information y, m-bit random data x and r-bit redundancy
f(y, x).

Throughout the paper we denote by ⊕ the addition in GF (q), q =
2r . All the results presented in the paper can be easily generalized
to the case where q = pr (p is a prime). An AMD code V with
codewords (y, x, f(y, x)), where y ∈ GF (2k), x ∈ GF (2m) and
f(y, x) ∈ GF (2r), will be referred to as a (k,m, r) code.

Definition 2.1: (Security Kernel) [12] For any (k,m, r) error
detecting code V with the encoding function f(y, x), where y ∈
GF (2k), x ∈ GF (2m) and f(y, x) ∈ GF (2r), the security kernel
KS is the set of errors e = (ey, ex, ef ), ey ∈ GF (2k), ex ∈
GF (2m), ef ∈ GF (2r), for which there exists y such that f(y ⊕
ey, x⊕ ex)⊕ f(y, x) = ef is satisfied for all x.

KS = {e|∃y, f(y ⊕ ey, x⊕ ex)⊕ f(y, x)⊕ ef = 0,∀x}. (1)

For cryptographic devices and secure applications, non-zero errors
e in the security kernel can be used by an advanced attacker to bypass
the protection based on the error detecting code V . For any error
e∗ = (e∗y, e

∗
x, e
∗
f ) ∈ KS , e

∗ 6= 0, there exists y∗ (the protected
information at the output of the device) such that for this y∗ the
error e∗ is not detected for any choice of the random variable x (the
probability of not detecting e∗ for the information y∗ is equal to 1).
Thus to conduct a successful attack, it is sufficient for the attacker
to inject e∗ ∈ KS when the expected output is in the format of
(y∗, x, f(y∗, x)). An AMD code should have no errors in the security
kernel except for the all zero vector in GF (2n), where n = k+m+r.
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Definition 2.2: [14] A (k,m, r) error detecting code is called
Algebraic Manipulation Detection (AMD) code iff KS = {0}, where
0 is the all zero vector in GF (2n), n = k +m+ r.

There are no undetectable errors (errors that are undetected with
a probability of 1) for AMD codes. For any y and any e, the error
masking probability for an AMD code V can be computed as

QV (y, e) = 2−m|{x (y, x, f(y, x)) ∈ V,
(y ⊕ ey, x⊕ ex, f(y, x)⊕ ef ) ∈ V }|, (2)

which is the fraction of random m-bit vectors x that will mask a
fixed error e for a given y. The security level of the system protected
by AMD code can be characterized by the worst case error masking
probability QV = maxy maxe 6=0QV (y, e).

Let x = (x1, x2, · · · , xt), xi ∈ GF (2r). Let

A(x) =

{ ⊕t
i=1 x

b+2
i if b is odd;⊕t−1

i=2 x1x
b+1
i if b is even and t > 1;

(3)

where 1 ≤ b ≤ 2r − 3. Let

B(x, y) =
⊕

1≤j1+j2+···+jt≤b+1

yj1,j2,··· ,jt

t∏
i=1

xjii , (4)

where
∏t

i=1 x
ji
i is a monomial of x of a degree between 1 and b+1

and
∏t

i=1 x
ji
i 6∈ ∆B(x) defined by

∆B(x) =

{
{xb+1

1 , xb+1
2 , · · · , xb+1

t } if b is odd;
{xb+1

2 , x1x
b
2, · · · , x1xbt} if b is even and t > 1;

(5)
Theorem 2.1: [12] Let f(x, y) = A(x) ⊕ B(x, y) be a q-ary

polynomial with y ∈ GF (qs) as coefficients and x ∈ GF (qt) as vari-
ables, where 1 ≤ b ≤ q− 3 and q = 2r . Then the code V composed
of all vectors (y, x, f(x, y)) is an (k,m, r) AMD code with m = tr,
k = (

(
t+b+1

t

)
− 1 − t)r. The worst case error masking probability

over all y (user defined data in the memory) and all nonzero errors
e for this code is QV = maxy maxe 6=0QV (y, e) = (b+ 1)2−r .

Remark 2.1: The construction and properties of AMD codes
shown in Theorem 2.1 are tightly related to the q-ary Generalized
Reed-Muller codes.[12]

A special case of Theorem 2.1 is t = 1, b < 2r − 1, b is odd. In
this case f(y, x) = ⊕b

i=1yix
i + xb+2.

Example 2.1: Let t = b = 1, then m = r and k = (
(
t+b+1

t

)
−1−

t)r = r. The encoding function f(y, x) for the AMD code based on
Theorem 2.1 is f(y, x) = y ·x⊕x3, where x, y, f(y, x) ∈ GF (2r).
The resulting AMD code has QV = 2−r+1.

If t = 1 and b = 3, then m = r, k = (
(
t+b+1

t

)
−1− t)r = 3r and

f(y, x) = y1 ·x⊕y2 ·x2⊕y3 ·x3⊕x5, where y1, y2, y3, x, f(y, x) ∈
GF (2r). For this code QV = 2−r+2.

