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Abstract—Cryptographic devices suffer from fault injection
attacks. The security of crypto-systems protected by traditional
error detecting codes rely on the assumption that the information
bits and the error patterns are not both controllable by the
attacker. For applications where the assumption is not valid,
the security of systems protected by traditional error detecting
codes can be easily compromised. In this paper, we present
constructions for algebraic manipulation detection (AMD) codes
based on the nonlinear encoding functions. For a (k,m,r) AMD
code, a message contains three parts: k-bit information data y,
m-bit random data z and r-bit redundancy f(y,x). For any
error ¢ and information y, the fraction of x that masks the
error ¢ is less than 1. In this paper we describe lower and upper
bounds on AMD codes and show that the presented constructions
can generate optimal or close to optimal AMD codes in many
cases. We presented efficient encoding and decoding methods
for AMD codes minimizing the number of multipliers using the
multivariate Horner scheme. The proposed codes can provide
a guaranteed high error detecting probability even if both the
information bits of the code and the non-zero error patterns
are controllable by an attacker. These codes can be used for
design of secure multipliers, secure memories or secure hardware
implementing cryptography algorithms resistant to fault injection
attacks.

Keywords-Error Detecting Codes, Nonlinear Codes, Secure
Hardware, Fault Injection Attacks.

I. INTRODUCTION

Error detecting codes are widely used for communication
channels and for computation channels to protect reliable and
secure devices against soft errors, hard errors and malicious at-
tacks in applications like Internet, data storage, cryptosystems
and wireless communications.

Most of the existing reliable and secure architectures [1],
[2], [3], [4], [5], [6] are based on linear codes such as 1-d
parity codes, duplication codes, Hamming codes, BCH codes,
Reed-Solomon codes, etc. The error detecting capabilities
these architectures largely depend on the accuracy of the error
model and may not be sufficient if an attacker can control
errors distorting the received messages for communication
channels or errors distorting outputs of a device protected by
an error detecting code for computation channels.

Robust codes based on nonlinear encoding functions were
proposed in [7], [8], [9], [10], [11]. A code C' € GF(2") is
robust if {e|cde € C,Vec € C} = {0 € GF(2™)}. These codes
can provide nearly equal protection against all error patterns
[7], [8]. The error masking probabilities Q¢ (e) = |C|~t{c €
C,cde € C} (|C) is the size of the code) for robust codes are
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upper-bounded by a number less than 1 for all non-zero errors.
Compared to the systems based on linear codes, systems based
on robust codes can provide a guaranteed protection regardless
of the accuracy of the error model. Variants of robust codes
— partially robust and minimum distance robust codes — were
proposed in [10], [11], which allow tradeoffs in terms of the
robustness and the hardware overhead.

One limitation of robust codes is that these codes assume
the information bits of messages or outputs of the device-to-
be-protected are uniformly distributed and are not controllable
by external forces, e.g. by an attacker during error injection
attacks on devices. The reliability and the security of the
communication or computation channels protected by robust
codes will be largely compromised if both information bits of
the messages and the non-zero error patterns can be controlled
by the attacker.

Example 1.1: Suppose the 32-bit device is protected by a
robust duplication code C' = {y, f(y)}, where y, f(y) €
GF(2%?), f(y) = v* and all operations are in GF(23?). It
is easy to prove that any non-zero error e will be masked
by at most two codewords [7], i.e. for any non-zero error
e = (ey, ey) there exist at most two vectors y1, y2 € GF(23?%)
such that (y1 @ e,)® = y} @ es and (y2 D ey)® = y3 D ey.
Assume that an attacker cannot control the fault-free outputs
y during attacks and the outputs of the original device are
uniformly distributed, then the probability that the attacker
conducts a successful attack (e = (ey,ef) is not detected)
is at most 273!, If an attacker has the ability to control the
inputs of the device (hence the fault-free outputs) and can
inject arbitrary error patterns at the output, let (v,y) be an
input-output pair, i.e. y is the output of the device when the
input to the device is v. Then the attacker can easily derive
an error pattern ¢* = (e}, €}), €5, e¢f € GF(2%), e # 0 that
will be masked by y, i.e. (y@e})® G y® @ el = 0. During the
attack, the attacker can simply input v to the device and inject
the corresponding e* = (ey, e}) at the output of the device.
In this case, the attack will always be successful.

