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Abstract 
 
 
In this chapter the problem of constructing minimal cycle-breaking connectivity 

preserving sets of turns for graphs that model regular or near regular multiprocessor 

systems, as a method to prevent deadlocks is investigated. Cycle-breaking provides for 

deadlock-free wormhole routing defined by turns prohibited at some nodes. The lower 

and upper bounds for minimal cardinalities of cycle-breaking connectivity preserving sets 

for several classes of graphs such as homogeneous meshes, p-ary n-cubes, cube-

connected cycles, hexagonal and honeycomb meshes and tori, Hamiltonian graphs and 

others are obtained and presented along with some preliminary experimental results. 

 

 

 

 



DEADLOCK PREVENTION IN MULTIPROCESSOR SYSTEMS 3 

 

 
 
 

Deadlock Prevention in Multiprocessor Systems 
With Wormhole Routing 

 
 

 
 
 

1. Introduction 
 

In previous chapter, we analyzed communication networks that are irregular, 

where nodes have arbitrary number of adjacent neighbor nodes. Because of the way they 

evolve in an ad hoc manner, networks of workstations (NOWS) are as a rule irregular. 

This chapter is devoted to procedures that guarantee deadlock-free wormhole routing in 

multiprocessor systems with regular or almost regular interconnection topologies. The 

approach is based on minimizing the number of turns that are prohibited and therefore are 

not available for routing. The regularities in the structure of networks make it possible to 

derive simple and efficient solutions for the turn prohibition problem.  Thus, the general 

algorithms developed previously for arbitrary topologies, e.g., (Dally & Seitz, 1987;  

Boppana & Chalasani, 1993; Chalasani & Boppana, 1995; Duato, Yalamancili, & Ni, 

1997; Ni & McKinley, 1993), (Dally & Seitz, 1986), (Duato, 1993), (Dally & Aoki, 

1997), (Zakrevski, Jaiswal, Levitin, & Karpovsky, 1999; Zakrevski, Jaiswal, & 

Karpovsky, 1999; Zakrevski, Mustafa, & Karpovsky, 2000; Lysne, Skeie, Reinemo, & 

Theiss, 2006; Schroeder, Birrel, Burrows, Murray, Needham, Rodeheer, et al., 1990; 

Sancho & Robles, 2000), (Skeie, Lysne, & Theiss, 2002; Sancho et al., 2004; Pellegrini 

et al., 2004, 2006), (Mustafa et al., 2005; Levitin et al., 2006; Levitin et al., May, 2009, 

2010) are not used here. Instead, optimal or asymptotically optimal solutions of the turn 

prohibition problem for general classes of special topologies, prevalent in multiprocessor 
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systems are presented. These solutions are obtained by application of simple rules, run-

time complexities of which do not exceed ( )O N  (i.e., linear in the number of nodes N), 

and, in many cases, is ( )1O  (i.e., constant). The memory requirements for computing the 

solutions do not exceed ( )logO N . The proposed turn prohibition rules can be easily 

implemented for execution in a distributed way.  

It should be pointed out that turn prohibition algorithms are, in fact, pre-routing 

procedures; they do no prescribe any specific routing policy, but just restrict the set of 

turns permitted for use in routing tables. Therefore, they are compatible with any routing 

algorithm, in particular, with the fully adaptive minimal routing (of course, paths that 

include prohibited turns are excluded from consideration during the construction of the 

routing tables). 

A few particular regular topologies have been considered in several papers (Glass 

& Ni, 1994; Horst, 1996; Decayeux & Seme, 2005; Nocetti, Stojmenovic, & Zhang, 

2002; Parhami & Kwai, 2001; Stojmenovic, 1997; Dolter, Ramanathan, & Shin, 1991), 

(Dally & Seitz, 1986). This chapter presents methods applicable to a number of classes of 

popular regular graphs, such as homogeneous meshes, p-ary n-cubes, cube connected 

cycles, hexagonal and honeycomb meshes and tori and Hamiltonian graphs. 

The dimension-ordered routing (DOR) (Min et al., 2004) has been popular for 

meshes. However, as shown in Section 3, the use of DOR algorithm results in prohibition 

of much larger fraction of turns in the network than the approach developed in the present 

chapter. For multi-dimensional meshes, the fraction of turns prohibited by DOR tends to 

1/2. Methods developed in this chapter guarantee that the fraction of prohibited turns 

never exceeds 1/4. 
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Section 2 introduces and studies embedded graphs and homogeneous meshes. A 

number of well known regular topologies are analyzed in Section 3. Section 4 discusses 

the dilation of the average distances as a result of turn prohibitions.  Conclusions are 

presented in Section 5. 

Certain notations, definitions, lower bounds,  and other basic graph theoretic 

concepts used in this chapter are presented in Section 2 of the previous chapter  

2. Embedded Graphs and Homogeneous Meshes 

Consider a graph = ( , )G V E  which is embedded in the n-dimensional real space 

nR , so that each node x  is a point in nR .  

Definition 1  An embedded graph G  is a homogeneous mesh, if each node x  

has a degree = 2d t , and if V∈x , then its neighbors are nodes , = 1, 2, ,
i

i t±x a K , 

where 
i

a  are vectors in nR  and elements of a set = { , = 1, , }
i

D i t±a K . 

Several important topologies, such as multi-dimensional meshes and tori, can be 

embedded into n-dimensional real spaces and can be considered as homogeneous meshes. 

We call D∈a  positive, > 0a , if the first non-zero component of a  is positive, 

otherwise a  is negative, < 0a . For example, in a two dimensional space, (0,1) > 0 , and 

( 1,1) < 0− . 

Consider the following turn prohibition rule for homogeneous meshes. Turn 

1 2 3 2 1 3 2( , , ) = ( , )− −x x x x x x x  is prohibited iff 2 1 < 0−x x  and 3 2 < 0−x x . Let ( )
D

W M  

be a set of prohibited turns for a homogeneous mesh 
D

M .  

Theorem 1  As described, the turn prohibition rule has the following properties.   

 1.  For any mesh 
D

M  and any V∈x,y  there exists a path from x  to y  not 

containing any turns from ( )
D

W M .  
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 2.  For any cycle in 
D

M  there exists a turn which belongs to the cycle and also 

belongs to ( ( )
D

W M , the set of prohibited turns.  

 3.  The set of prohibited turns is minimum  

 4.  The minimum fraction of prohibited turns for a homogeneous mesh 
D

M  with 

size of D  equal to d  is  

 
1 1

( ) = 1 .
4 1

z G
d

 
− 

− 
 (4) 

Proof. 

1.  Consider a path 0 1= ( , , , )
k

P x x xK  from node 0x  to 
k

x , where 1 =
i i i+ +x x b ; 

= 0, , 1i k −K , 
i

D∈b . The corresponding sequence of edges is 0 1 1= ( , , , )
k

S −x x bK . 