Generally speaking, AMD codes constructed in Theorem 2.1 have
a small Hamming distance and cannot be directly used for error
correction.

Definition 2.3: An AMD code whose Hamming distance is at least
3 is called an Algebraic Manipulation Correction (AMC) code.

For secure applications, AMD codes described in the Section II-A
can provide guaranteed level of security under the strongest attacker
model by detecting the injected faults with a high probability. We
assume the attacker knows every detail of the device including the
error control code used to protect the device. The attacker can select
specific inputs to the device during fault injection attacks. (The
attacker can thereby control the fault-free outputs). For the case of
memories, the attacker may have information or even precise knowl-
edge of the data stored in a number of different memory locations.
Moreover, the attacker is also able to inject any specific error pattern
to the targeted memory location. Under such an advanced attacker

model, only AMD codes can provide sufficient protection against
fault injection attacks [12], [13]. To our best knowledge, all the
known fault injection mechanisms can only provide a limited timing
resolution. For instance, the time between two consecutive shot of the
laser gun, which is one of the most powerful fault injection methods,
is affected by the speed of recharging and the delay between the
trigger signal and the shot [15]. Thereby, the same injected faults
are very likely to stay for several consecutive clock cycles and cause
repeating errors at the output of the secure memories, in which case
the AMD codes not only detect the faults but also correct the errors.
To distinguish between errors which appear due to natural causes and
malicious attacks, a counter and an adaptive threshold can be set up
so that once a certain number of uncorrectable errors occur to the
secure memories, the device is disabled.

The problem of distinguishing between malicious and random
errors due to natural causes will be considered in Section V

III. SINGLE-ERROR-CORRECTING AMC CODES BASED ON

CONCATENATIONS

A straightforward method for increasing the distance of AMD
codes is to concatenate it with a linear error correcting codes. In this
Section, we discuss the error correcting procedure for codes based
on concatenating AMD codes with Hamming codes.

Theorem 3.1: Let code VAMD = {(y, x, f(y, x))} be an AMD
code defined in Theorem 2.1 with parameters m = r and k = bm
and the nonlinear encoding function f(y, x) = y1x⊕y2x2⊕y3x3⊕
· · ·⊕ybxb⊕xb+2, where y ∈ GF (2bm) is the information part, x ∈
GF (2m) is the random part and f(y, x) ∈ GF (2m) is the redundant
part. (b is odd and b < 2m − 1. , y = (y1, y2, . . . , yb) ∈ GF (2k),
yi ∈ GF (2m) for i ∈ {1, 2, . . . , b})

Let VH = {(vh, vhP )} be the Hamming code with distance 3,
where vh ∈ GF (2(b+2)m) is the information part, vhP ∈ GF (2rV )
is the redundant part, rVH = dlog2((b + 2)m + rVH + 1)e. Let
vh = (y, x, f(y, x)) ∈ VAMD .

Then the code Vcon = {(y, x, f(y, x), vhP )} is a SEC AMC code
where any error is masked by a probability of at most QVcon =
(b+ 1)2−m (b is odd). The distance for this code is 3.

Proof: This code obviously can correct single error.
Let error vector be e = (e1, e2, e3, e4), where e1 ∈ GF (2bm),

e2 ∈ GF (2m), e3 ∈ GF (2m), e4 ∈ GF (2rVH ). Let evh =
(e1, e2, e3) ∈ GF (2(b+2)m). Also let e1 = (e11, e12, . . . , e1b),
where e1i ∈ GF (2m) for i ∈ {1, 2, . . . , b}. The error masking
equations can be written as

f(y ⊕ e1, x⊕ e2) = f(y, x)⊕ e3,
P (vh ⊕ evh) = vhP ⊕ e4.

Expand above equations, we have

0 = (y1 ⊕ e11)(x⊕ e2)⊕ · · · ⊕ (yb ⊕ e1b)(x⊕ e2)b

⊕ xb+2 ⊕ y1x⊕ · · · ⊕ ybxb ⊕ xb+2 ⊕ e3, (6)

0 = Pevh ⊕ e4. (7)

1) If (e1, e2, e3, e4) = 0, the error will not affect the messages.
2) If evh = (e1, e2, e3) = 0 and e4 6= 0, the Equation (7) will

not be satisfied. The error will always be detected.
3) If (e1, e2) = 0 and e3 6= 0, the Equation (6) will not be

satisfied. The error will always be detected.
4) If (e1, e2) 6= 0, there are at most b + 1 solutions of x for

Equation (6). Thus any error will be masked with a probability
of at most QVcon = (b+ 1)2−m, where 2m is the number of
possible values of x.
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A generalized proof for the probability for the detection for
concatenations of nonlinear code and linear code can be found in
[16].

Remark 3.1: We may use any AMD encoding functions which are
describe in Theorem 2.1. The distance and error masking probabiltiy
will not be affected.