For the situation shown in the above example, all previous
protection technologies based on traditional error detecting
codes will not be sufficient. A coding technique based on
adding to k information bits m random bits and r redundant
bits, which can still provide guaranteed reliability and security
under the above circumstance, is called algebraic manip-
ulation detection (AMD) code . (The formal definition of
AMD codes will be given in the next Section, see Definition
2.2). A simple AMD code was first presented in [12]. A
much more versatile strong AMD code was introduced in



[13], where the construction of optimal AMD codes was
presented for k = br information digits and m = r random
digits (r is the number of redundant digits). In [14], the
authors introduced the concept of AMD codes and put all
previous constructions in a unified framework. Compared to
the widely used Message Authentication Codes, AMD codes
do not require a secret key and have simpler encoding and
decoding. Codes combining AMD codes and list-decoding are
described in [15]. Applications of AMD codes for the design
of non-malleable codes are presented in [16].

The main contributions of this paper are as follows. We
present lower bounds for the probability of error masking for
systematic AMD codes (Section II) and present several new
constructions of systematic AMD codes (Section III), which
are generalizations of the construction shown in [14]. Some
of the presented codes are optimal or close to be optimal. We
showed the relationship between AMD codes and classical
codes such as the Generalized Reed-Muller codes and the
Reed-Solomon codes (Section II and III). We also describe in
Section IV an efficient encoding and decoding algorithm for
the presented codes based on the multivariate Horner scheme.

The proposed codes can be used for many different appli-
cations such as robust secret sharing schemes, robust fuzzy
extractors [14] and secure cryptographic devices resistant to
fault injection attacks. All the codes described in this paper are
binary. Generalization to a nonbinary case is straightforward.

II. DEFINITIONS AND BOUNDS FOR ALGEBRAIC
MANIPULATION DETECTION CODES

Throughout the paper we denote by & the addition in
GF(q),q = 2". All the results presented in the paper can
be easily generalized to the case where ¢ = p” (p is a prime).
Due to the lack of space, proofs for corollaries are omitted.

A code V with codewords (y,z, f(y,z)), where y €
GF(2F),r € GF(2™) and f(y,x) € GF(2"), will be referred
to as a (k,m,r) code. We will assume that y is a k-bit
information, x is an m-bit uniformly distributed random vector
(generated by a random number generator) and f(y,z) is an
r-bit redundant portion of the message (y,x, f(y,x)). The
general architecture of using AMD codes for the protection
of computation channels is shown in Figure 1.
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Fig. 1. Computation channel protected by a systematic (k, m,r) AMD code.

Definition 2.1: (Security Kernel) For any (k,m,r) error
detecting code V' with the encoding function f(y,x), where
y € GF(2),z € GF(2™) and f(y,x) € GF(2"), the
security kernel K is the set of errors e = (ey, e,,¢ey), e, €
GF(2%),e, € GF(2™),e; € GF(2"), for which there exists
y such that f(y D ey, x D e,) D f(y,x) = ey is satisfied for
all .

Ks={e|Fy, flyde,,cde;)® fly,x) ey =0,Vz}. (1)

We note that in many applications e, # 0 is a necessary
condition for an attacker to conduct a successful fault injection
attack. However, for secure architectures such as the one
shown in [9], [17], the integrity of not only the information
bits but also the redundant bits of the codes can be critical.
Thereby, to conduct a more general analysis, we do not impose
ey 7 0 in the above definition of the security kernel.

Non-zero errors e in the security kernel can be used by an
advanced attacker to bypass the protection based on the error
detecting code. For the case of communication channels we
assume that an attacker can select any k-bit vector y as the
information bits of a message (y,z, f(y,x)) and any error
e = (ey,eq,eyr) that distorts the message. For the case of
computation channels (Figure 1), we assume the attacker can
inject faults that manifest as e € Kg at the output of the device
and select y for which e is always masked. Under the above
attacker model for communication or computation channels,
the attacker can always mount a successful attack. Thereby
an AMD code that can provide a guaranteed error detecting
probability under the above strong attacker model should have
no errors in the security kernel except for the all zero vector
in GF(2"), where n = k +m + r is the length of the code.

Definition 2.2: A (k,m,r) error detecting code is called
Algebraic Manipulation Detection (AMD) code iff Kg = {0},
where O is the all zero vector in GF(2"), n=k+m + 7.