Note that path P  is prohibited iff there exists a pair of consecutive edges 1( , )
i i−b b  in S  

such that 1 > 0
i−b  and < 0

i
b . It follows from Definition 1 that if S  forms a path from 0x  

to 
k

x , then any permutation of 0 1 1, , ,
k −b b bK  also corresponds to a path from 

0
x  to 

k
x , 

since the mesh is homogeneous and 
1

0 =0
=

k

k ii

−
+∑x x b . Then there exists a permutation 

0 1 1= ( , , , )
k

S −
′ ′ ′ ′b b bK  of S  in which all negative vectors (if any) precede all positive ones 

(if any). The corresponding path 0 1 0 0 1 1= ( , = , , = )
k k k

P − −
′ ′ ′ ′ ′+ +x x x b x x bK  has no 

prohibited turns and thus, nodes 0x  and 
k

x  are connected.  

    2.  Consider a cycle 0 1 0 1= ( , , , , , )
k

C x x x x xK  and the corresponding cycle of 

edges 0 1 0= ( , , , , )
k

S b b b bK , where 1=
i i i+ −b x x , = 0,1, , 1i k −K ; 0=

k k
−b x x . Note 

that 
=0

= 0
k

ii∑ b . Therefore, among vectors 0 1, , ,
k

b b bK  must be both positive and 

negative ones. Since sequence S  starts and ends with the same vector (either positive or 
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negative), it must include at least one pair 1,i i−b b , where 1i−b  is positive and 
i

b  is 

negative. Thus, the corresponding cycle is prohibited.  

    3.  Let us consider cycles of length four, 0 1= ( , ,C x x  2 3 0 1, , , )x x x x , where 

1 0 0= +x x b , 2 1 1= +x x b , 3 2 0 3 1= =− +x x b x b . All sets of turns corresponding to 

different choices of nodes 0 1 2, ,x x x  are disjoint. Hence, in order to break all cycles, it is 

necessary to prohibit at least one turn in each of such cycles. Indeed, according to our 

prohibition rule, in the sequence of edges 0 1 0 1 0( , , , , )− −b b b b b  exactly one turn is 

prohibited (e.g., if 0 1, > 0b b , then turn 1 0( , )b b  is prohibited). Thus, the set of prohibited 

turns is the smallest possible.  

    4.  Obviously, in the set = { , = 1, , }
i

D i t±a K  exactly 
2

= dt  vectors are positive, 

and the other half are negative. Therefore  

 

/ 2

2 1 1
( ) = = 1 .

4 1

2

d

z G
d d

 
 

   − 
−   

 
 

 + 

Remarkably, the result 4 does not depend on the choice of the coordinate system 

and on the particular topology of the mesh. For example, Figure 1 shows two different 

topologies which have the same node degree d and, thus, the same ( )z G . 

 

Figure  1. Different topologies with the same degree = 6d  have the same fraction 

( )z G . 

 

It is interesting to compare (4) with the fraction of prohibited turns when one uses 

the popular DOR algorithm [28]. For the case of an n-dimensional mesh the fraction of 
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prohibited turns given by (4) is 
1

2(2 1)

n

n

−

−
. The DOR algorithm prohibits a portion of the 

turns equal to 
1

2 1

n

n

−

−
, i.e., twice as large as our approach. 

A more general situation can be described as follows. Consider an embedded 

graph = ( , )G V E  that consists of m  different types of nodes, 
=1

=
m

kk
V VU  such that all 

nodes of type k  have the same degree 
k

d , and if 
k

V∈x , then its neighbors are 
ki

+x a , 

= 1,2, ,
k

i dK . Let ( ) ( )=
k k k

d d d
+ −+ , where ( )

k
d

+  and ( )

k
d

−  are the numbers of positive and 

negative vectors, respectively, in the set = { }
k ki

A a . We call such embedded graphs 

multicomponent meshes. 

Suppose we prohibit all turns 1 2 3( , , )x x x , such that 1 2 < 0−x x  and 3 2 < 0−x x , 

or, alternatively, such that 1 2 > 0−x x  and 3 2 > 0−x x . Let us call such turns "negative" 

or, respectively, "positive". Assuming that the connectivity is preserved and following the 

same reasoning, as in the proof of Theorem 1, we obtain Corollary 1. 

Corollary 1  Prohibition of all negative or of all positive turns in graph G  

described above breaks all the cycles in G . The fraction of prohibited turns ( )z G  obeys 

an upper bound  

 

( ) ( )

=1 =1

=1

min ,
2 2

( ) ,

2

m m
k k

k k

k k

m
k

k

k

d d

z G
d

ρ ρ

ρ

− +     
    
     ≤

 
 
 

∑ ∑

∑
 (5) 

 where 
k

ρ  is the density of nodes of type k .  
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Here, as usual (Honkala, Karpovsky, & Levitin, 2006) the density 
k

ρ  of a subset 

k
V  of nodes in an infinite embedded graph ( , )G V E  is defined as follows. Consider a ball 

( )B R  of radius R  in nR . Then 

 
| ( ) |

= .limsup
| ( ) |

k

k
R

V B R

V B R
ρ

→∞

I
I

 

Note that if = +y x a , where > 0a , then = +x y b , where = < 0−b a . Therefore, 

( )

=1

m

k kk
dρ −∑ . However, for some structures prohibition of positive vs. negative turns can 

give rather different results, as shown by Example 1. 

Example 1  The embedded graph in  Figure 2 has three different types of nodes 

with degrees 2, 3, and 5, each with a density of = 1/ 3ρ . As shown in the enlarged view, 

all positive turns prohibited at the node of degree 5, and all negative turns prohibited at 

nodes of degree 2 and degree 3. Prohibition of negative and positive turns yields different 

fractions of prohibited turns equal to 3 / 7  and 1/ 7 , respectively. 

 

Figure  2. A multicomponent mesh with three different types of nodes of degrees 

2, 3, and 5. In the enlarged view we show all positive turns prohibited at the node of 

degree 5, and all negative turns prohibited at nodes of degree 2 and degree 3. 

 

Example 2  The embedded graph called the "Brick Mesh" is shown in  Figure 3. 

There are five types of nodes in this mesh; type 1 nodes are of degree 4, and type 2, type 

3, type 4, and type 5 nodes are of degree 3, as shown in the insert. Considering the 

building block of this mesh, shown as the darker rectangular region in the figure, one 
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determines that the density of each of the degree 3 node types is 1/6 and the density of the 

degree 4 node type is 1/3. If we consider the prohibition of the negative turns as shown in 

the enlarged view in  Figure 3 , we determine that the fraction of prohibited turns is 

1/ 6z ≤ . 

 

Figure  3.  Multicomponent “Brick Mesh” in which degree 3 and degree 4 nodes 

have densities of 1/6 and of 1/3 respectively. Five different node types are identified in 

the enlarged view by the numbers adjacent to the nodes. 

 

Another interesting topology is the honeycomb mesh (see Section 3,  Figure 7 

(B)). 

In general, the bounds in (5) depend on the choice of the coordinate system, in 

particular, on the order of the coordinates. 