Example 3.1: There is an AMD code VAMD{(y, x, f(y, x))} with
parameter the number of information bits k = br = 35, the
random bits m = 7, the redundant bits r = 7 and the degree
of nonlinear encoding function b = 5. The nonlinear encoding
function is f(y, x) = y1x ⊕ y2x

2 ⊕ . . . y5x
5 ⊕ x7, where y =

(y1, y2, . . . , y5) ∈ GF (235) are the information part, yi ∈ GF (27)
for i = 1, 2, . . . , 5, x ∈ GF (27) are the random number.

Let vh ∈ VAMD be a codeword of the above AMD code. By
adding vhP ∈ GF (27), which contains 6 more redundant bits,
to the end of the AMD code, we form a SEC code Vcon =
{(y, x, f(y, x), vhP )} based on concatenations, where P is the
encoding matrix for the (55, 49, 3) Hamming code.

Assume there is an error vector e = (e1, e2, e3, e4) corrupts the
original messages v = (v1, v2, v3, v4) of Vcon, where v1 = y, v2 =
x, v3 = f(y, x), and v4 = vhP . Denote the distorted message by
ṽ = (ṽ1, ṽ2, ṽ3, ṽ4), where ṽ1 = v1⊕v1, ṽ2 = v2⊕v2, ṽ3 = v3⊕v3,
and ṽ4 = v4 ⊕ v4. e1, v1, and ṽ1 ∈ GF (2bm). e2, v2, and ṽ2 ∈
GF (2m). e3, v3, and ṽ3 ∈ GF (2m). e4, v4, and ṽ4 ∈ GF (2rVH ).

The correction algorithm for code Vcon is

1) Calculate the syndrome of VH , and find the corresponding error
ê ∈ GF (2(b+2)m+rV ). ||ê|| = 1. If ê cannot be found, then
the error e is not correctable by the code; no further steps will
run.

2) Calculate v̂ = ṽ ⊕ ê = (v̂1, v̂2, v̂3, v̂4), where ṽ1 ∈ GF (2bm),
ṽ2 ∈ GF (2m), ṽ3 ∈ GF (2m), ṽ4 ∈ GF (2rVH ) and v̂ ∈
GF (2(b+2)m+rVH ).

3) Calculate the syndrome Scon = f(v̂1, v̂2) ⊕ v̂3. If Scon = 0,
then the single error is corrected; the corrected message is v̂.
Otherwise the error e is not correctable for the code.

Theorem 3.2: The concatenation codes Vcon constructed in Theo-
rem 3.1 have no errors miscorrected by all codewords. Any nonzero
error will be miscorrected with a probability of at most Qmc =
(b + 1)2−m. (The probability for the miscorrection is defined as
Qmc(v, e) = |{x|v 6= v̂}|2−m, where 2m is the number of possible
values of the random number x. )

Proof: In the correction algorithm, an error e will be miscor-
rected if and only if there exist ê, ê 6= e Scon = 0.

Let ê = (ê1, ê2, ê3, ê4), where ê1 ∈ GF (2bm), ê2 ∈ GF (2m),
ê3 ∈ GF (2m), ê4 ∈ GF (2rV ). There is only one term among
ê1, ê2, ê3, ê4 is not 0, since ||ê|| = 1.

Rewrite the equation Scon = f(v̂1, v̂2)⊕ v̂3 = 0 as

Scon = f(v1 ⊕ e1 ⊕ ê1, v2 ⊕ e2 ⊕ ê2)⊕ f(v1, v2)⊕ e3 ⊕ ê3 = 0.
(8)

Let H be the parity check matrix of V . When v = (v1, v2, v3, v4)
is miscorrected as ê = (ê1, ê2, ê3, ê4), we have He = Hê. Thereby
e⊕ ê is a codeword of V . If e 6= ê, then (e1, e2, e3) 6= (ê1, ê2, ê3).
Otherwise to guarantee that e⊕ ê is a codeword of V , e4 has to equal
to ê4, which contradicts to the assumption that e 6= ê. Thereby ê can
be divided into following cases.

1) If (e1, e2) 6= (ê1, ê2). From [17][16] we know there are at most
b + 1 solutions to the Equation (8). Meanwhile there are 2m

possible values of x. Thereby, the error will be miscorrected
with a probability of at most Qmc = (b+ 1)2−m.

2) If (e1, e2) = (ê1, ê2) and ê3 6= 0. The error will always be
detected since Equation (8) will never be satisfied.

Similar to the original AMD codes in [17], the AMC codes
based on concatenations also has no undetectable errors. And the
error masking probabilities are same for both codes if they use
the same nonlinear encoding function. Additionally, the codes based
on concatenations can correct single bit errors, and no errors are
miscorrected by all codewords. These features enable the codes Vcon

to protect memories for strong attack model as well as to prevent
memories from random errors. At a cost, additional rVH bits should
be added to the original AMD codes.

Figure 2 presents the architecture for memories protected by the
AMC code based on concatenations.

Fig. 1. Memory protected by the AMC code based on concatenations

IV. SINGLE-ERROR-CORRECTING AMC CODES

In this Section, we will present the general construction of Alge-
braic Manipulation Correction codes. These codes have the same error
correcting capability while requiring less redundant bits compared to
the straightforward construction based on concatenation described in
the last Section.

Theorem 4.1: Suppose
1) (x, xP ) is a codeword of (m + rH , m, 3) binary linear

Hamming code VH with rH redundant bits and distance 3,
where x ∈ GF (2m), xP ∈ GF (2rH ), P is a rH×m encoding
matrix, and

2) f(y, x) ∈ GF (2m) is a nonlinear encoding function f(y, x) =
y1x⊕y2x2⊕y3x3⊕· · ·⊕ybxb⊕xb+2 (b is odd, b+2 < 2m−1).
where y = (y1, y2, . . . , yb); yi ∈ GF (2m), (i = 1, 2, . . . , b);
x ∈ GF (2m); f(y, x) ∈ GF (2m) and all the operations are
in GF (2m); 2m − 1 is a prime number;

3) πy = y1 ⊕ y2 ⊕ y3 ⊕ · · · ⊕ yb ∈ GF (2m) is the byte-wise
parity of y;

Then the code VAMC = {(y, πy⊕x, xP, f(y, x))} is a (k,m,m+
rH) SEC Algebraic Manipulation Correction (AMC) code, with k =
bm information bits, m random bits, m+ rH redundant bits.

This code has secure kernel KVAMC = {0} with the maximum
error masking probability QVAMC = (b+ 1)(2m − 2)−1 and Ham-
ming distance 3.

Remark 4.1: We may use any AMD encoding functions f(y, x)
described in [17], [12], [13]. In general case, y ∈ GF (2k), where
k = sr, and x ∈ GF (2m), where m = tr. In this case,
x = (x1, x2, . . . , xt) and f(y, x) is a polynomial of t variables
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x1, . . . , xt. Thus, y will be divided into s/t parts, each of which
contains tr bits, and then πy ∈ GF (2tr) is the byte-wise parity. The
padding zeros may be applied to y, when s is not dividable by t.

Example 4.1: Let m = 7 which is the number of random bits.
Also let the encoding function be f(y, x) = y1x ⊕ y2x2 ⊕ y3x3 ⊕
y4x

4 ⊕ y5x5 ⊕ x7, where y = (y1, y2, . . . , y5) ∈ GF (235) is the
information part, yi ∈ GF (27) for i = 1, 2, . . . , 5, x ∈ GF (27) is
the random number.

Let {(x, xP )} be the (11, 7, 3) Hamming code, where P is the
encoding matrix for the Hamming code. Since 27 − 1 is a prime
number, the code VAMC defined by Theorem 4.1 is an AMC code
with d = 3 and QVAMC = 6

27−2
= 1

21
.

Comparing to the AMD Code with k = br = 35 m = r = 7 and
nonlinear encoding function f(y, x) = y1x⊕ y2x2⊕ y3x3⊕ y4x4⊕
y5x

5 ⊕ x7, the codeword of VAMC contains 4 more redundant bits.
Remark 4.2: In a normal base Galois field [17], square operation

can be achieved by the cyclic shift. As a result, f(y, x) in Theorem
4.1 can be slightly modified to reduce its hardware complicity of
computing f(y, x) using the following encoding equation

f(y, x) = y1x⊕ y2x2 ⊕ y3x4 ⊕ · · · ⊕ ybx2
(b−1)

⊕ x2
b+1,

where y = (y1, y2, y3, . . . , yb) and yi ∈ GF (2m) (i = 1, 2, 3, . . . b);
x ∈ GF (2m); x 6= 0, 1, where 1 is all 1 vector; f(y, x) ∈ GF (2m);
and 2m − 1 is a prime number and b < m.

This code reduces the computational complexity of decoding at
the cost of higher error masking probability which is going up to
QVAMC = 2b(2m − 2)−1.

A. Algorithm for Single Error Correction and Estimation of Proba-
bilities of Miscorrection for the Proposed Codes

A direct approach is to add codewords to an existing AMD
code some additional redundant bits to provide for error correction,
(y, x, f(y, x), P ) as an example. We will present another approach
which can detect and correct the errors in the codewords but will
requires less redundant bits.

1) Error correction algorithm for the proposed SEC-DED AMC
code: There are four parts in every codeword of the AMC code
constructed as in Theorem 4.1, namely y, πy ⊕ x, xP , and f(y, x).
For a codeword v = (v1, v2, v3, v4) of the AMC code VAMC

constructed in Theorem 4.1, there are
v1 = y = (y1, y2, y3, . . . , yb); yi ∈ GF (2m), i = 1, 2, 3, . . . , b;
v2 = πy ⊕ x; πy, x, v2 ∈ GF (2m);
v3 = xP ; xP ∈ GF (2rH );
v4 = f(y, x); v4 ∈ GF (2m);
(x, xP ) is a codeword of a linear Hamming code with distance 3

and the check matrix is H = [PT |I], where PT is the transposed
matrix of P and I is an identity matrix.

