Secure NAND Flash Architecture Resilient to
Strong Fault-Injection Attacks Using Algebraic
Manipulation Detection Code

Pei Luo
Reliable Computing Lab
Electrical and Computer Engineering
Boston University
Email: luopei@bu.edu

Abstract—Multi-level cell (MLC) NAND flash memories are
widely used because of their high data transfer rate, large
storage density and long mechanical durability. Linear error
correcting codes (ECC) such as Reed-Solomon (RS) codes and
Bose-Chaudhuri-Hocquenghem (BCH) codes are often used for
error correction. Although linear codes can efficiently detect and
correct random errors, they are not sufficient for protecting
NAND flash memories used in cryptographic devices against
malicious fault injection attacks. In this paper, we will present an
architecture based on the combination of RS codes and Algebraic
Manipulation Detection (AMD) codes which can correct any
four byte errors and detect any malicious injected errors with a
high probability under the strong attack model. This proposed
architecture can significantly improve the security level of the
MLC NAND flash memories used in cryptographic devices at
the cost of only slightly larger latency and area overhead.

Keywords-MLC NAND Flash, Reed-Solomon code, Algebraic
Manipulation Detection Code, Error Correction, Fault Injection
Attack, Hardware Security

1. INTRODUCTION

NAND flash memories are widely used in cell phones,
digital cameras, USB devices due to the high data transfer rate,
low power consumption, large storage density and long me-
chanical durability [1]. Different from NOR flash and single-
level cell (SLC) NAND flash memories, MLC technology is
implemented in MLC NAND flash memories to increase the
capacity. While MLC technology can increase the capacity of
the devices, it will reduce the voltage margin separating the
states and thus result in the possibility of more errors. In order
to increase the reliability of the MLC NAND flash devices,
ECC are often used in the devices to detect and correct the
errors.

Most of the works on protecting NAND flash devices
against random errors are based on linear codes. In [2], the
authors analyzed the error characteristics of MLC flash mem-
ory and proposed an error control coding using non-binary
low-density parity-check (LDPC) codes. In [3], the authors

*The work of the third author is sponsored by the NSF grant CNR 1012910.
Contact author: Pei Luo, luopei @bu.edu
Track: Hardware Security — Security Architecture

Zhen Wang
Mediatek Wireless, Inc
Email: wang.zhen.mtk@gmail.com

Mark Karpovsky*

Reliable Computing Lab
Electrical and Computer Engineering
Boston University
Email: markkar@bu.edu

proposed a high speed architecture based on (4148,4096)
BCH codes correcting quadruple (¢t = 4) errors. In [4], the
authors proposed product codes which use RS codes along
rows and Hamming codes along columns which have reduced
hardware overhead.

The security of modern devices can be broken by malicious
attackers via side channel attacks such as fault injection attacks
[5], [6], [7]. While linear error correcting codes are very useful
for the detection and correction of random errors, they are not
enough against advanced attacks.

In order to improve the security of the system against
advanced fault injection attacks, non-linear codes have been
used. In [1], the authors proposed two general constructions
of nonlinear multi-error correcting codes and compared the
architectures to those based on BCH codes and RS codes. In
[8], [9], [10], the authors proposed Robust Codes to detect
the side channel fault injection attacks. Robust codes can
provide nearly equal protection against all error patterns. The
error masking probabilities for robust codes are upper-bounded
by very small numbers for all non-zero errors [11]. But the
limitation of robust codes is that it is assumed that the output of
the device is almost uniformly distributed and is not controlled
by the attacker [11]. So robust codes can provide protection
against weak attacks but it’s not good enough against strong
attacks.

In order to protect the devices against strong attacks, the
authors of [11] implemented AMD codes based on nonlinear
encoding functions to detect the fault injection attacks. AMD
codes can provide a guaranteed high error detecting probability
even if the fault-free outputs as well as the error patterns of a
device-under-attack are controlled by the attacker [11], [12].