Note also that the prohibition rule given above for a multicomponent mesh does 

not guarantee, in general, the preservation of connectivity. However, it can be shown that 

for a two-component mesh ( = 2m ) connectivity is always preserved, provided that 

( ) > 0
k

d
+  and ( ) > 0

k
d

−  for = 1,2k . For example, for the honeycomb mesh ( Figure 7 (B)), 

= 2m , ( )

1 = 2d
+ , ( )

1 = 1d
− , ( )

2 = 1d
+ , ( )

2 = 2d
− , 1 2= = 1/ 2ρ ρ  and ( ) = 1/ 6z G  (see Section 

3). 

Homogeneous meshes considered so far in this section are of infinite extent with 

infinite number of nodes. Now finite D-Meshes 1( , , )
D n

M p pK  and finite wraparound D-

meshes 1( , , )W

D n
M p pK  will be defined. 
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Let 1 2= { , , , }
t

D ± ± ±a a aK , n

i
∈a R , = 1,2, ,i tK  and = 2d t  be the degree of 

every node. Then n t≤ , (otherwise the mesh is embedded in a space of a smaller 

dimensionality), and there are n  linearly independent vectors in D . Henceforth we will 

assume that there exists a basis 1= { , , }
n

B a aK , B D⊆  such that any point in the mesh 

can be represented as a linear combination of vectors from B  with integer coefficients. 

Denote 1= −
C A  where A  is the matrix with columns 1 2, , ,

n
a a aK . Then any node x  in 

the mesh can be represented in basis B  as % (1) (2) ( )= = ( , , , )nx x xx Cx % % %K , where all ( )i
x%  are 

integers, = 1, 2, ,i nK . 

Let 1 2, , ,
n

p p pK  be positive integers, 2
i

p ≥ , = 1, 2, ,i nK . 

Definition 2  A graph ( , )G V E  is a finite D-mesh 1 2( , , , )
D n

M p p pK  if 

% ( )

= { | {0,1, , 1}, = 1, , }
i

i
V x p i n∈ −x K K . Then ( , ) E∈x y  if ( ) D− ∈

C
C x y  or 

( ) D− ∈
C

C y x , where = { | = 1, , }
i

D i t±
C

Ca K  

= { (1,0,0, ,0), (0,1,0, ,0), , (0,0,0, ,1)± ± ±K K K K , 1, , }
n t+± ±Ca CaK . 

Example 3  Let = 2n  and 

( ) ( ) ( ){ }3 31 1
2 2 2 21 2 3= { , , } , , , , 1,0D ± ± ± = ± ± − ±a a a .  Note that 3 1 2= −a a a , and  

 
1 1

2 2

3 3
2 2

= ,
− 

 
 

A  
3

3

3
3

1
= ,

1

 
 
− 

C  

and = { (1,0), (0,1), (1, 1)}D ± ± ± −
C

. The finite mesh (4,3)
D

M  is shown in  Figure 4 .  
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Figure  4.  Finite D-Mesh (4,3)
D

M  with ( ) ( ) ( ){ }3 31 1
2 2 2 2= , , , , 1,0D ± ± − ±  

and = { (1,0), (0,1), (1, 1)}D ± ± ± −
C

. 

Next finite wraparound meshes 1 2( , ,W

D
M p p  , )

n
pK  are defined. Let 

i
p  be 

positive integers larger than 2. We will also assume that for the set 

1 2= { , , , }
t

D ± ± ±a a aK , ( , )n

i
n t∈ ≤a R , vectors 1 2, , , }

n
a a aK  are linearly independent 

and each ( )

=1
= ( = 1, , )

n i

n j ji
u j t n+ −∑a a K , where ( )i

c  are integers, such that ( )| | 1i

i
u p≤ − . 

Let ( )(1) (2) ( )

1 1 1 1= , , , nu u uU K  and ( )(1) (2) ( )

2 2 2 2= , , , nu u uU K  be vectors with ( ) ( )

1 2,i i
u u  

{0,1, , 1}
i

p∈ −K . Denote 3 1 2= ⊕U U U , if ( )

3 =i
u  ( ) ( )

1 2 modi i

i
u u p+ , = 1, 2, ,i nK . 

Definition 3  A graph ( , )G V E  is a wraparound D-Mesh 1 2( , , , )W

D n
M p p pK  if 

% ( )

= { | {0,1, , 1}, = 1,2, , }
i

i
V x p i n∈ −x K K  and the edge ( , ) E∈x y  if there exists a 

vector h  such that % % %=⊕x h y , and % =h b%  for some b D∈ . (Here, % =x Cx , % =h Ch , 

% =y Cy , and % =b Cb .)  

Example 4  Let = 2n  and ( ) ( ) ( ){ }3 31 1
2 2 2 21 2 3= { , , } , , , , 1,0D ± ± ± = ± ± − ±a a a . 

As in Example 3, select 1 = (1/ 2, 3 / 2)a  and 2 = ( 1/ 2, 3 / 2)−a . Then  
3

3

3
3

1
= ,

1

 
 
− 

C  

3 1 2= −a a a , and 33 = = (1, 1)−Ca a% . With this neighborhood definition, the wraparound 

mesh (5,4)W

D
M  is shown in  Figure 5 . This wraparound mesh has five wraparound 

cycles % % % % %( , (0,1), 2 (0,1), 3 (0,1), )⊕ ⊕ ⋅ ⊕ ⋅x x x x x  of length 4, where ⊕  stands for addition 

of vectors such that first components are added modulo 5 and the second components are 
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added modulo 4, four wraparound cycles 

% % % % % %( , (1,0), 2 (1,0), 3 (1,0), 4 (1,0), )⊕ ⊕ ⋅ ⊕ ⋅ ⊕ ⋅x x x x x x  of length 5, and one wraparound 

cycle % % % % % %( , ( 1,1), 2 ( 1,1), 3 ( 1,1), , 19 ( 1,1), )⊕ − ⊕ ⋅ − ⊕ ⋅ − ⊕ ⋅ −x x x x x xK  of length 20. In the 

figure a path from node % = (3,1)x  to node % = (1, 2)y , ( )= (3,1), (2,1), (1,1), (1,2)P  is 

shown using thick lines. Note that all turns along this path are permitted. 

 

Figure  5. Wraparound D-Mesh (5,4)W

D
M  with =D  ( ) ( ){ 1/ 2, 3 / 2 , 1,0 }± − ± , 

= { (1,0), (0,1), (1, 1)}D ± ± ± −
C

 and a permitted path from node (3,1)  to (1, 2) .  

To construct sets of prohibited turns for 1 2( , , , )
D n

M p P pK  or 1 2( , , , )W

D n
M p pK  

we will introduce a total ordering of nodes in these meshes. 

Definition 4  If % %, V∈x y  where V  is the set of nodes in 1 2( , , , )
D n

M p p pK  or 

1 2( , , , )W

D n
M p p pK , we will say that % %>x y  if % %( ) ( )

>
i i

x y  where i  is the smallest integer 

such that % % %( ) ( )

( = ,
i i

≠x y x Cx  % = )y Cy .  

Theorem 2  For a finite mesh 1 2( , , , )
D n

M p p pK  or a wraparound mesh 

1( , , )W

D n
M p pK , let the set of prohibited turns % %= {( , , )F x y z%  % %| , , V∈x y z%  and % %>y x , 

% > }y z% . Then   

    1.  For any % %, V∈x y  there exists a path from %x  to %y  containing no turns from 

F .  

    2.  For any cycle there exists a turn in the cycle that belongs to F .  
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    3.  The set F  is asymptotically optimal if 
i

p → ∞  ( = 1, , )i nK , and the 

minimum fraction z  of prohibited turns for 1 2( , , , )
D n

M p p pK  or a 1 2( , , , )W

D n
M p p pK  

with | |=D d  is, asymptotically,  

 

=1, ,

1 1
= 1 .lim

4 1p
i

i n

z
d→∞

 
− 

− 
K

 

Proof.   

    1.  First we will prove that if % =x Cx  % %(1) (2)

= ( , ,x x  % ( )

, )
n

xK  and % =y Cy  

% % %( )(1) (2) ( )

= , , ,
n

y y yK , there exists a path from %x  to %y  in 1 2( , , , )
D n

M p p pK  or in 

1 2( , , , )W

D n
M p p pK  containing no turns from F . Let % % % %( , ) = { | }S i+ ≥x y x y  and 

% % % %( , ) = { | < }S i− x y x y . Consider now a node z%  such that % %( ) ( ) ( )

= min( , )
i i i

z x y% . Obviously, 

there exists a path from %x  to z% , such that any next node in the path is smaller than the 

previous one. Similarly, there exists a path from z%  to %y  such that any next node is larger 

than the previous one. Now take the concatenation of these two paths. The turn at node z%  

is permitted, since z%  is smaller than the two neighboring nodes in the path. Thus, there 

exists a permitted path from %x  to %y .  

    2.  In every cycle % % % %( , , , , )−1 2 ( 1)x x x xl lK  where % %=−( 1) 1x xl  and % %= 2x xl  there 

exists {1, 2, , }i ∈ K l  such that % %> −i (i 1)x x , % %> +i (i 1)x x , and turn % % %( , , ) F− + ∈(i 1) i (i 1)x x x .  

    3.  We will say that the node % V∈x  is internal in 1 2( , , , )
D n

M p p pK  or in 

1 2( , , , )W

D n
M p p pK  if % ( )

0 < < 1
i

i
p −x  for all = 1, ,i nK . If x  is an internal node, then in 

each pair of its neighbors, 
i

±x a  ( = 1, , )i tK  one neighbor is larger than x  and the other 

is smaller than x . Thus for any internal node x  exactly t  neighbors are larger than x , 
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and exactly t  neighbors are smaller than x . Hence, for every internal node x  there are 

2

t 
 
 
 

 turns ( , , )y x z  which belong to F . Thus,  

 

=1, ,

2 1 1
= 1 .lim

2 4 1

2

p
i

i n

t

z
t d→∞

 
 

  ≤ − 
−   

 
 

K

 

On the other hand, similar to the proof of Theorem 1, for any internal node x  

there are 
2

t 
 
 
 

 cycles in 1 2( , , , )
D n

M p p pK  or in 1 2( , , , )W

D n
M p p pK  which contain 4 nodes 

each that do not have common turns. In the union of these sets for all internal nodes any 

two cycles do not have common turns. Since ate most 
2

d 
 
 
 

 turns are prohibited at any non-

internal node, the contribution of the non-internal nodes to Z  does not exceed their 

fraction among all nodes, and, therefore, is infinitesimal when 
i

p → ∞  ( = 1, , )i nK . 

Thus, it follows that  

 

=1, ,

1 1
1 .lim

4 1p
i

i n

z
d→∞

 
≥ − 

− 
K

 + 

 The set = ( (4,3))
D

F W M  of prohibited turns for the (4,3)
D

M  with 

( )= { 1/ 2, 3 / 2 ,D ±  ( ) ( )1/ 2, 3 / 2 , 1,0 }± − ±  is shown in  Figure 4 . 

3. Special Topologies 

3.1 Finite Meshes and Tori 

Meshes and tori have been the most widely used communication network 

topologies for multiprocessors (Ni & McKinley, 1993; Parhami, 1998). Most recently, 

”TOFU”, a 6-dimensional mesh and torus topologies have been used to provide the 

extremely high performance and fault tolerant interconnection network, achieving 10 
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petaflops (Ajima, Sumimoto, & Shimizu, 2009). In this section, square meshes are 

considered first, with each inner node connected with 2n nodes, where n is the dimension 

of a mesh. Meshes of this type were investigated in (Glass & Ni, 1994), where only 90-

degree turns were taken into account. It was shown, that 1/4 of all such turns has to be 

prohibited. With the more general turn model, our results are in agreement with authors’ 

conclusion in (Glass & Ni, 1994). 

Theorem 3  For n-dimensional p-ary mesh, 
n

pM   

 
2

2

( 1)( 1)
( ) = ,

2 ( 2) 4( 1)( 1)

n

p

n p
z M

p p n p

− −

− + − −
 (6) 

 and for n-dimensional p-ary tori, n

pZ , with > 2p ,  

 
( 1) 2

( ) = .
2 (2 1)

n

p

p n
z Z

p n

− +

−
 (7) 

Proof. To prove the lower bound for meshes we consider the system of all cycles 

of length 4. There are 2 2

2
= ( 1) nnR p p

  −
 
 
 

−  turn disjoint cycles of this type and the total 

number of turns in n

pM  is equal to  

 1 2 2

2
( ) = ( 2) 4 ( 1) .n n nn

pT M n p p p p
 − −
 
 
 

− + −  (8) 

 The lower bound for ( )n

pZ M  follows now by observing that at least as many turns must 

be prohibited as there are turn disjoint cycles. 

The lower bound for tori can be proven in a similar way by considering cycles of 

length 4 and 1nnp −  one-dimensional cycles, containing nodes with fixed 1n −  

coordinates. 

To prove the upper bound of Theorem 3 for p-ary meshes, we prohibit all turns 

( , , )a b c , where ( ) < ( )l la b , ( ) > ( )l lb c  and ( ), ( ), ( )l l la b c  are distances in terms of 
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number of hops from node (0,0, ,0)K  to ,a b  and c . The number of prohibited turns is 

equal to  

 2 2( ) = ( 1) .
2

n n

p

n
Z M p p

− 
− 

 
 (9) 

 Then (6) follows from (8) and (9). 

For p-ary tori, each node 1 2= ( , , , )
n

a a aa K  is labeled by 

1 2( ) = , mod
n

l a a a p+ +a K  and the turn ( , , )a b c  is prohibited if 

( ) = ( ) = ( ) 1modl l l p−a c b . 

The total number of turns in n

pZ  is equal to 2

2
( ) =n nn

pT Z p
 
 
 
 

, and the number of 

prohibited turns is equal to 
2

( ) = 1n n nn

pZ Z p np
 
 
 
 

+ − .  + 

3.2 Hexagonal and Honeycomb Meshes 

Next, we consider hexagonal meshes (Parhami, 1998; Decayeux & Seme, 2005; 

Nocetti et al., 2002) in which each node has up to 6 neighbors and honeycomb meshes 

(Parhami, 1998; Parhami & Kwai, 2001; Stojmenovic, 1997) where each node has up to 3 

neighbors, and their corresponding tori. In a hexagonal mesh of size p denoted by 
p

HeM , 

peripheral edges form a regular hexagon where each side has p nodes. A honeycomb 

mesh of size p, denoted by 
p

HoM , where each side of the mesh has p hexagonal cells 

whose centers also form a regular hexagon. The hexagonal and honeycomb tori are 

degree six and degree three regular topologies, respectively. 

In a hexagonal mesh 
p

HeM , there are 2= 3 3 1N p p− +  nodes with labels 

0,1, , ( 1)N −K  with the center node having the label 0 (Dolter et al., 1991). Adjacent 

nodes of any given node a  are identified to have labels 1a ± , (3 1)a p± − , (3 2)a p± −  



DEADLOCK PREVENTION IN MULTIPROCESSOR SYSTEMS 18 

 

where arithmetic operations are mod N . In the corresponding torus, wrap-around edges 

are also identified using the same adjacency rules. Labels of adjacent nodes are shown in  

Figure 6 (A) for the case of a size = 3p  torus. 

 

Figure  6. Examples hexagonal torus 3HeT  in (A), and honeycomb torus 3HoT  in 

(B) for = 3p , where wraparound links are identified. 

In a honeycomb torus, nodes that are connected by the wrap-around edges are 

those nodes that are mirror symmetric with respect to the three lines passing through the 

center and normal to each of three edge orientations (Stojmenovic, 1997). These axes are 

shown as dashed lines in Figure 6(B). 

Theorem 4  For a hexagonal mesh of size p , 
p

HeM , with 23 3 1N p p− − +  

nodes,  

 
2

2

9 21 13
( ) = ,

45 99 51
p

p p
z HeM

p p

− +

− +
 (10) 

 and for a hexagonal tori of size p ,  

 
2

2

9 15 10
( ) = .

45 45 15
p

p p
z HeT

p p

− +

− +
 (11) 

  

 Proof. First, note that total number of turns in a 
p

HeM  is equal to: 

2( ) = 15(3 9 7) 6(6 12) 18pT HeM p p p− + + − +  2= 45 99 51p p− + . 

To prove the lower bound, we consider the set of all turn disjoint 6( 1)p −  

triangles, and 23 9 7p p− +  hexagons and observe that we must prohibit at least as many 

turns as there are turn disjoint cycles, e.g., triangles and hexagons. 
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Upper bound on ( )
p

Z HeM  can be obtained as shown in  Figure 7 (A). 

For the case of hexagonal tori with 2( ) = 3 3 1pN HeT p p− +  nodes, 

( ) = 3 ( )
p p

M HeT N HeT  edges, and ( ) = 15 ( )
p p

T HeT N HeT  turns, additional 6(2 1)p −  

turns have to be prohibited to prevent all wrap-around cycles. Therefore, 6(2 1)p −  cycles 

must be added to the system of turn-disjoint cycles due to triangles and hexagons. Again, 

observe that we must prohibit at least as many turns as there are turn disjoint cycles. To 

prove the upper bound, we cut the wrap-around cycles in the hexagonal torus and prohibit 

all 6(2 1)p −  turns at the nodes on the border of the resulting mesh.   

 

 

Figure  7. Prohibited turns for Hexagonal (A) and Honeycomb (B) meshes. 



DEADLOCK PREVENTION IN MULTIPROCESSOR SYSTEMS 20 

 

3.3 Locally Complete Tree-Like Topologies 

  Locally complete tree-like topologies are hybrid topologies incorporating the 

properties and attributes of its components (Parhami, 1998). Consider a tree 

= ( , )T G V E′ ′ ′ ′  with =| |M E′ ′  undirected edges { , }
i j

v v E′∈  and =| |N V′ ′  nodes 
i

v , 

= 0, , 1i N ′ −K  . Assume that each node of the tree is now replaced with a complete graph 

n
K  with 

i
n d≥  nodes where 

i
d  is the degree of node 

i
v  of the original tree T ′ , to obtain 

the augmented graph ( , )G V E  which is locally complete. The locally complete graph has 

=| |=N V N n′  nodes and 
2

| |= 1 nE N N
 
 
 
 

′ ′− +  edges. Let us denote the nodes of 
n

K  that 

replaces node 
i

v  of the original tree by , ( = 0,1, , 1)
i m

v m n −K . Embedding of the 

complete graph 
n

K  is done in such a way that if the 
i

v  is the parent of nodes 
j

v  and 
k

v , 

then in the locally complete graph ,0j
v  is connected to node ,i r

v  and ,0k
v  is connected to 

node ,i s
v , where r s≠  and , 0r s ≠  (Figure 8). 

 

Figure  8. Embedding a complete graph 4K  at tree nodes = 4
i

v  and = 5
i

v . Port 

numbers at nodes = 4
i

v , = 5
i

v , and the node numbers of the complete graph 4K  are 

displayed 

 

Theorem 5  For a locally complete tree-like graph obtained as described above, 

the fraction of prohibited turns is given by  

 
1 ( 2)

( ) = .
3 ( 2) 4( 1)

N n n
z G

N n n N

′ −

′ ′− + −
 (12) 
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 Proof. Since the minimum degree nodes will always be at the leaf node positions of the 

original tree, the number of prohibited turns in each embedded 
n

K  is given by 

1

12
( ) = ( )n

n nZ K Z K
 −
 
  −
 

+ . Solving this recursion equation we obtain 

1
( ) = ( 1)( 2)

6
n

Z K n n n− − . Hence, for the augmented graph G  with N ′  nodes we have  

 
1

( ) = ( ) = ( 1)( 2).
6

n
Z G N Z K N n n n′ ′ − −  

In embedding a 
n

K  at a tree node of degree 
i

d , only 
i

d  nodes of the 
n

K  will be 

connected directly to the original tree. This means that embedding a 
n

K  graph at an 

original tree node, will create nodes of at most degree n  in the locally complete graph. 

Also, note that when a 
n

K  is embedded at a tree node with degree 
i

d , there will be 1

2

nn
 −
 
 
 

 

turns contributed by the 
n

K  and ( 1)
i

n d−  turns contributed by the 
i

d  edges of the 

original tree. With these observations the total number of turns is 

1

=12
( ) = ( 1)

Nn

ii
T G N n n d

′ −
 
 
 

′ + −∑  1

=12
= ( 1)

Nn

ii
N n n d

′ −
 
 
 

′ + − ∑  or  

 
1

( ) = ( 1)( 2) 2( 1)( 1).
2

T G N n n n n N′ ′− − + − −  

Hence,  

 
1 ( 2)

( ) = .
3 ( 2) 4( 1)

N n n
z G

N n n N

′ −

′ ′− + −
 + 

For example, for = 3n  and N ′ → ∞ , 
3 1

( ) = =
3 4 7

z G
+

, and for = 4n , and 

N ′ → ∞ , 
1 8 2

( ) = =
3 12 9

z G . 
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3.4 Fractahedrons 

Fractahedrons have been used by Tandem Computers (Horst, 1996) as topology 

of choice. A fractahedron with ℓ levels is a tree-like graph, where each tree node is 

replaced by one 4K , a complete graph with four nodes. The tree is balanced with ℓ levels 

where all non-terminal nodes are of degree four. An example of a 2-level fractahedron is 

shown in Figure 9. The set of prohibited turns for this fractahedron is also shown in the 

figure as arcs drawn between the two edges of each prohibited turn. 

Theorem 6  For an l -level fractahedron  

 
1

2 3 1
( ) = .

3(3 2)
z G

+

⋅ −

−

l

l
 (13) 

Proof. For an l -level fractahedron the number of turns which should be 

prohibited is ( ) = 4Z G B , where = 2 3 1B ⋅ −l  is the number of blocks, or 4K  sub-graphs. 

To prove the lower bound, we consider the set of all different triangles, and observe that 

at least as many turns must be prohibited as there are triangles, one in each triangle, to 

break all cycles. The upper bound for ( )Z G  can be proven by induction on number l  of 

levels, since only 4 turns within each block should be prohibited. 

To calculate ( )T G , we note that all nodes except those at level l  are of degree 

four. Three nodes at each block at level l  are of degree three. Number of nodes at level 

l  that are of degree three is 112 3 −⋅ l , and 1( ) = 12(3 2)T G + −l .   + 

Alternatively, since an l -level fractahedron is a tree-like structure with 

= 2 3 1N ′ ⋅ −l  tree nodes, each of which is replaced with = 4n  node complete graph 4K , 

substituting these values for N ′  and n  into (11) we obtain (13) directly. 

Note that at first level = 0l , we have only one 4K , and for = 3l -level 
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fractahedron ( ) = 53 / 237z G . 

 

 

Figure  9. Two-level fractahedron with prohibited turns 

 

3.5 Cube Connected Cycles  

We will consider now a binary n-cube connected cycles, CCC (Parhami, 1998), 

where each node of an n-dimensional binary cube is replaced by a cycle of n nodes of 

degree 3 (see Figure 10 for n = 3). These interconnection networks are popular, since 

they combine the properties of small node degree and small diameter of the network 

graph (Harary, 1998). First, we will establish upper and lower bounds with Theorem 7 for 

a slightly larger class of graphs. 

Theorem 7  If graph G  is obtained from d-regular graph H  ( =
i

d d  for all i , 

> 2d  ) with ( )N H  nodes by replacing each node by the cycle of d  nodes, then  

 
1 2 1 1

( ) .
6 3 ( ) 6 3

z G
dN H d

+ ≤ ≤ +  (14) 

  

 

Proof. The lower bound can be obtained from ( ) 1Z G M N≥ − + , since for G  

there are ( ) = 1.5 ( )M G N H d  edges and ( ) = 3 ( )T G N H d  turns. 

To prove the upper bound, we label all nodes in G  as ( , )i j , where i  is the 

number of the cycle containing the node i  in G , and j  is the number of a node within 

each cycle of length d, {1, , ( )}i N H∈ K , {0,1, , ( 1)}j d∈ −K , as shown in  Figure 10 . In 
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each cycle, nodes are labeled subsequently. In cycle i  we prohibit the turn 

(( , 1), ( ,1), ( , 2))i d i i− . There exist ( )N H  such turns. Also, for each of ( ) / 2N H d  edges 

between different cycles (edges between cycles in G  correspond to edges in H ), we 

prohibit turn ( , , )a b c , where 1 1= ( , )a i j , 2 2= ( , )b i j , 2 3= ( , )c i j , if 1 2<i i  and 

( )3 2= 1 modj j d+ . Then it follows that 
| | 1 1

( ) =
( ) 6 3

W
z G

T G d
≤ + .   + 

 

Figure  10. Labeled binary 3-cube connected cycles 

 

The following theorem is generalization of Theorem 7. 

Theorem 8  If all nodes of 3-regular graph G  with N  nodes can be covered by 

k  non-intersecting simple cycles, then  

 
1 2 1

( ) .
6 3 6 3

k
z G

N N
+ ≤ ≤ +  (15) 

  

Proof. The proof of Theorem 8 is similar to the proof of Theorem 7 (Theorem 8 

follows from Theorem 7 for the case of cycles of equal lengths).  To illustrate Theorem 8 

let us consider the 4-pancake graph (Parhami, 1998). In a 4-pancake graph, nodes have 

labels that include all 4! = 24 orderings of numbers 1, 2, 3, and 4. For the q-pancake, 

node (1, 2, , 1, , 1, , )i i i q− +L L  is connected to nodes ( , 1, , 2,1, 1, , )i i i q− +L L  for each 

i , i.e., 1, 2, , iL  is flipped, like a pancake (Parhami, 1998). In a 4-pancake, nodes that are 

adjacent to node (1, 2,3,4)  are (2,1,3,4) , (3, 2,1, 4)  and (4,3,2,1)  (see  Figure 11 (A). 

For this graph, = 24, = 4N k  and according to Theorem 8 and (3), ( ) = 2 / 9z G . 

Another graph, which can be analyzed by Theorem 8, is the Petersen graph 
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(Harary, 1998), which has the smallest diameter (equal to 2) among all regular graphs of 

degree 3, shown in Figure 11(B). For this graph N = 10, k = 2 and by Theorem 8 and (3) 

we obtain z(G) = 7/30. 

 

 

Figure  11. 4-Pancake graph in (A), and Petersen graph in (B). 

 

3.6 Hamiltonian Graphs With Nodes of Small Degrees 

 Now we consider graphs with restricted degrees, for which a Hamiltonian path (a 

path, containing all nodes exactly once (Harary, 1998)) exists. Since Hamiltonian 

topologies emulate a linear array algorithm efficiently, existence of a Hamiltonian path in 

a topology is considered as a desirable property (Parhami, 1998). Many regular graphs 

(e.g. hypercubes and meshes) belong to this class. (Some current multicast techniques in 

computer networks are path-based (Sivaram, Panda, & Stunkel, 1997; R. V. Boppana, 

Chalasani, & Raghavendra, 1998) and use the Hamiltonian path to propagate messages 

from a source node to all destinations.) 

Theorem 9  If graph G  with N  nodes is Hamiltonian and degree d regular, then  

 
( 2) 4

( ) .
2

N d
z G

Nd

− +
≤  (16) 

Proof. A cycle-breaking set of turns can be constructed by labeling all nodes 

along the Hamiltonian path and prohibiting all turns, with a middle node having the 

maximal label. Then all turns can be classified into three groups:   

    1.  Turns between edges, belonging to the path. There are 1N −  such turns, all 

of them will be permitted;  
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    2.  Turns between an edge from the path and an edge not belonging to the path. 

There are 2 = 1M M N− +  such edges not belonging to the path, and each edge generates 

one prohibited turn;  

    3.  Turns between edges, not belonging to the path. There are not more than 

2

3 2
( 2) dT N

 −
 
 
 

≤ − +  1

2
2 d −
 
 
 

 = ( 2)( 3) / 2N d d− − +  2( 2)d −  such turns. Not more than half 

of them belong to the constructed set of prohibited turns W  (otherwise we can construct 

W , prohibiting all turns, with a middle node having the minimal label).  

For the number of prohibited turns we then obtain  

 2 3( ) / 2.Z G M T≤ +  (17) 

The total number of turns is upperbounded by ( ) = ( 1) / 2T G Nd d − . Thus, the 

fraction of prohibited turns will be upperbounded as  

 

( 2) ( 2)( 3)
1 2

2 4( ) ,
( 1)

2

d N N d d
d

z G
Nd d

− − −
+ + + −

≤
−

 

 
( 2) 4

.
2

N d

Nd

− +
≤  

 We note that only cases = 3d , = 4d , and = 5d  result in new upper bounds. 

Taking into account the lower bound given by (3), we obtain for = 3d   

 
4

( ) = ,
6

N
z G

N

+
 (18) 

and for = 4d   

 
2

( ) .
4

N
z G

N

+
≤  (19) 
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For some Hamiltonian graphs we can improve the number of prohibited turns, 

(17), by dividing 3T  turns between edges, not belonging to the Hamiltonian path, into 

three groups:   

    1.  Turns ( , , )a b c , where <a b , <b c ,  

    2.  Turns ( , , )a b c , where <b a , <b c ,  

    3.  Turns ( , , )a b c , where >b a , >b c .  

Any one of the two last groups of turns can be selected as a set of prohibited 

turns, so if there are ( )F G  turns in the first group, then  

 2 3( ) ( ( )) / 2.Z G M T F G≤ + −  (20) 

The proposed method can be extended to non-Hamiltonian graphs. Let us 

consider for the case = 3d  graph G , which has a spanning tree with t  leaves (nodes 

with degree equal to one). Then we label all nodes preserving the tree order and 

prohibiting turns with maximal labels for middle nodes and have for the number of 

prohibited turns  

 2 3( ) = ,Z G M T M N t≤ + − +  

and  

 
2

( ) .
6

N t
z G

N

+
≤  (21) 

 

As an example consider the degree-3 regular non-Hamiltonian graph in  Figure 

12, where a spanning tree with = 3t  leaves is shown with solid lines. The upper bound 

for the fraction of prohibited turns for this graph is 
16 2(3) 11

( )
6(16) 48

z G
+

≤ ≤ , and the lower 
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bound (3) is ( ) 10 / 48z G ≥ . 

 

Figure  12.  Non-Hamiltonian degree-3 regular topology with = 3t . The spanning 

tree is shown with edges in thick bold lines 

 

4. Distance Dilation 

Consider now the notion of dilation in a network topology due to turn 

prohibitions. Paths that involve prohibited turns are prohibited and are not used for 

communication. Thus, one side effect of turn prohibitions is that, prohibiting certain 

paths from being used for message routing, may increase distances between some nodes. 

The net result of this is that the average distance of the network graph will be increased. 

To facilitate the investigation of this phenomenon, the notion of distance dilation is 

introduced. 

Definition 5  The dilation in a graph, is the ratio of the average distance after 

turn prohibition to the average distance without any turn prohibition.  

When the dilation is 1 it implies that the turn prohibitions have not caused any 

lengthening of the average distance. For example, for complete graphs the fraction of 

prohibited turns achieves the upper bound, but the dilation is 1. Similarly for 

homogeneous and D-meshes, for hexagonal meshes, p-ary n-dimensional meshes, for 

locally complete tree-like topologies, and for fractahedrons no dilation is introduced by 

turn prohibitions. In Figure 13 the distance dilations in p-ary n-dimensional tori are 

shown. For these calculations, we determined the average distance using the shortest 

distances between all source destination pairs. For the p=3 torus, the largest dilation is 
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less than 5.5%, whereas for tori with = 4p , 5, and 6, the largest dilation is less than 

3.5%. 

 

Figure  13. Dilation in p-ary n-dimensional tori due to turn prohibition, in 

= 3, ,6p K  are displayed 

 

5. Conclusions 

In this chapter the problem of constructing minimum cycle-breaking sets of turns 

for graphs that model communication networks in multiprocessor systems with wormhole 

routing is considered. This problem is important for deadlock-free and livelock-free 

message routing in these networks. A series of new algorithms were presented that are 

used to obtain optimal or close to optimal sets of prohibited turns to prevent deadlock 

formation during routing. Results on minimum fractions of turns that must be prohibited 

to break all cycles without loss of connectivity for degree-regular connected graphs are 

presented in Table 1. The results of calculations for dilations as a result of prohibitions in 

p-ary n-dimensional meshes and tori are also presented. It is noteworthy that meshes do 

not suffer from any dilation and the worst case dilation for tori is less than 5.5%. 

 

 

 

 

 



DEADLOCK PREVENTION IN MULTIPROCESSOR SYSTEMS 30 

 

Table  1. Lower and upper bounds on fractions of prohibited turns, ( )z G , in 

minimal cycle breaking sets for several regular and semiregular topologies 

Topology Lower bound on ( )z G  Upper bound on ( )z G  Asymptotic Limits for ( )z G  

Homogenous meshes - Theorem 1 ( )1 1
1

4 1d
−

−
 

1
,

4
d → ∞   

Complete graph  
n

K , > 2n  1 / 3  1 / 3  

n-dimensional p-ary mesh – (6) 
n

p
M  

2

2

( 1)( 1)

2 ( 2) 4( 1)( 1)

n p

p p n p

− −

− + − −
 

1

4 2

,
n

n

p
−

−
→ ∞ , 

1
, ,

4
n p→ ∞ → ∞  

n-dimensional p-ary torus – (7) 

( 2),
n

p
pZ >   

( 1) 2

2 (2 1)

p n

p n

− +

−
  

1
,

4
n → ∞   

Hypercube 2

n
Z  - Section 3-5 1 / 4  1 / 4, n → ∞  

Hexagonal mesh of size p - (10)  

2

2

9 21 13

45 99 51

p p

p p

− +

− +
  

1
,

5
p → ∞  

Hexagonal torus of size p - (11)  

2

2

9 15 10

45 45 15

p p

p p

− +

− +
  

1
,

5
p → ∞  

Honeycomb mesh of size p - 

Section 3-2  

2

2

3 3 1

18 12

p p

p p

− +

−
  

1
,

6
p → ∞  

Honeycomb torus of size p - 

Section 3-2  2

1 1

6 18 p
+   

1
,

6
p → ∞  

Fractahedron with l  levels- (13)  
( )1

2 3 1

3 3 2
+

⋅ −

−

l

l
  

2
,

9
→ ∞l  

Cube-connected cycle with 

= 2n
N  nodes- (14)  

1 1

6 3N
+  

1 1

6 3d
+   

1
,

6
n → ∞  

Hamiltonian graph with max 

degree < 5∆  - (16)  
- 

( 2) 4

2

N

N

∆ − +

∆
 

 
1 1

,
2

N− → ∞
∆

, (upper 

bound)  

3-regular graph - Section 3-6  
1 2

6 3N
+  

2 7

9 18N
+   

2
,

9
N → ∞ , (upper bound) 

4-pancake graph - Section 3-5  2 / 9  2 / 9  

Petersen graph - Section 3-5  7 / 30  7 / 30  

Locally Complete graphs - (12) 

obtained by replacing each of 

N ′ nodes in a tree by a  
n

K  

1 ( 2)

3 ( 2) 4( 1)

N n n

N n n N

′ −

′ ′− + −
  

1 ( 2)
,

3 ( 2) 4

n n
N

n n

−
′ → ∞

− +
 

 



DEADLOCK PREVENTION IN MULTIPROCESSOR SYSTEMS 31 

 

References 
 
 
Ajima, Y., Sumimoto, S., & Shimizu, T. (2009, November). Tofu: A 6d Mesh/Torus 

interconnect for exascale computers. Computer , 42 (11), 36-40. 

Boppana, R., & Chalasani, S. (1993). A comparison of adaptive wormhole routing 

algorithms. Computer Architecture News, 21 (2), 351-360. 

Boppana, R. V., Chalasani, S., & Raghavendra, C. (1998). Resource deadlocks and 

performance of wormhole multicast routing algorithms. IEEE Transactions on 

Parallel and Distributed Systems, 9 (6), 535-549. 

Chalasani, S., & Boppana, R. V. (1995). Fault-tolerant wormhole routing algorithms in 

mesh networks. IEEE Transactions on Computers, 44 (7), 848-864. 

Dally, W., & Aoki, H. (1997). Deadlock-free adaptive routing in multiprocessor 

networks using virtual channels. IEEE Transactions on Parallel and Distributed 

Systems, 466-475. 

Dally, W. J., & Seitz, C. L. (1986). The torus routing chip. Journal of Distributed 

Computing, 1 (3), 187-196. 

Dally, W. J., & Seitz, C. L. (1987). Deadlock-free message routing in multiprocessor 

interconnection networks. IEEE Transactions on Computers, 36 , 547-553. 

Decayeux, C., & Seme, D. (2005, 9). 3D hexagonal network: Modeling, topological 

properties, addressing scheme, and optimal routing algorithm. IEEE Transactions 

on Parallel and Distributed Systems, 16 , 875-884. 

Dolter, J. W., Ramanathan, P., & Shin, K. G. (1991). Performance analysis of virtual cut-

through switching in HARTS: A hexagonal mesh multicomputer. IEEE 

Transactions on Computers, 40 (6), 669-680. 



DEADLOCK PREVENTION IN MULTIPROCESSOR SYSTEMS 32 

 

Duato, J. (1993). A new theory of deadlock-free adaptive routing in wormhole networks.  

IEEE Transactions on Parallel and Distributed Systems, 4 , 1320-1331. 

Duato, J. (1994). A necessary and sufficient condition for deadlock-free adaptive routing 

in wormhole networks. Proceedings of International Conference on Parallel 

Processing, 142-149. 

Duato, J. (Dec. 1991). Deadlock-free adaptive routing algorithms for multicomputers: 

Evaluation of a new algorithm. In proceedings of the third IEEE  symposium. 

Parallel and distributed processing. (p. 840-847). Dallas, Texas, USA: IEEE 

Computer Society. 

Duato, J., Yalamancili, S., & Ni, L. (1997). Interconnection networks an engineering 

approach. Silver Spring, MD: IEEE Computer Society Press. 

Glass, C., & Ni, L. (1994). The turn model for adaptive routing. Journal of ACM , 5 , 

874-902. 

Harary, F. (1998). Graph theory. Perseus Books. 

Honkala, I., Karpovsky, M. G., & Levitin, L. B. (Feb 2006). On robust and dynamic 

identifying codes. IEEE Trans. Info. Theory, 599-613. 

Horst, R. (1996). ServerNet(TM) deadlock avoidance and fractahedral topologies.  

Proceedings of IEEE International Parallel Processing Symposium, 274-280. 

Levitin, L., Karpovsky, M., & Mustafa, M. (2010, September). Minimal sets of turns 

for breaking cycles in graphs modeling networks. IEEE Transactions in Parallel 

and Distributed Systems, 21 (9), 1342-1353. 

Levitin, L., Karpovsky, M., & Mustafa, M. (2010, September). Minimal sets of turns 

for breaking cycles in graphs modeling networks. IEEE Transactions in Parallel 

and Distributed Systems, 21 (9), 1342-1353. 



DEADLOCK PREVENTION IN MULTIPROCESSOR SYSTEMS 33 

 

Levitin, L., Karpovsky, M., & Mustafa, M. (May, 2009). Deadlock prevention by turn  

 prohibitions in interconnection networks. In 2009 IEEE international symposium 

on  

parallel & distributed processing (p. 1-7). Rome, Italy: IEEE Computer Society. 

Levitin, L. B., Karpovsky, M. G., Mustafa, M., & Zakrevski, L. (2006). A new 

algorithm for finding cycle-breaking sets of turns in a graph. Journal of graph 

algorithms and applications, 10 (2), 387-420. 

Lysne, O., Skeie, T., Reinemo, S.A., & Theiss, I. (2006). Layered routing in irregular 

networks. IEEE Transactions on Parallel and Distributed Systems, 51-56. 

Min, G., Ould-Khaoua, M., Kouvatsos, D., & Awan, I. (2004, May). A queuing model 

of dimension-ordered routing under self-similar traffic loads. In Parallel and 

distributed processing symposium, 2004. proceedings. 18th international (p. 601-

613). Washington, DC: IEEE Computer Society. 

Mustafa, M., Karpovsky, M., & Levitin, L. (2005, August). Cycle breaking in 

wormhole routed computer communication networks. In Opnetwork 2005. 

Washington, DC, USA: Opnet Technologies. 

Ni, L. M., & McKinley, P. K. (1993). A survey of wormhole routing techniques in 

direct networks. Computer , 26 , 62-76. 

Nocetti, F. G., Stojmenovic, I., & Zhang, J. (2002). Addressing and routing in 

hexagonal networks with applications for tracking mobile users and connection 

rerouting in cellular networks. IEEE Transactions on Parallel and Distributed 

Systems, 13 (9), 963-971. 

Parhami, B. (1998). