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Abstract

We propose a new approach for identification of faulty processing elements in
computing arrays based on the compressed response of the system. The test re-
sponse is compressed first in space and then and faulty processing elements are
identified by "hard decision decoding’ of the corresponding space-time signature.
The approach results in considerable savings in hardware required for diagnostics.
There exists a remarkable similarity between the problem of finding the optimal
matrix for the time compression and that of constructing the check matrix of the
best code that corrects a given set of error patterns. The major difference, however, is

that the operations over GF(2) should be replaced by Boolean operations. An

alternative approach of "soft decision" signature decoding is discussed.
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Summary

Let us consider the diagnosis problem for a system of (not necessarily identical)

processing elements (e.g., a systolic array). The system is represented by a directed graph

G whose nodes correspond to Processing Elements (PEs) and directed edges correspond
to communication links. Qur approach to the diagnosis problem is based on signature
analysis of test responses. Signature analysis has been widely used for chip and board
level testing and diagnosis [1-121. '

Consider first the straightforward approach to diagnosis signature analysis. Test
responses y(t)=(y;{t),..,y{t)) atthemoment t (y;{t) is a b-bit binary vector) are transferred
via the system businto a redundant chip in such a way that the test response y;(t) at the

output i is compressed in time by Linear Feedback Shift Register (LFSR) i. After all test
responses y{1),..,y(T) (T is a number of test patterns) have been compressed by the LFSRs,
the correspondingsignatures sy,..,s, are compared with the precomputed reference sig-
natures s?,..,sg, and the error vector e=(ey,..,e) is computed, where ¢=1 iff si;es‘i]_, and
e;=0 otherwise. The identification of a faulty PE is implemented by the nxN decoder (N
is the tﬁtal number of PEs in the system) with the input e={ey,..,ey.

W e assume that a number of test patterns T is suffidentlylarge, so that a faultin

a PE will manifest itself by distortions of signatures corresponding to all output PEs con-
nected with the faulty PE. The probability of maskingis very small for large b(1, 7-91.
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The system is diagnosable iff all n—bit error vectors are different and not equal to
(0,...,0).
An important practical case is when at most one PE or any number of incoming i
links to this PE may be faulty. Then, the obvious lower bound on the number of outputs
n of a diagnosable system is n2 |lngz(N +1)|, where N is the total number of PEs in
the system.
For the straightforward approach to diagnostics the required hardware overhead
L,, in terms of thenumber of equivalent two—input gates, is of the order of Li=0(bn )}+O{Nn).
For exam ple, for the eight—level binary tree with b=32 we have n=128, N=255 and
L;=110,000 (assuming that one flipflop is equivalent to 8 gates).

In this paper another approach to diagnostics is described which results in a conside—
rable reduction of the required overhead while the probability of missing a fault remains

small. It is shown that in many cases the overhead can be decreased to

Ly=O(blog,n }+(Nlogn). This approach does not require redesigning and introducing self-
test into PEs. Fault location in this case is implemented by a standard additional PE which
generates test patterns, com presses responses (signatures) to identify faulty PEs. The
structure of this additional PE does not depend on the structures of PEs in the original
system.

In general, the proposed approach can be described as follows. The output response
vector y(t)=(yy(t),..,y,(t)) is compressed in space into z(t))=(z;{1),..,z, (t)) where y,(t) and
z{t) are binary vectors, z(t)=Hy(t) and H is a binary (rxn)}-matrix {r<n). This space com~
pression is implemented by an H-counter modulo n. The sequence of output vectors
for this counter is the sequence of r~bit columns of matrix H. Space signatures

z(t))=(z4(t),.. 2, (t)) are compressed in time by r LFSRs. Final space-time signatures

Sy.--,S; are compared with the precomputed reference values sj,..,& and the resulting




error syndrome e=(e5,.. e (ef=1 iff s,z is decoded to indicate the faulty PE. This iden—

tification is possible iff there is a one—to—one mapping between PEs and error vectors

e=(e],..,ep (eje {0,11). This mapping i) (i=1,..,N) defines an embedding of the graph G
representingoriginal system of PEs into the r—dimensional binary cube. The set of vertices
of the r—~dimensional binary cube (i.e. the set of all r—bit binary vectors) is a partially
ordered set: we consider vector a to be a descendant of vector b, if a can be obtained
from b byreplacing some of the components equal to 1 by zeros. (It is said also that b
covers a). The embedding of graph G into the r—dimensional cube must preserve the
partial orderingon G defined by its directed edges, i.e. if (i,j) and (i,g) are directed edges
in G, then e(i)=eTj)vely.

An overhead for the space-time com pression is of the order of L,=O(br)+O(Nr), and

comparing with the overhead L; for the straightforward approach we have

Li n

= (1)

E:r.

Since rn the space—time compression technique is more efficient than the straightfor—
ward approach. To minimize the overhead one has to minimize the length r of syn—
dromes e". Since all error syndromes must be different and not equal to 0,..,0) we have
the following (attainable) bounds

[log,(N+1)] <r<n. 2)

The overhead minimization problem for the space-time signature diagnostics can be

reduced to constructing an (rxn) matrix H with minimal r such that the system remains
diagnosable after the space compression z(t)=Hy(t) of its output y{t).
It is shown, that the relation between the error vectors e in the original system and
error syndromes e°is given by the following formula:
e=H®e (3)
where ® stands for the Boolean multiplication of an {rxn) binary matrix by an n—bit

binary vector e with addition beingreplaced by OR. Thus, the overhead minimization




problem can be formulated in the following way: construct a space compression matrix H
with a minimal number of rows such that for any two error vectors e ande'
H®ezH®e', H®ez0, H®e' 0. (4)

The set of error vectors e is defined by the topology of interconnections in the original
system, and the number of error vectors is equal to N.

It is remarkable that condition (4) on matrix His similar to the necessary and sufficient
condition for the check matrix of a code correcting error patterns defined by the graph G.
The major difference, however, is that in our case operations over GF(2) is replaced by
Boolean operations.

This paper considers the minimization problem of the overhead for several important
classes of systems: balanced binary and p-ary (p>2) trees, 2-dim rhombic meshes, triangu—
lar meshes and cubic meshes. These arrays have been widely used [14,15}). Close lower
bounds on r are obtained for specific classes of arrays, and nearly optimal constructions
for space com pression matrices H are given. The results show that space—time signature
diagnostics provides substantial hardware savings as compared to the straightforward
approach (time com pression only). For example, for a rhombic array with N=864, n=108

and b=32, the straightforward approach requires approximately L[=105 equivalent
two—input gates, while the suggested method requires only L=1.2 10* gates. For a binary
tree with N=255 and b=32, L;=110,000 and L,y=10,000.

The space—time diagnostic approach described above can be applied to location of mul-
tiple faults in arrays of PEs. To locate a fault with multiplicity 1 (I PEs are faulty) we use

an I-step sequential procedure. At every step we run the space-time diagnostic procedure

described above, identify one faulty PE, replace it and then repeat the procedure again.
W e show that using the same hardware required for location of single faults one can
locate a considerable portion of multiple faults by the multistep sequential error location.
The proposed space-time signature approach to diagnostics is based on the "hard ded—
sion” decoding of signatures s=(sy,..,s,), when we can identify a faulty PE by analyzing
binary vector e© which indicates the distorted component in s. The magnitudes of dis—
tortions are not important for the hard dedsion procedure. An alternative approach is
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the "soft decision decoding” of s=(s,,..,s]) for the space-time signature diagnosis. In this

case the identification of a faulty PE is based on the analysis of magnitudes of distortions

in components of s. Soft decision techniques have been developed in [11,12] for board—
level space-time signature diagnosis and in [13] for space-time diagnosis of multipro—
cessor systems. In [11,12] and [13], the assum ption has been made that components of

the system are disconnected in the testing mode. In this paper we consider both hard

and soft dedsion prosedures under the assumption that, in the testing mode, components

of the system—under—test are interconnected in the same way as in the computing mode.
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