In this paper, we will present an architecture for MLC
NAND flash based on the combination of RS and AMD codes.
This architecture is not only able to correct any four byte
errors, it can also detect the errors injected by the strong
attackers with a very high probability. The results show that the
proposed architecture can significantly improve the security
of MLC NAND flash devices with minor timing and resource
overhead. The simulation results show that while the attacker

can inject random errors into the common RS architecture
MLC NAND flash memories with probability of miscorrection
about 4.092%, the proposed architecture can detect most of
these miscorrections with a probability 1 — 1.77 x 1078,

The rest part of this paper is organized as follows. We
describe the MLC NAND flash memory model and the ad-
vanced attack model in Section II. In Section III, we present
the definition and construction of AMD codes. In Section IV,
the construction of the encoder and decoder based on the
combination of RS and AMD codes are presented. In Section
V, we present the synthesis and the fault-injection simulation
results for the proposed architecture, and compared them with
the architecture based only on RS code.

II. MLC NAND FLASH MEMORY AND ATTACK MODEL

Multi-level cell is able to store multiple bits by separating
the threshold voltage into four parts or more, this will increase
the bit error rate in the memories because electrons stored in
adjacent levels tend to shift more easily from one level to
another. Besides such random errors, memories may also be
threatened by fault injection attacks. In this section, we will
describe MLC NAND flash memories and the attack model
we use in this paper.

A. MLC NAND Flash Memory

The threshold voltage of the whole memory array satisfies a
Gaussian distribution due to random manufacturing variations
[1]. Figure 1 illustrates the threshold voltage distribution of a
2 bits multi-level cell [13], [14], [15], [16].

Reference Points

—

{ALALA .

3.5V 400 6.5V

Distribution of Cells

1.5V

Fig. 1: Voltage threshold of MLC NAND flash

The NAND Flash array is grouped into a series of blocks,
which are the smallest erasable entities in a NAND flash
device. Each block is composed of some pages, which are the
smallest read and program unit [17]. Each page is composed
of storage area plus spare area. For example, the page size is
8,936 bytes in MT29F512G08CUCBB from Micron, in which
8,192 bytes are used for storage with extra 744 bytes as the
spare area [18].

Because the page size is very large nowadays, the storage
area is always divided into several sections to increase the
processing speed and decrease the encoding and decoding
complexity. For the memory architecture, we assume that the
page size of the memory is 2,112 bytes (16,896 bits) in the
model we use in this paper, and the storage area is divided
into four main sections, spare area are also divided into four
parts, each for one main section, as in the Figure 2 [19], [20],

[21]. Thus each section will be 512 bytes. We will build our
error correcting architecture based on this size.

2048 bytes 64 bytes

1st Page Section Spare Area

1st Page Section 2nd Page Section 3rd Page Section 4th Page Section

1st Section Spare
2nd Section Spare
3rd Section Spare
4th Section Spare

Fig. 2: Section structure of one page

B. Attack Model

We assume an advanced attack model in this paper. Under
this model, the attacker knows every detail of the memory,
including the error control codes used. The attacker is able to
choose the specific inputs to the device during fault injection.
At the same time, we assume the attacker has the ability to
inject any errors at the output of the device. Thus the attacker
will have full control of the fault-free output y, and the faulty
output § = y ® e, where e, is an error pattern and @ stands
for component wise addition in finite field. Under such a
strong attack model, all the previous error correcting codes
architectures will be insufficient [1], [11], [12].

Architectures which can provide a guaranteed fault detection
probability under such a strong attack model are called strong
secure architectures. In this paper, we will describe a strong
secure architecture for MLC NAND flash memories based on
the combination of RS and AMD codes. We will show that
under the strong attack model described in this section, the
proposed architecture will still provide a high error (fault)
detection probability.

III. AMD CODES

Throughout the paper we denote by @ the component-wise
modulo addition in GF'(q), g = 2". All the results presented in
the paper can be easily generalized to the case where ¢ = p” (p
is a prime). An code V' with codewords (y, x, f(y,z)), where
y € GF(2%) are the information bits, z € GF(2™) are the
random bits, and f(y,z) € GF(2") are the redundant bits,
will be referred to as a (k,m,r) code.

Definition 3.1: (Security Kernel) [11] For any (k,m,r)
error detecting code V' with the encoding function f(y,x),
where y € GF(2%),2 € GF(2™) and f(y,r) € GF(2"), the
security kernel K is the set of errors e = (e, €5, €ef), e, €
GF(2%),e, € GF(2™),e; € GF(2"), for which there exists
y such that f(y B ey, x P ey) @ f(y,x) = ey is satisfied for
all .

Ks = {e|3y, flyDey,x@er) © fly,) Dey =0,Vz}. (1)

Under strong attack model, the nonzero errors e € Kg can
be used by the attacker to bypass the protection of the error
detection code with the kernel Kg. In order to prevent such
attacks, an AMD code should have a kernel Kg composed of
only zero vector in GF(2"), n=k+m+r.

Definition 3.2: [22] A (k,m,r) error detecting code is
called Algebraic Manipulation Detection (AMD) code iff
Ks = {0}, where O is the all zero vector in GF(2"),
n=k+m+r.

For AMD codes, there are no undetectable errors (errors
that are undetected with a probability of 1). For any y and e,
the error masking probability can be computed as

Qv(y.e) = 27"{z|(y,z, f(y,2)) €V,
(y@ey,zDey, f(y,x)Dey) e VY (2)

The security level of a code can be characterized by the
worst case of error masking probability max, ..o Qv (y,).
A lower bound on (Qy for AMD codes can be found in [11].

Let = (z1, 22, ,2¢),x; € GF(q),q = 2". Let

y @, 2tt? if b is odd; \
() = @, zat™ if bisevenand t > 1; ©)
and
t=1
B(z,y) = o, Yiosnges | |25 @)
1<jo+j1+-+je—1<b+1 i=0

where Hﬁzl'a@{iis a monomial of x of a degree at most b+ 1
and [['_, #J' ¢ AB(z) where AB(z) is defined as

AB(z) = { {xl}:}x?z, e ,x§+2} if b is odd;
- xixy} if bis even and t > 1;
&)

Suppose f(z,y) = A(z) ® B(x,y), it is easy to verify that
the left hand side of the error masking equation f(z®e,,y®
ey) ® f(z,y) ® ey =0 is always a non-zero polynomial of
of a degree up to b+ 1.

Theorem 3.1: [11], [12] Let f(x,y) = A(x) © B(z,y) be
a g-ary polynomial with y € GF(¢®) as coefficients and z €
GF(q) as variables, where 1 < b < ¢— 3 and ¢ = 27.
Then the code V' composed of all vectors (y,z, f(z,y)) is a
(k,m,r) AMD code with m = tr, k = ((t‘H;H) —1—-t)r
and Qy = (b+1)27".

Remark 3.1: If b is even when ¢ = 1, A(x) can be chosen
as x°*3 instead of x°*2. In this case, Qv = (b +2)27".

Remark 3.2: When k is not a multiple of r, 0’s can be
appended to y before f(x,y) is computed. The resulting AMD
code will have the same @, as the AMD code with the AMD
code with the same f(x,y), for which k is a multiple of r.

Example 3.1: 1Let t = b = 1, then m = r and k =
((Hi’fl) — 1 —t)r = r. The encoding function f(y,z) for
the AMD code based on Theorem 3.1 is f(y,z) =y -2 ® 23,
where z,y, f(y,z) € GF(2"). The resulting AMD code has
QV — 2—r+1'

Ift=1andb =3 thenm=r k= (""" -1~

t)r =3r and f(y,7) =y1 - x Dy - 2% D y3 - 23 © x5, where
Y1, Y2, Y3, 7, f(y,r) € GF(2"). For this code Qy = 27712,

AMD codes for t = 1 have been discussed in [22], and
details of AMD codes with £ > 1 can be found in [11], [12],
[23]. AMD codes based on different parameters used in this
paper will be discussed in Section IV.

IV. CONSTRUCTION OF SECURE FLASH MEMORY

Although the AMD codes defined in Section III have very
high security level and can detect most of the injected errors
with very low probability of missing an error, it has no ability
to locate and correct the random or injected errors. Because
the bit error rate is relatively high in MLC NAND flash, error
control codes must be implemented besides AMD codes to
detect and correct the random errors. Some linear codes such
as BCH code and RS code have very good ability to detect
and correct random and burst errors and they are often used in
MLC NAND flash memories to improve the reliability [3], [2],
[16], [21]. In this paper, we combine RS code and AMD code
to construct a secure and reliable structure which can detect
most of the malicious attacks and correct random errors.

RS code with symbols from GF(grs) can be defined by
a set of three parameters (ngs,krs,trs), in which kgs
and npg are the number of symbols before and after en-
coding respectively, and trs = (ngrs — krs)/2 = rrs/2
is the number of symbols which can be corrected among
ngrs symbols. Symbols take their values in a Galois Field
GF(2mrs), and are thus represented with mpgg bits. The
parameter npg is bounded by 2™7S [24]. Through this paper,
we use ngs, krs to denote the length and the number of the
information symbols in the RS code while ¢rg is the number
of errors which can be corrected by the RS code.

Data In
Ky >
X | RS
RNG e "| Encoder
v v >
AMD L
Encoder | f (y,%)
my Irs/
r
X y f(y,x) R
A 4 A 4 v A4
X y f(yX)| R

Fig. 3: Encoder structure of the proposed architecture

The encoding architecture based on the combination of RS
and AMD code is shown in Figure 3. In this architecture,
the random number generator (RNG) generates the random
numbers z; € GF(2") for the encoding of AMD code. (We
note that the RNG module is already integrated in most of the

modern cryptographic devices thus the proposed architecture
needs no extra resource to build the RNG module in such
cryptographic applications.) The AMD encoder then computes
the AMD redundant bits f(y,z) € GF(2") with the random
bits z € GF(2™) and information bits y € GF(2¥). In this
architecture, the AMD random number z and the redundancy
f(y,z) will also be part of the information bits for RS code
such that the errors in = and f(y,x) can also be detected and
corrected. So the information part of RS code is (x, y, f(y, x)).

The random number x is generated and applied to the RS
and AMD encoder before the information bits are read into the
encoder module. When the information bits y are read into the
encoder module, they are sent to the RS encoder and AMD
encoder at the same time. When the information bits are all
read into the encoder module, the AMD encoder will finish the
encoding and generate the redundancy f(y,). Then f(y, z) is
sent to the RS encoder as a part of the RS information bits. So
the encoding of AMD code and RS code can be processed in
parallel, thus the architecture will need only several additional
clock cycles for the AMD random number and redundant parts
as compared with the architecture based on only RS code.

&3, Fy0.R)

RS
Decoder
i 3 :
A

X' y' f'(y,%)

m K r
h f'(y,x)
Y 1
f(y,x Attack?
e (y) » Comparator —»

Decoder

Fig. 4: Decoder structure of the proposed architecture

The decoder architecture is shown in Figure 4. The random
number 2’ is decoded before the information bits in decoding
process, thus the decoding of RS and AMD code can be
implemented in parallel.

In the decoding process, the RS decoder will output the
corrected (but may be still distorted due to the miscorrection)
information bits including the random number z’, the infor-
mation part ' and the AMD redundancy f'(y,z) according
to the distorted inputs (Z, g, f (y,z), R). The distortion is due
to the possible miscorrection by the RS code. We note that if
the information is not distorted, then z =& = 2', y = § = ¥/,
f(y,z) = f(y,x) = f'(y,z), R = R. The AMD encoder then
generates f(y’,x’) according to the recovered z’ and y’. The
comparator then compares the decoded f’(y,) and the newly
generated f(y’,2’), if they are not equal, then it means RS
code cannot correct all the errors and miscorrection happened.

Apparently, if no more than tpg = 4 byte errors happened
then the RS decoder can recover all the symbols correctly.
Then 2 = 2/, y = ¢ and f(y,z) = f'(y,x), thus
f'(y,x) = f(y',a'). If there are more than four byte errors
in the code words, then the RS decoder can detect most of
such situations and refused to correct the errors with the extra
being miscorrected. Under such situation, f(y',z’) = f'(y, x)
holds with a very small probability, which means the AMD
code can detect most of the miscorrections.

After we implement RS and AMD codes in the ar-
chitecture, the encoded message will be in the format
((xo, -+ yxe), (Y1, -), f(y,x), R). In which x; are the
random numbers generated by RNG, y; are the information
bits stored in the flash memories and f(y,x) is the AMD
redundancy. The AMD random number z;, information bits
y; and the redundant part f(y,z) are all in GF'(2"). R is the
RS redundancy part with (2o, -+ ,2¢), (Y1, - s y), f(y,)
together as the RS input, where z;,y;, f(y,x) € GF(2").

A. Parameters of AMD Code

In the flash memory model we use in this paper, each section
size is 512 bytes, or 4,096 bits, so the number of information
bits k& should be at least 4,096. We choose the length of the
random number x; to be 32 bits, thus x; € GF(23?), r = 32.
In this paper, we consider three alternatives:

1) If t = 1, according to Theorem 3.1, because the flash
section size is 4096 bits, we can get b = 128. By (3) and
(4), we have A(z) = 231, B(y,z) = ®1<j<120¥j27,
AB(z) = {«'?}.

2) If t =2, b =14, x = (x,21), we have A(z) =
l‘ol‘P, B(y,l‘) = @1§j0+.jlﬁl5yjojlxg)omjll’ AB(JZ) =
{J)%E),xol‘%l}.

3) Ift =3,b=7 2 = (x,21,22), then A(z) = zJ ®
xgl) @ l'g, B(yv‘r) = @1§j0+j1+j2S8yjoj1j2x(JJOx{Ix%Q’
AB(*%') = {x%,x%m%}

We have the AMD parameters of ¢ = 1,2,3 discussed
above and the maximum error masking probabilities Qv for
the corresponding codes estimated by Theorem 3.1 listed in
Table I.

TABLE I: Parameters of AMD code

Lt Jrfm[b] k [Qv |
t=11]3271327]128 4,096] 3.0x10°8
t=2132]64] 14 | 4256 | 3.49 x 1077
t=313219| 7 [5,152]1.86x 107°

Ik is the number of maximum length of the AMD code,
can be shortened to the size needed
I all the computation are in GF(2")

I, is the total length of the random number

From Table I and the definition of AMD code in Section III,
we can see that trade-offs between security level and resource
can be achieved by choosing different parameters of the code.
For example, if we choose ¢t = 1, then the extra area we need
for the AMD redundancy and resources to compute f(y,)

will be smaller, but the security level @)y will also be lower.
If we want a higher security level against advanced attacks, we
will need larger ¢ thus larger redundant area for AMD code and
more complicated encoder and decoder circuit. At the same
time, we can choose also larger r for AMD code for higher
security level, but then the AMD code will be constructed over
higher order Galois field thus more resources are needed.

In this paper, we will choose AMD code with t = 1
as an example and compare the result with the architecture
based on only RS code. AMD encoder and decoder are
actually the same. For ¢ = 1, the AMD module needs two
multipliers My and M; to calculate 27 and 27y, respectively.
The AMD encoder architecture circuit for ¢ = 1 is as in
Figure 5. In Figure 5, the multiplier M is used to calculate

x?, 23, 213! and M; is used to calculate y;z7.
choose
.
D
r
Fig. 5: AMD encoder structure for t = 1
For ¢t = 2 and t = 3, we can use Horner’s scheme to

implement the AMD encoder and decoder. Or we can also
compute 27 before the information bits are read into the system
thus to save multipliers. The AMD encoder architecture circuit
for ¢ = 2 is as in Figure 6. In this architecture, the two
multipliers M, and M, are used to calculate 3, z3,- -+, x°
and z%,z3, - -, 21° before read the information bits. Then the
multipliers My and M, are used to calculate the y,,;, 2’ 27"

i
X" yjnilr

«
Y
8<N
!

x

f(y,%) §

Fig. 6: AMD encoder structure for ¢t = 2

B. Parameters of RS Code

In this architecture, the section size is 512 bytes in the
MLC NAND flash memory model of Section II. We choose

t = 1 for AMD code in this paper, so the size of the AMD
random number and AMD redundancy are both 32 bits. RS
code in the proposed architecture should cover not only the
flash memory section, but also the AMD random number
and redundancy at the same time, thus mprgs > 9. Higher
mps means higher order Galois field and thus more resource,
so we choose mprg = 9 in this architecture, which means
ngrs = 511. According to [21], we choose trs = 4 to make
a balance between the reliability and resource. Thus the RS
code in this architecture is a shorten (511,503, 4) code.

As described in Section IV-A, we choose ¢t = 1 and r = 32
for AMD code in this paper, so the AMD random numbers and
the redundancy are both 32 bits. The random number x and re-
dundant part f(y,x) are both appended four bits of 0 and then
divided into four 9-bits parts. So the whole code can be written
as ((woo, To1, To2, 203), (Yo, - »Yas55), (fo, f1, f2, f3), R). In
which zo; € GF(2°), y; € GF(2%), f; € GF(2°). Thus the
shorten RS code in this architecture is a (472,464, 4) code. In
decoding, the decoder first recovers (x(, T(1, (2, Z(3). then
combine these data to get 2’ € GF(23%). Similar process to
recover the f'(y, z).

In this architecture, we use RiBM [25] algorithm which has
extremely regular structure and thus is highly advantageous in
VLSI layout to decode the RS code [16].

C. Clock cycles overhead

Because the AMD code is constructed over GF(23?) and
the RS code is constructed over GF(2%) in this architecture,
these two codes need different number of clock cycles for en-
coding and decoding. In the encoding process, AMD encoder
will need 128 clock cycles to compute the xd yj(l <j <128)
and extra three clock cycles for computing x'3!. On the other
hand, the RS decoder will need 456 clock cycles for the
information part and 8 extra cycles to encode x and f(y,).

In decoding, the RS decoder first detects if the codewords
are distorted and whether there are more than four errors
using the syndrome. If there are no errors, the decoder outputs
the messages directly. If there are less than four errors, the
decoder will output the corrected codewords. If there are more
than four errors, the decoder will be able to detect it with
high probability or miscorrect the codewords with a small
probability.

The decoding of AMD code and the decoding of RS code
can be processed in parallel, thus no extra time overhead will
be needed except for the decoding of 2’ and f’(y,), and the
comparing of f'(y,x) and f(y',2’).

V. SECURITY LEVEL AND HARDWARE COMPLEXITY
COMPARISONS

We run random error injection simulation to verify the
security level of the proposed MLC NAND flash architecture
based on the combination of RS and AMD code. In the
simulation, we inject random errors into the x,y, f(y,x) and
R randomly. The tgg is 4 in this design, so the RS code
can correct any up to 4 byte errors. If we inject more than
4 byte errors, the RS decoder will detect most of them but

miscorrect some. The miscorrected errors will be detected by
the AMD code with a high probability. We injected 11 billion
error patterns into the system and the simulation results show
that if we randomly inject from 5 to 12 byte errors into the
proposed architecture, about 4.092% will be miscorrected by
RS code and most of the miscorrection will be detected by
the AMD code with a probability of missing a miscorrected
error as low as only 1.77 x 10~8. This result is very close to
the security level described in Table L.

The simulation results show that the proposed architecture
based on RS and AMD codes has much higher security level
than the architecture based on only the RS code. For the
architecture based only on the RS code, even if the attacker just
injects random errors distorting from 5 to 12 bytes randomly
into the devices, the attacker can bypass the error detection
and correction successfully with a probability about 4.092%.
But for our proposed architecture, this probability is as low as
1.77 x 1078,

Different parameters of AMD code will cause different
resource and time overhead and also different security level.
Fort =1, ¢t = 2 and ¢ = 3, the time overhead and the number
of multipliers are listed in Table II. The redundant bits in Table
IT include the random number 2 and the redundancy f(y,x),
so it’s the sum of r and m shown in Table I.

TABLE II: Resource requirement of AMD code

Number of | Clock Number
t Redundant cycles of
bits overhead | multipliers
t=1"T 64 131 1
t=1T 64 0 2
t=2 96 15 2
t=3 128 9 3

I This architecture will need only one multiplier but more
clock cycles

Il This architecture will need two multipliers but no extra

clock clocks

We note that for t = 1, we can compute all the zJ before
reading ;. In this case, we need only one multiplier but more
clock cycles. Or we can also compute 27 while we are reading
the y; in parallel, then we will need one more multiplier but no
extra clock cycles. We note that in this paper, we use the two-
multiplier architecture which is shown in Figure 5 for ¢t = 1
to build the proposed NAND flash encoder and decoder.

Actually, for ¢ = 2 and ¢ = 3, we can also decrease the
clock overhead to zero by adding more multipliers in the
architecture. From Table II we can see that higher security
level will require more resources but need less clock cycles
to finish the process. But usually, more clock cycles is not a
big problem for AMD module because AMD code is always
constructed over higher order Galois field than the RS code
and both the encoding and decoding process for AMD code
will need much less clock cycles than the RS codes.

Encoder and decoder architectures based on RS and AMD
codes will cause different latency and area overhead. The

encoder and decoder for the proposed RS&AMD architecture
and the architecture based only on RS codes have been mod-
elled in Verilog and synthesized in Cadence Encounter RTL
Compiler with the Nangate 45nm Opencell library version
v2009_07. The designs were placed and routed using Cadence
Encounter. The latency, the area overhead of the encoders and
the decoders were estimated using Concurrent Current Source
(CCS) model under typical operation condition assuming a
supply voltage of 1.1V and a temperature of 25 Celsius degree.
The synthesis results for the encoder and decoder are shown
in Table III. These results were all obtained based on same
simulation conditions.

TABLE III: Synthesis Result of the Encoders and

Decoders
Architecture LEESE)C Y| Gates (‘:‘:22)
RS encoder 0.991 1,177 939.5
RS AMD encoder | 1.934 | 10,231 | 8,164.6
RS decoder 1.023 | 60,659 | 48,406.1
RS AMD decoder | 1.258 | 62,764 | 50,086.2

From Table III we can see that the proposed architecture
based on RS and AMD code will require more resources than
the architecture based on only the RS code. While the encoder
for the AMD code constructed over higher order Galois field
is more complicate than the RS code, the decoder of AMD is
much simpler than the one of RS code.

VI. CONCLUSION

In this paper, we presented an architecture based on RS
and AMD codes which can detect and correct up to four
byte errors and detect strong attacks. Compared with the
architecture based only on RS code, our architecture is more
efficient for protecting NAND flash devices against malicious
fault injection attacks.

The proposed architecture needs only 64 more redundant
bits for every 4096 bits of the original flash and eight more
clock cycles for the encoding and decoding compared to the
original architecture based on the RS code.

We showed that the proposed architecture can provide both
high security and reliability. Under the strong attack model, the
chance for an attacker to conduct a successful fault injection
attack is guaranteed to be as low as 3 x 10~8. The simulation
results show that under random fault injection attack, the
miscorrection probability of RS architecture is 4.092%, and the
proposed architecture will detect most of these miscorrections
with the probability of missing a miscorrected error about only
1.77x1078. According to the simulation and synthesis results,
we can see that our architecture can significantly improve the
security level of the MLC NAND flash memories with only
minor time and area overhead.

REFERENCES

[1] Z. Wang, M. Karpovsky, and A. Joshi, “Nonlinear multi-
error correction codes for reliable mlc nand flash memo-

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

ries,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 20, no. 7, pp. 1221 —1234, july
2012.

Y. Maeda and H. Kaneko, “Error control coding for mul-
tilevel cell flash memories using nonbinary low-density
parity-check codes,” in Defect and Fault Tolerance in
VLSI Systems, 2009. DFT ’09. 24th IEEE International
Symposium on, oct. 2009, pp. 367 -375.

W. Liu, J. Rho, and W. Sung, “Low-power high-
throughput bch error correction vlsi design for multi-
level cell nand flash memories,” in Signal Processing
Systems Design and Implementation, 2006. SIPS ’06.
IEEE Workshop on, oct. 2006, pp. 303 —308.

C. Yang, Y. Emre, and C. Chakrabarti, “Product code
schemes for error correction in mlc nand flash memo-
ries,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 20, no. 12, pp. 2302 -2314, dec.
2012.

S. Skorobogatov, “Local heating attacks on flash memory
devices,” in Hardware-Oriented Security and Trust, 2009.
HOST °09. IEEE International Workshop on, july 2009,
pp. 1 —6.

——, “Optical fault masking attacks,” in Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2010 Workshop
on, aug. 2010, pp. 23 -29.

, “Flash memory ’bumping’ attacks,” in
Proceedings of the 12th international conference
on Cryptographic hardware and embedded systems,
ser. CHES’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 158-172. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1881511.1881526

M. Karpovsky, K. Kulikowski, and A. Taubin, “Ro-
bust protection against fault-injection attacks on smart
cards implementing the advanced encryption standard,”
in Dependable Systems and Networks, 2004 International
Conference on, june-1 july 2004, pp. 93 — 101.

M. Karpovsky and A. Taubin, “New class of nonlinear
systematic error detecting codes,” Information Theory,
IEEE Transactions on, vol. 50, no. 8, pp. 1818 — 1819,
aug. 2004.

K. Kulikowski, Z. Wang, and M. Karpovsky, “Compara-
tive analysis of robust fault attack resistant architectures
for public and private cryptosystems,” in Fault Diagnosis
and Tolerance in Cryptography, 2008. FDTC ’08. 5th
Workshop on, aug. 2008, pp. 41 —50.

Z. Wang and M. Karpovsky, “Algebraic manipulation de-
tection codes and their applications for design of secure
cryptographic devices,” in On-Line Testing Symposium
(IOLTS), 2011 IEEE 17th International, july 2011, pp.
234 -239.

——, “Reliable and secure memories based on alge-
braic manipulation correction codes,” in On-Line Testing
Symposium (IOLTS), 2012 IEEE 18th International, june
2012, pp. 146 —149.

A. Greg, F. Al, M. Duane, and B. Reaves, “Intel
strataflash memory technology overview,” Intel, Tech.

(14]

[15]

[16]

(17]

(18]
(19]

[20]

(21]

[22]

(23]

[24]

[25]

Rep., .

, “Slc vs. mlc: An analysis of flash memory,” Super
Talent Technology Corporation, Tech. Rep., .

——, “Choosing the right nand,” Micron Technology,
Inc., Tech. Rep., .

B. Chen, X. Zhang, and Z. Wang, “Error correction
for multi-level nand flash memory using reed-solomon
codes,” in Signal Processing Systems, 2008. SiPS 2008.
IEEE Workshop on, oct. 2008, pp. 94 —99.

“Nand flash 101: An introduction to nand flash and how
to design it in to your next product,” Micron Technology,
Inc., Tech. Rep., 2006.

64Gb, 128Gb, 256Gb, 512Gb
chronous/Synchronous NAND Features.
“Tn-29-05: Ecc module for nand flash via xilinx spartan-
3 fpga,” Micron Technology, Inc., Tech. Rep., 2005.
“Tn-29-06: Micron nand flash controller via xilinx
spartan-3 fpga,” Micron Technology, Inc., Tech. Rep.,
2005.

M. Mariano, “Ecc options for improving nand flash mem-
ory reliability,” Micron Technology, Inc., Tech. Rep.,
2012.

R. Cramer, Y. Dodis, S. Fehr, C. Padr, and D. Wichs,
“Detection of algebraic manipulation with applications to
robust secret sharing and fuzzy extractors,” in Advances
in Cryptology C EUROCRYPT 2008, ser. Lecture Notes
in Computer Science, N. Smart, Ed. ~Springer Berlin /
Heidelberg, 2008, vol. 4965, pp. 471-488.

Z. Wang and M. Karpovsky, “New error detecting codes
for the design of hardware resistant to strong fault
injection attacks.”

S. Lin and D. J. Costello, Error Control Coding, Second
Edition. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 2004.

D. Sarwate and N. Shanbhag, “High-speed architectures
for reed-solomon decoders,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 9, no. 5, pp.
641 —655, oct. 2001.

Asyn-