Remark 2.1: The original definition of AMD codes in [14]
is for both systematic and nonsystematic codes defined in
any group. In this paper we consider binary systematic AMD
codes, which is the most practical for hardware implementa-
tion. The above definition and all other results in this paper
can be easily generalized for non-binary cases.

AMD codes V' = {(y,z, f(y,z))} have no undetectable
errors no matter how the attacker select e = (e, e,,es) and
1. AMD codes for the case m = r and k = br were introduced
in [13] and were used in [14] for robust secret sharing schemes
and for robust fuzzy extractors.

For a (k,m,r) code V, denote by Qv (y, e) the probability
of missing an error e once y is fixed. Then Qv (y,e) can be
computed as the fraction of random vectors x such that e is
masked (see (2)) and Ks = {e|3y : Qv (y,e) = 1}. The code
V is an AMD code if and only if Qv (y,e) < 1 for any y and
any e # 0.

QV(ya 6’) = 27m|{1,‘ (y,l‘, f(yvx)) € ‘/7

(y®ey,x® ey, f(y,z)Bey) €VH. (2)

For a (k,m,r) AMD code V = {(y,z, f(y, 7)), y € GF(2¥),
x € GF@2™), f(y,x) € GF(2")}, for any given y* €
GF(2F) and e* = (e, e’ e}), ey € GF(2F),er € GF(2™),
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e} € GF(2"), f(y*@e,,xDe;)@e} considered as functions
of x € GF(2™) should all be different.

Example 2.1: Let k = m = tr, y = (Yo,¥1, " ,Yt—1)s
y; € GF(2") be the information digits and z =
(0,21, ,x4—1),2; € GF(2") be the random digits. Let
fly,z) =x0-yoPx1-y1 D+ - Bxy_1 - y—1 be the encoding
function, where all the operations are in GF'(2").

It is easy to verify that when e, = 0, for any e, and ey
(ez, ey are not both 0), there always exist y such that e =
(0,e5,€e5), e # 0 will be masked for all z. Thereby, this code
is not a AMD code. In this case, Kg contains all vectors
e=(0,ez,€ef).

Suppose e, = (eyo’eylv T 763#—1)’61/1' € GF(2T) is
always non-zero. Without loss of generality, let us assume
ey, 7 0. Then the monomial e,, - zo will appear in the error
masking equation f(z®e,,y®e,)® f(y,z) Des = 0. Since
ey, # 0, for every e,y and x1, 2, -+, z:_1, there is a unique
solution for x(. Thereby the error is masked with probability
27"

Let C be a g-ary code (¢ = 2") of length 2™ with an
encoding function f : GF(2™) — GF(2"). Let us define the
orbit of f by (3). We note that for any f € C, 1 < |Orb(f)| <
q2™ = 2™t If |Orb(f)| = 2™*", then for any e, and ey
there exists = such that f(x) # f(z @ e;) ® ef. Moreover, if
© &€ Orb(f), then Orb(p) (N Orb(f) = 0.

Orb(f) ={elp(x) = f(z S es) B ep,ec € GF2™), (3)

where ey € GF(27)}.

Definition 2.3: We will say that a g-ary (¢ = 2") code C
of length 2™ is a code with full orbit if for any f € C,
|Orb(f)] = 2™+ and Orb(f) C C.

The notion of codes with full orbit will be used in the lower
bound for the probability of error masking (see Theorem 2.1).

Any g-ary code C of length 2™ with full orbit is a union
of disjoint orbits of size g2™. The size of C' is a multiple of
q2™. We note that codes with full orbit are nonlinear and for
any code C' with full orbit, 0 € GF(2™) is not a codeword
of C.

Example 2.2: Let C' be a binary code of length 8 and
Hamming distance 2 containing all vectors with an odd
number of 1’s. Let ¥ = (vo0,%1,¥2),¥; € GF(2) and
ful@)=yo-zo®y1-T1 B Y2 -T2 P xo - 1 - T2. It is easy to
verify that for any y € GF(23), |Orb(f,)| = 16. Thus C is a
code with full orbit and |C| = | Uycap(2s) Orb(f,)| = 128.

The optimal AMD code should minimize
max, 20 Qv (y, €) among all codes with the same parameters.
Thus, the criterion we use to construct good AMD codes is

i 4
plpin  max Qv (y,e), “4)

where Vi ., » is the set of all (k, m,r) error detecting codes.

We note that the optimization criterion selected in this paper
is different from the one shown in [14]. The computational
complexity of the encoding function for AMD codes is de-
termined by both m and r. In cryptographic applications,
the m random digits can be generated by a random number
generator (RNG), which is already integrated in most of the
modern cryptographic devices. Since the RNG is also used

for other purposes such as generating the random mask for
countermeasures against power analysis attacks, the number of
random digits available for AMD codes in every clock cycle
may be limited. The above criterion was selected to maximize
the security level of the cryptographic device given the number
of available random digits in every clock cycle and the amount
of hardware redundancy we can bear.

Let Qv = maxy.xQv(y,e) and Q(k,m,r) =
minyey, .., Qv. Denote by d, (2™, M) the maximum Ham-
ming distance of a g-ary (¢ = 2") code of length 2™ with full
orbit containing M codewords. Obviously,

dg(2™, M) < dg (2™, M), (5)
where dg (2™, M) is the maximum possible Hamming distance
of a g-ary code with length 2 and M codewords.

We next present a lower bound for Q(k,m,r). The
constructions of codes providing tight upper bounds for
Q(k,m,r) can be found in Section III.

Theorem 2.1: For any (k,m,r) AMD code, where k is the
number of information bits, m is the number of random bits
and 7 is the number of redundant bits,

min  max Qv (y,e)

]{j =
Q( 1T 7’) VeV, m,r y,e#0
> 12,2, M), ©®

where dg (2™, M) is the maximum possible Hamming distance
of a (not necessarily systematic) g-ary code C' (¢ = 2") with
length 2 and M = |C| = 2¥+™+" codewords.

Proof: Let V be a (k,m,r) AMD code composed of
vectors (y,z, f(y,z)), where y € GF(2%),z € GF(2™) and
fly,z) € GF(2"). When y is fixed, f is a function of z.
Let us denote this function by f,. Since V' is an AMD code,
fy(z @ es) ® ey is not the same as fy (@ e;) ® € for any
Y,y ex e ep, e}, assuming that elements of at least one of
the pairs (y,y'), (ex,€;) and (ey,e’;) are not equal. Thereby,
for different y, e, and ef, f,(z @ e,) ® ey corresponds to
2k+m+r different functions.

Let Oy = Uycarer)Orb(f,) be a g-ary (g = 2") code of
length 2™ with full orbit. Then |Orb(f,)| = 2™*", |C| =
2MmMAT and Qv = mazy c20Q(y,e) = 1 — 27md(Cy),
where d(Cy) is the Hamming distance of Cy. By (5) and
(6) we have

Q(k7m7r) -2

max d(Cy)

Vevlc,m,,r
> 1-27™d, (2™, M) (7)
> 1-27"dg (2™, M).

|

The following Corollary follows directly from Theorem 2.1.

Corollary 2.1: There is no AMD codes V' with k > r2™ —
m—r. (Q(k,m,r)=1if k>r2™ —m—r.)

Remark 2.2: We note that the bound in Theorem 2.1 is
much stronger than the trivial bound Q(k,m,r) > 27". In
fact, Q(k,m,r) > 27" is equivalent to d (2™, 2% +m+1) >
2™ — 2™~7" which is a sub-case of Theorem 2.1.

Theorem 2.1 shows the relationship between the worst
case error masking probability (v for an AMD code V' and



the Hamming distance of the corresponding code Cy with
full orbit. The exact value of (fq(2m,M ) is hard to derive.
However, the Hamming distance of C'y, should not exceed the
maximum possible distance for a g-ary code with length 2™
and 28T™+" codewords, ¢ = 2. We note that d, (2™, M) can
be estimated by classical bounds from coding theory such as
the Hamming bound, the Johnson bound, the Singleton bound,
the Plotkin bound, etc [18].

When d, (2™, M) is estimated by the Singleton bound, the
lower bound for Q(k, m,r) can be written in a compact form
as it is shown in the following Corollary.

Corollary 2.2: For any (k,m,r) AMD code,

QU m.r) > [

Example 2.3: Let k =m = 3 and r = 1. According to (8),
Q(3,3,1) > 5. Let V be the code composed of all vectors

8
(y,x, f(y,x)), where y,z € GF(23) and

‘|2—m' (8)

fy,x) = wo-x1-22Dx0- Yo Dr1-Y1DT2-Y2, f(y,7) € GF(2).
©))

The error masking equation is f(x®e,, yde,) d f(y, x) =
ey, which is a polynomial of x with degree 2. The function on
the left hand side of the error masking equation corresponds
to a codeword of the second order binary Reed-Muller code
RM>(2,3) with 3 variables [18]. Any codeword of RM>(2, 3)
has a Hamming weight of at least 2. Thus the number of
solutions for the error masking equation is upper bounded by
6. V is a AMD code with Qy = g. It follows from (8) that
this code is optimal and ((3,3,1) = 0.75.

Optimal (k, m,r) AMD codes attain the equality in (6) and
minimize the worst case error masking probability among all
codes with the same parameters.

In the next section, we will present several general con-
structions of AMD codes. Some of the generated codes are
optimal with respect to the lower bounds (6) or (8).

III. CONSTRUCTIONS OF AMD CODES

The codewords of a (k,m,r) AMD code V are in the
format (y,z, f(y,x)), where y € GF(2%),2 € GF(2™) and
f(y,xz) € GF(2"). When y is fixed, f, is a function of z. In
the proof of Theorem 2.1, we have shown that the necessary
condition for V' to be an AMD code is that fy(z S e,) D ey
cannot be the same function as f, (z @ e)) & e’f for any
Y,y ez, €, e, €, assuming elements in at least one of the
pairs (y,y'), (ex,€;) and (ey,€’;) are not equal.

To compute Qv (y,e) for the code V, the error masking
equation f(x @ ez, y B ey) © f(y,xz) ® ef = 0 should be
evaluated for all 2 possible x € GF'(2™).

We will say that an AMD code V = {(y,x, f(y,z))} is
based on code C' if the error masking polynomial f(y$e,, z®
ex)® f(y,x) Pey is a codeword of C for all y, e;, e, and ey.
Let us re-write f(y,x) as f(y,z) = A(z) @ B(y,x), where
A(x) is independent of y. We next show that by selecting
A(z) and B(y,z) based on different error detecting codes
such as the Generalized Reed-Muller codes and the Reed-
Solomon codes, we can construct good (and in many cases
optimal) AMD codes for different k and different Qy =
maxy .0 Qv (y, e) for given m and r.

A. Constructions of AMD codes Based on the Generalized
Reed-Muller Codes

Let x = (wo, 21, ,71), 7 € GF(q), ¢ = 2". A bth
order g-ary Generalized Reed-Muller code GRM,(b,t) [19]
with ¢ variables (1 < b < t(q — 1)) consists of all codewords

(f(0), F(4°), -, F(v9~2)), where f(x) is a polynomial of
t variables xy,x1,---x¢—1 and y is a primitive element of

GF(q"). The degree of f(z) is less or equal to b.
It is shown in [19] that the dimension of GRM,(b,t) is
¢ .
S\ (t+b—jq
GRM, (b,t) JZZ:O( ) j b ja

where q:2’",(;) =0when j <0.Ifb=u(g—1)+v,0<
v < g — 2. Then the distance of GRM,(b,t) is dara,v,1) =
(q—v)g" "1 [19].

Suppose b+2=a(g—1)+ 8 <t(¢—1),0<a<t,0<
B < q— 2. Assume that b is odd when ¢ = 1. Let

@i o2l if =0, is odd;
@:;i $0I?+1,t >1 if « =0, is even;
@f;é P I5-, x(\]ijrljlt if « #0,a #t;
[0 =" if o =t
where z; € GF(2"), |¢ + j|; is the modulo ¢ addition, € is
the sum in GF(27).

Let

Az) =

B(y,z) =

D

t—1
Yiojnges |21, (12)
1<jo+j1+-+jr—1<b+1 i=0
where 0 < 7 <qg—1, Yjo,jr,je—1 < GF(270>73%‘ S GF(QT),

t—1 i . .

[Ii—oz;* is a monomial of wg,z1,---,7;—1 of a degree
between 1 and b + 1 and Hf;(l) zl' ¢ AB(y,z), where
AB(y, z) is defined by (13).

We note it follows from (13) that when o = ¢, AB(y,z) =
—2 ) .
{20 ]2d0<i<t—1}

?

Example 3.1: Let r = 3,g = 8,t = 2 and b = 10. Since
b+2=12=a(q—1)+ 3, we have « = 1 and § = 5. By
(11) and (13), we have A(z) = z52] @ xJz} and AB(y,z) =
{232, 2§23} Tt is easy to verify that A(z @ e,) © A(z) ®
B(y ®ey,x®e;) @ B(y, z) is always a non-zero polynomial
corresponding to a codeword in GRMg(11, 2).

AMD codes can be constructed based on A(x), B(y,x)
and the Generalized Reed-Muller codes as shown in the next
Theorem.

Theorem 3.1: Let f(y,z) = A(xz) ® B(y,z) be a g-ary
polynomial with y;, ;, ... j,_, € GF(q) as coefficients and
x € GF(q") as variables, where 1 <b <t(qg—1)—2,q=2"
and A(x), B(y, z) are as shown above. Suppose b+2 = a(q—
D+pand b+1 =u(g—1)+v,0 < a,u <t,0< B0 <g-—2.
Assume b+ 2 # t(q — 1) — 1 and b is odd when ¢ = 1. Then
the code V' composed of all vectors (y, z, f(y, z)) is an AMD

an



{xb+1 AT L
AB(y,x) = {alt xo%»woxlﬁv'”
{x z z+21|t Ha: H—J\ ’
code with m = tr,
k= (kgrum, (41,0 —t—1)r
t .
- (;(_1)1'(9 (t Zitl;;q) —1—t)r, (14)
and
Qv = 1—dgrm,p+1,02" "
= 1— (20 —v)2-r, (15)
Thus

Q((i(—l)i (:) (t g_ﬁ iiqiq) — 1=ty tr,r)

<1— (2" —w)2~utbr,

(16)

Proof: An error e is masked by V' if and only if for all =
AlxPe,)BA(x)DB(yPey, vde,) BBy, x)Per = 0. (17)

1) If e, = 0 and ey, = O, the error is always detected
unless ey is also 0. If e, = 0 and e, # O, the left hand
side of the error masking equation (17) is a polynomial
of degree from 1 to b + 1, which corresponds to a
codeword of a (b+ 1) order g-ary Generalized Reed-
Muller code. Slnce darm, (b41, t) = (¢g—v)q' =1, there
are at most ¢' — (q — U)qt u=1 golutions for the error
masking equation.

2) If e, # 0, the left hand side of (17) does not contain any
monomials of degree b+ 2 due to the fact that A(x) and
A(z @ e,) have exactly the same monomials of degree
b+ 2. Moreover,

a) If =0 and b is odd, :ci-’“ appears in (17) iff z;
is distorted, 0 <7 <t —1;

b) If @ =0 and b is even, xb+1 appears in (17) iff x
is distorted, xoxﬁ? appears in (17) iff x; is distorted
1<i<t—-1;

o If a # 0, tlg—1) — 1,
xﬁxﬁ_ﬁlt | |;J‘ appears in (17) iff x‘H_l‘t
is dlstorted 0 § 1 < t— 1. (When a = {,

—2 Hjﬂ ?7 appears in (17) if z; is distorted.)
Thereby, (17) always contains monomials of degree b+
1, the left hand side of the error masking equation again
is a codeword in GRM, (b + 1,t). Thus the number of
solutions for the error masking equation is still upper
bounded by ¢ — (¢ — v)g*~“~ L.

since b + 2 #

Thus for any fixed y and e, the probability @y of error
masking is upper bounded by

(@' = (=)™ g =1-(2"—v

The left hand side of (17) contains monomials of a degree
from 1 to b+ 1 except for the ¢ monomials from AB(y,x).

)27(u+1)r.

zoxb_y,t > 1}
0<i<t—1}

if « =0,b is odd;
if « =0,b is even;
if a# 0.

13)

Hence the number of different monomials in B(y, z) is

Zq) S

(18)
The number, k, of bits in y is equal to the number of
monomials in B(y, z) multiplied by r, which is

S () () o
]

Example 3.1 (Continued) For the code shown in Example 3.1,
k =55 x 3 = 165. Since b = 10 = u(q — 1) + v,q = 8,
we have u = 1 and v = 3. The worst case error masking
probability is Qy =1 —5x 275 Thus by (8), 1 —7x 276 <
Qv(165,6,3) <1—5x 276,

Corollary 3.1: When b = t(¢ — 1) — 2,q = 2", codes
generated by Theorem 3.1 are optimal. We have

Qs

t

S (tHD+1 -
kGRMq(bH,t)*l*t:Z(*l) (z)( b+1—ig

=0

19)

—tr —2r tr,r) =1 —27" (20)