Denote the error vector by e = (e1, e2, e3, e4) and the received
message by ṽ = (ṽ1, ṽ2, ṽ3, ṽ4), where ṽi = vi ⊕ ei, i = 1, 2, 3, 4
and e1, ṽ1 ∈ GF (2bm); e2, ṽ2 ∈ GF (2m); e3, ṽ3 ∈ GF (2rH );
e4, ṽ4 ∈ GF (2m). We assume that only errors in the information
part v1 = y need to be corrected. The decoding procedure can be
divided into the following steps.

1) Calculate (ũ, ṽ3), where ũ = πṽ1 ⊕ ṽ2
2) Calculate SH = H(ũ, ṽ3)T , the syndrome for the Hamming

code.
Use SH as the input to the Hamming decoder, then obtain the
error locator ε, where ε ∈ GF (2m). Since ε is the output of
the Hamming decoder, there should be only one bit in ε which
is equal to one, and all other bits are zeros.
Let u = ũ ⊕ ε = πṽ1 ⊕ ṽ2 ⊕ ε, where u ∈ GF (2m). If
uncorrectable multi-bit errors are detected by the Hamming

decoder, then no further steps need to be performed. Otherwise,
go to the step 3.

3) Calculate SAMD as follows

SAMD = f(ỹ, u)⊕ ṽ4
= f(y ⊕ e1, x⊕ πe1 ⊕ e2 ⊕ ε)⊕ f(y, x)⊕ e4. (9)

If both SH = 0 and SAMD = 0, then there are no errors.
If only SAMD = 0, there are multiple errors. Therefore, as
long as SAMD = 0, the correction procedure is completed.
Otherwise go to the next step.

4) Compare SAMD with εuj , for all j = 1, 2, 3, . . . , b.
a) If SAMD = εuj for some j ∈ {1, 2, 3, . . . , b}, then the

jth part yj ∈ GF (2m) of information ṽ1 ∈ GF (2bm)
of the codeword is distorted and the error in that part is
ε ∈ GF (2m), which means ŷj = ỹj ⊕ ε, where ŷj ∈
GF (2m) is the corrected message.

b) Otherwise, there are multiple errors or the error is not
in the information part v1. No error correction will be
attempted.

The decision table for the proposed single error correction algo-
rithm is summarized in Table I

TABLE I
CORRECTION ALGORITHM DECISION TABLE FOR SEC-DED AMC

SH SAMD Decision

SH = 0 SAMD = 0 No Error
SAMD 6= 0 Double/Multiple Errors

SH 6= 0 and ∀SAMD Double/Multiple Errors
SH 6= hi

I (∀i)

SH = hi

SAMD 6= εuj Single Error in v2, v3, or v4
or SAMD = 0 Or Double/Multiple Errors
SAMD = εuj Single Error in v1
SAMD 6= 0 (Correction)

I hi (1 ≤ i ≤ m) is the ith column of the parity check matrix
H of the Hamming code. This row is only valid for non-perfect
Hamming code.

Example 4.2: (Single Error Correction)
Consider a proposed AMC code with b = 2, m = 3. VH is a (6, 3, 3)

Hamming code with P =

1 1 0
1 0 1
0 1 1

.

The encoding function is f(y, x) = y1x⊕y2x2⊕x5. The codeword
is in the format of v = ((y1, y2), πy ⊕ x, xP, f(y, x)), where
y1, y2, x, xP, f(y, x) ∈ GF (23). We select z3 ⊕ z ⊕ 1 as the
generating polynomial for GF (23), with the rightmost bit being the
least significant bit.

Suppose y1 = (001), y2 = (001), x = (010). Then we have
πy ⊕ x = (001) ⊕ (001) ⊕ (010) = (010), (xP )T = (101), and
f(y, x) = (001)(010)⊕ (001)(010)2 ⊕ (010)5 = (010)⊕ (100)⊕
(111) = (001). Thus, the original codeword is v = (v1, v2, v3, v4) =
(001001, 010, 101, 001).

Suppose there is a single error e = (000010, 000, 000, 000)
in the received message. Therefore, the distorted message is ṽ =
(001011, 010, 101, 001). We have (ũ, ṽ3) = (πṽ1 ⊕ ṽ2, ṽ3) =
(000, 101).
SH = H(ũ, ṽ3)T = [PT |I](ũ, ṽ3)T = (101). After decoding

(ũ, ṽ3) using the Hamming decoder, we have ε = (010). And
u = πṽ1 ⊕ ũ ⊕ ε = (000) ⊕ (000) ⊕ (010) = (010). Then
syndrome SAMD = (001)(010) ⊕ (011)(010)2 ⊕ (010)5 = (011).
Since SAMD = εu2 = (010)(010)2 = 011, the error ε = (010) is
located at second bit of ỹ2.
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The error is successfully corrected.
2) Estimations on a probability for the miscorrection: Suppose

v = (v1, v2, v3, v4), where v1 = y, v2 = πy ⊕ x, v3 = xP ,
v4 = f(y, x) is a codeword for an AMC code VAMC described
in Theorem 4.1. Let e = (e1, e2, e3, e4) be the error vector and
ṽ = {ṽ1, ṽ2, ṽ3, ṽ4} be the received (distorted) message, where
ṽi = vi ⊕ ei, i = 1, 2, 3, 4. Let e1 = (e11, e12, . . . , e1b), where
e1i ∈ GF (2m) for i ∈ {1, 2, . . . , b}. Denote the message after
correction, i.e. the output of the decoder by v̂ = (v̂1, v̂2, v̂3, v̂4),
where e1, ṽ1, v̂1 ∈ GF (2bm), e2, ṽ2, v̂2 ∈ GF (2m); e3, ṽ3,
v̂3 ∈ GF (2rH ); e4, ṽ4, v̂4 ∈ GF (2m).

We say that the error is miscorrected if c1 6= ĉ1. The miscorrection
probability can be defined as

Qmc(y, e) = |{x|v1 6= v̂1, e 6= 0}|2−m, (10)

where 2m is the number of possible values of x.
Theorem 4.2: Miscorrection Probability.
For the AMC code constructed by Theorem 4.1, the algorithm in

Section IV-A1 has a miscorrection probability Qmc(y, e), at most
b(b+ 1)(2m − 2)−1, maxy;e 6=0Qmc(y, e) ≤ b(b+ 1)(2m − 2)−1.

Proof: Consider the following error masking equation:

0 = SAMD ⊕ εuj

= f(y ⊕ e1, x⊕ πe1 ⊕ e2 ⊕ ε)⊕ f(y, x)

⊕ e4 ⊕ ε(x⊕ πe1 ⊕ e2 ⊕ ε)j , (11)

for j ∈ {1, 2, . . . , b}.

If Equation (11) holds for some j ∈ {1, 2, . . . , b} and
‖e = (e1, e2, e3, e4)‖ > 1, then the error will still be treated as a
single error ε in yj , the jth part of information. Thus, the error is
miscorrected.

1) If πe1 ⊕ e2 ⊕ ε 6= 0, Equation (11) will be an equation with a
degree b+ 1, which has at most b+ 1 solutions for x.

2) If πe1 ⊕ e2 ⊕ ε = 0, the only situation that the equation
always holds is when there is a single error in the information
part v1. Otherwise, Equation (11) will be an equation with a
degree smaller than b, which has less than b solutions

We may choose j from {1, 2, . . . , b}, leading to b equations for x
for a given error vector e = (e1, e2, e3, e4) and information y. For
the strong attack model, if the attacker selected e and y carefully,
each of these equations will have b + 1 different solutions in the
worst case. Therefore the total number of solutions for x for all the
equations is at most b(b + 1), while the total number of possible
values of x is 2m − 2. Thereby, the error miscorrection probability
Qmc for a given pair e and y will be Qmc ≤ (b(b+ 1))(2m− 2)−1.

The AMC code for Theorem 4.1 can be extended to be a code with
Hamming distance 4 by adding one more overall parity bit after which
the code can correct single error and at the same time detect all double
errors without miscorrection of double errors. The error detection
and correction capabilities for the extended SEC-DED AMC code is
summarized in Table II.

Remark 4.3: We note that the straightforward concatenation ap-
proach for contruction of AMC codes with distance 3 based on adding
redundant bits to AMD code requires more redundancy than codes
constructed by Theorem 4.1.

V. ERROR HANDLING

In this section, we describe how to identify attacks and how to
distinguish between random errors and attacks.

For a strong error injection attack, we assume that the attackers are
able to control the outputs of the protected device, and to apply any

TABLE II
ERROR DETECTION AND CORRECTION CAPABILITIES FOR SEC-DED

AMC CODE

Number Error Errors Errors in Errors
of errors in parity in v1 v2 and/or v3 in v4I

Single Detected Corrected DetectedII Detected
Double Detected. No miscorrection.

Multiple Detected with a probability 1−QVAMC .III

even No miscorrection.
Multiple Detected with a probability 1−Qmc.IV

odd Miscorrected with a probability Qmc.
I If errors are located only in the v4, no errors in the other parts

of codeword c, these errors will always be detected.
II Here if we assume there is only a single error, then when the

error is not in v1, it is in v2 or v3 and can be corrected.
III QVAMC is the maximum error masking probability.
QVAMC = (b+ 1)2−m

IV Qmc is the error miscorrection probability.
Qmc ≤ b(b+ 1)2−m

non-zero error vector at the outputs to flip the output bits. However
due to the limitation of the time precision of the attack methods
[17],[2], the errors injected may last for at least A consecutive clock
cycles for some A ≥ 1, which is known to a designer of the system.

Let ṽ(t) and v(t) be the corrupted as a result of the attack and
error-free outputs receptively and ṽ(t) = v(t) ⊕ e(t). If e(t) 6= 0,
then e(t + i) 6= 0 for i ∈ {1, 2, . . . , A − 1}. We note that it may
happen that e(t+ i) 6= e(t).

In addition, we assume that the attacker is able to select specific
inputs, thus the outputs, to the device during error injection attacks.

In order to detect the attack, a threshold T ≤ A should be calcu-
lated. If there are at least T (not necessary consecutive) uncorrectable
errors appearing in A consecutive clock cycles, we say there is an
attack and disable the device. We use sliding windows of size A to
continuously monitor whether there is an attack or not. The upper
bound for T is determined by the given targeted probability for the
detection of an attack PA0. We would like to achieve PA0 ≤ PA,
where PA is the probability that T out of A consecutive injections
are detected. The lower bound for T is determined by the given
targeted probability for the false alarm PFA0. We would like to
achieve PFA0 ≥ PFA, where PFA is the probability that random
errors occur and are detected in T out A consecutive clock cycles,
which will be mistakenly treated as an attack.

The upper bound for T will be calculated in the following way,
for a given targeted probability for the detection of an attack PA0,

Firstly, we know the proposed code with distance 4 can correct all
single errors in the information part, detect all double errors and all
single errors that are not in the information part, and detect multiple
(excluding double) errors with a probability at least 1−Qmc. Injection
of single error in the information part will not raise the error flag.
However, as all single errors in the information part will be corrected.
Thus that kind of injection is not important to us. Double errors and
single errors not in the information part will always be detected.
Therefore, an attacker will increase multiple-errors to maximize his
chances of injecting an undetected error. Under the assumption that
the attack only injects error vectors that manifest as multiple and
not single or double errors, which are detected with a probability
1 − Qmc, the lower bound for the probability that an injection is
detected is PDET = 1 − Qmc = 1 − b(b + 1)(2m − 2)−1. (PDET

is the probability that the attack at any moment is detected.)
Then the probability for the detection of attack, for consecutive A

clock cycles, will be PA = 1 −
∑T−1

i=0 (Ai )P i
DET (1 − PDET )A−i.
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(We assume that the attack detection events for different clocks are
independent. Since the number of uncorrectable errors are continually
monitored, when an attack is missed at a clock, the attack can still
be detected at any following clock with the same probability PA, if
the attacker continuously injects errors.)

Thus the upper bound for T can be found for the following
inequality for the given PA0, A.

PA0 ≤ 1−
T−1∑
i=0

(Ai )PDET
i(1− PDET )A−i

= 1−
T−1∑
i=0

(Ai )(1−Qmc)
i(1− (1−Qmc))

A−i.

For the proposed SEC-DED AMC code, Qmc = b(b + 1)(2m −
2)−1, then we have

PA0 ≤ 1−
T−1∑
i=0

(Ai )(1− b(b+ 1)(2m − 2)−1)i(b(b+ 1)(2m − 2))A−i.

If we use the proposed AMC code as double-error-correcting
code, then Qmc = 0.5b(b − 1)m(b + 1)(2m − 2)−1, assuming that
(b2(0.5(m+rH−1))(b+1) < 0.5b(b−1)m(b+1)). Then we have

PA0 ≤1−
T−1∑
i=0

(Ai )(1− 0.5b(b− 1)m(b+ 1)(2m − 2)−1)i

(0.5b(b− 1)m(b+ 1)(2m − 2)−1)A−i.

We also need to compute the lower bound for T , such that we
will be able to differentiate between uncorrectable random errors and
attacks. Otherwise, if there are T uncorrectable random errors in A
consecutive clock cycles, we will disable the device, which is a false
alarm. We would like to keep the false alarm probability below a
given level PFA0.

Assume that the bit distortion rate for a binary symmetrical channel
representing random errors at the output of the memory is p, and the
random numbers x are uniformly distributed. Denote the probability
for the detection of uncorrectable random errors at any clock by PR.

For a targeted false alarm probability PFA0 tolerated by the
system, by selecting the minimal integer of T satisfying the following
inequality, we can find the lower bound for the threshold T .

PFA0 ≥ 1−
T−1∑
i=0

(Ai )PR
i
(1− PR)A−i

≥ 1−
T−1∑
i=0

(Ai )P i
R(1− PR)A−i

= PFA,

where PR is an upper bound for PR.
For the upper bound for PR for the proposed SEC-DED AMC

code, we can use the following formula

PR =

n∑
i=2

(ni )pi(1− p)n−i + (1− p)bm(2m+rH
1 )p1(1− p)2m+rH−1,

where n = k +m+m+ rH + 1 = (b+ 2)m+ rH + 1 is the total
number of bits in a codeword. (When calculating PR, we assume
that all multiple errors are detected, and single error that is not in the
information part is also detected.)

If we use the proposed AMC code as double-error-correcting code,

we use the following formula To compute the upper bound for PR,

PR =

n∑
i=3

(ni )pi(1− p)n−i

+ (1− p)bm(2m+ rH)p(1− p)2m+rH−1

+ (1− p)bm(2m+rH
2 )p2(1− p)2m+rH−2,

where n = k +m+m+ rH + 1 = (b+ 2)m+ rH + 1 is the total
number of bits in a codeword. (When calculating PR, we assume that
all multiple (excluding double) errors are detected, and all single-bit
and double-bit random errors that are not in the information part are
also detected.)

If we would like to increase the probability PA of detection of an
attack, we should select T as small as possible. In this case, we may
choose T equal to its lower bound.

Example 5.1: Consider a proposed SEC-DED AMC code, with
distance 4, with parameters m = 17 and b = 4. The nonlinear
encoding function is f(y, x) = y1x⊕y2x2⊕y3x3⊕y4x4⊕x7. The
total number of bits in a codeword is n = 68+17+22+1 = 108. In
the worst case, at any clock PDET = 1−Qmc = 1−30(217−2)−1 ≈
0.99977. If the bit distortion rate for the symmetrical binary channel
is p = 10−6, then the maximal probability for the detection of
uncorrectable random errors at any clock is upper bounded by
PR ≈ 4.0001×10−5. Let us assume the attack lasts at least A = 10
consecutive clock cycles.

TABLE III
PA AND PFA VERSUS THRESHOLD T I FOR A = 10

Maximal (−log10(PFA))
Maximal

T(−log10(1− PA))
p = 10−4II p = 10−6 II p = 10−8II (Pr. of missing )

1.40 3.40 5.40 36.40 1
3.15 7.14 11.14 31.76 2

10.64 11.11 11.14 27.47 3
5.12 15.00 23.40 4
9.59 15.35 19.52 5

12.06 15.80 6
14.68 12.23 7
15.95 8.84 8
15.95 5.63 9

2.64 10
I For the extended (68,17,22) AMC code. Assume A = 10.
II PR = 4.014 × 10−3 for p = 10−4;PR = 4.000 × 10−5 for
p = 10−6; PR = 4.000× 10−7 for p = 10−8.

Table III and Figure 3 present a relationship between the threshold
T and the minimal probability for detection of an attack PA0 and the
maximal probability for the false alarm PFA0, based on parameters
described above, i.e. A = 10, PDET = 1 − Qmc = 1 − 30(217 −
2)−1 ≈ 0.99977, PR ≈ 4.0001× 10−5 and the code is an extended
AMC code, with distance 4, with parameters m = 17 and b = 4.

For a given PA0, we may find the corresponding probability for
the missing and a value of T , which should be the upper bound of
T . If we known the PFA0, then we can find the lower bound of T
from the table.

From Table III, we see that if we would like to achieve PFA ≤
PFA0 = 10−10, T should be larger than or equal to 3 (with p =
10−6). If we would like to achieve the probability for the missing for
the attack (1−PA) ≤ (1−PA0) = 10−10, T should be smaller than
or equal to 7. Consequently, we can select any T from the interval
T ∈ {3, 4, 5, 6, 7}

By selecting T = 3, we are able to achieve the smallest probability
for the missing for the attack, but the largest probability for a false
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Fig. 2. PA and PFA versus T , for A=10 and p = 10−6

alarm . The probability for the missing increases as T increases.
Meanwhile, the false alarm probability decreases as T increases.

Example 5.2: We assume that the attack lasts at least A = 6
consecutive clock cycles. All other parameters are same as Example
5.1, i.e. PDET = 1 − Qmc = 1 − 30(217 − 2)−1 ≈ 0.99977,
PR ≈ 4.0001× 10−5 and the code is an extended AMC code, with
distance 4, with parameters m = 17 and b = 4.

TABLE IV
PA AND PFA VERSUS THRESHOLD T I FOR A = 6

Maximal (−log10(PFA))
Maximal

T(−log10(1− PA))
p = 10−4II p = 10−6 II p = 10−8II (Pr. of missing )

1.62 3.62 5.62 21.84 1
3.62 7.62 11.62 17.42 2
5.89 11.89 11.62 13.39 3
8.41 15.48 9.62 4
11.20 15.48 6.10 5
14.37 2.86 6

I For the extended (68,17,22) AMC code. Assume A = 6.
II PR = 4.014 × 10−3 for p = 10−4; PR = 4.000 × 10−5 for
p = 10−6; PR = 4.000× 10−7 for p = 10−8.

Fig. 3. PA and PFA versus T , for A=6 and p = 10−6

Table IV and Figure 4 present a relationship between the threshold
T and the minimal probability for detection of an attack PA0 and the

maximal probability for the false alarm PFA0, based on parameters
described above.

From Table IV, we see that if we would like to achieve PFA ≤
PFA0 = 10−10, T should be larger than or equal to 3 (with p =
10−6). If we would like to achieve the probability for the missing
for the attack (1−PA) ≤ (1−PA0) = 10−10, T should be smaller
than or equal to 3. Consequently, the only choice for T is 3

We see that in Example 5.2, we select smaller A than in Exam-
ple 5.1, but we achieve the same probability for the missing and
probability for a false alarm while other parameters keep same.

VI. CONCLUSIONS

In this paper we show two constructions of nonlinear error correct-
ing codes that can be used to build reliable and secure memories. The
resulting memory architecture can tolerate both fault injection attacks
and random errors. The presented codes can provide a guaranteed
level of security as well as a satisfactory reliability. This is very
important for memories used in cryptographic devices where both
malicious attacks and errors introduced by mother nature cannot be
ignored. The methodology used to distinguish between random errors
and maliciously injected faults is also discussed.
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