1) Special Case: r = 1: For this case the dimension of
a (b + 1)*" order binary Reed-Muller code of t variables
is kranorin = Sooto () (¢ = m) [18]. The distance
of RMa(b + 1,t) is drarype1,e) = 27771 As a result,
the dimension of the resulting AMD code V' constructed by
Theorem 3.1 is k = Zf:é (f) —t — 1. The worst case error
masking probability of the code is Qy = 1 — 2~ (F1),

Corollary 3.2: When ¢ = 2, the code V generated by
Theorem 3.1 is a (Y00 (1) — ¢ — 1,¢,1) AMD code with
Qy = 1 — 2=+ The code is optimal when b = 1 or
b=t—-2.

Example 3.2: Suppose m =7 and r = 1. Let b =1 and

6
fly,x) = 560'581'$2€B$3'$4'$5€95€0'$3'$6€BZ iy (21)
i=0

It is easy to verify that f(y D ey, xDey) ® f(y,z) Pesisa
polynomial of degree 2, which is a codeword of RM>(2,7).
The distance of RM5(2, 7) is 32. The worst case error masking
probability of the resulting AMD code is Qy = 0.75. This
code is optimal.

Remark 3.1: When ¢ =2 and b = 1, the code V' generated
by Theorem 3.1 is an optimal AMD code with k¥ = (%) and
@ = 0.75. Obviously, for all & < (;) optimal AMD code with
the same m and r = 1 can be constructed by deleting some
codewords from V. The worst case error masking probability
for the new code is still 0.75.

2) Special Case: b < q — 3: Another special case of
Theorem 3.1 is the case b < ¢—3. In this case kgrar, (b+1,t) =

t+b+1 t—1
) e i
: .

and dgra,p+14) = (@ — b —
dimension of the resulting AMD code is ((



The worst case error masking probability is (b + 1)27".

Corollary 3.3: Assume b is odd when ¢ = 1. When b <
g — 3, the code V' generated by Theorem 3.1 is a (((H'IZH) —
1 —t)r,tr,r) AMD code with Qy = (b+ 1)27".

When b = 1 B(y,«) is the quadratic form zq - yo b =1 -
Y1 ®- - Dx_1-ys—1, where all the operations are in GF(2").
If e, # 0, it is easy to verify that the number of codewords
masking the error is upper bounded by ¢‘~!.

3) Special Case: t =1 [13], [14]: When t = 1 and b is
odd, A(z) = 2**2 and B(y,z) =z - yo @2 -y © --- @ 2" -
yp—1. The code generated by Theorem 3.1 coincides with the
construction shown in [13], [14]. For this code, k < r(¢—3) =
r(2" —3).

Corollary 3.4: [13], [14] When b < ¢—3 is an odd number,
the code V' composed of all vectors (y, x, f(y,x)), where y €
GF(¢"),x € GF(q),q=2" and f(y,z) = 2" @z -y @
22y @2y, f(y,2) € GF(q), is an optimal (br,r, 1)
AMD code with Qy = maxy .20 Qv(y,e) = (b+ 1)27".
Thereby, Q(br,r,r) = (b+1)27".

Remark 3.2: One limitation of Corollary 3.4 is that b can
only be an odd number when the characteristic of the field
GF(q) is 2. Otherwise, A(x @ e,) for A(z) = x**? and
e, 7 0 does not contain any monomial of degree b 4+ 1. The
resulting code is not a secure AMD code as pointed out in
[14]. When b is even, A(z) can be chosen as z°*3. In this
case, Qv = (b+2)27".

Remark 3.3: When t = 1, the left hand side of the error
masking equation f(y @ ey, x B e;) ® f(y,x) ey = 0 is
a codeword of an extended g-ary (¢,b+ 2,q — b — 1) Reed-
Solomon code, ¢ = 2" [18].

When ¢ > 1, codes V' generated by Theorem 3.1 may have
larger number of codewords than codes generated by Corollary
3.4 (t = 1), assuming the two codes have the same @)y and
the same 7.

Example 3.3: Suppose r = 16, Qy =274 Thenfort =1
and b = 3, for codes generated by Corollary 3.4, the maximum
number of codewords is 207 = 2%%. When ¢ > 1, the maximum
number of codewords for codes generated by Theorem 3.1
depends not only on b but also on t. When ¢ = 2, for example,
the number of codewords of codes generated by Theorem 3.1

t+b+1
can be 2(("0T) 710 — 9192,

To end the section, we summarize cases the when codes

constructed by Theorem 3.1 are optimal in the Table I.

IV. ENCODING AND DECODING COMPLEXITY FOR AMD
CODES

In this section, we estimate the hardware complexity for
the encoders and decoders for AMD codes based on g-ary
Generalized Reed-Muller codes (Theorem 3.1). The hardware
complexity for the encoders and decoders for AMD codes
based on the product of GRM codes can be estimated in a
similar way.

It is well known that a multivariate polynomial of ¢ variables
25,0 <i<t—1,2; € GF(2") can be efficiently computed
using the multivariate Horner scheme [20]. When ¢t = 1,
any polynomial of degree b+ 1 defined over GF(2") can be

represented as
f(@) = a0 & (e ® (- (ap + apy17))),

where a; € GF(2"),z € GF(2"). The computation of the
polynomial requires b + 1 multipliers and b + 1 adders in
GF(2).

When ¢t > 1, we can first apply Horner scheme as if
xo is the variable and xq,zs,--- ,x;_1 are coefficients. In
this case coefficients will be polynomials of ¢ — 1 variables
T1,Ts,--- ,T¢—1. To compute these polynomials, we can se-
lect one of the remaining z;,1 < ¢ < ¢ — 1 as variable and
apply the Horner scheme again. We repeat the procedure until
all x;,0 <4 <t—1 are factored out.

Example 4.1: In Theorem 3.1, let t = b = 2 and assume
r is large enough. Then the resulting code is a (7r,2r,1)
AMD code. At most 8 multipliers and 7 adders in GF'(2") are
required for the encoding or the decoding. The corresponding
encoding network is shown in Figure 2. The critical path of
the encoder contains 4 multipliers and 4 adders in GF(2").

It is easy to verify that for the encoder of a (k,m,r) AMD
code generated by Theorem 3.1 using the multivariate Horner
scheme shown above, the number of multipliers and adders is
upper bounded by [kf—m] The latency of the encoder will
be (b+ 1)(Th + Ta), where Tys and T4 are the latency
for a multiplier and an adder in GF(2"). We note that the
actual number of multipliers in the encoder may be smaller
than [’”Tm} due to the fact that the power operation can be
simplified. For example, in the normal base Galois field, the
square operation can be implemented by cyclic shifting [21].
In this case, the multiplier marked in Figure 2, which is used to
compute 7%, is not needed and the total number of multipliers
in the encoder becomes 7.

An estimation of the overhead for secure Galois field mul-
tipliers based on AMD codes in GF(223%) and GF(24%%) for
the elliptic curve cryptographic devices can be found in [22].
We showed in [22] that the area overhead for the protection
architectures based on AMD codes is between 110% and
160%. Moreover, when the encoder is pipelined, the protected
multiplier has no latency penalty and can achieve the same
performance as the original device. (The work in [22] only
considered the special case of AMD codes with b < ¢ — 3
(see Section III-A2).)

Xy

X

Can be replaced by
square operation

L/

y
Xp -
A
L/ 1/

Fig. 2. Encoder Architecture for the (7r,2r,7) AMD Code Based on
GRMq(3,2) code

—



TABLE I
OPTIMALITY OF (k, m,r) AMD CODES CONSTRUCTED BY THEOREM 3.1

k m | r Qv Optimality
2y —tr — 2r tr | r | 1270+ Optimal (Corollary 3.1)
S ()—t—1 | ¢t |1 |1—2"+) | Optimal when b =1 or b =t — 2 (Corollary 3.2)
((t“;*l) —t—1r | tr | 7| (b+1)27" Optimal when ¢ = 1 (Corollary 3.4)

V. CONCLUSIONS

In this paper, we presented bounds, general constructions
and encoding/decoding procedures for algebraic manipulation
detection (AMD) codes based on g-ary Generalized Reed-
Muller codes and their products. Some of the presented codes
are optimal. These codes can provide a guaranteed level of
reliability and security even if both the information bits and
the non-zero error patterns are controllable by external forces.
The same characteristic cannot be achieved by any previously
known reliable and secure architectures based on error de-
tecting codes. These codes can be applied for many different
applications such as robust secret sharing scheme, robust fuzzy
extractors and secure cryptographic devices resistant to fault
injection attacks. An efficient encoding and decoding method
minimizing the number of required multipliers are given for
the presented AMD codes.
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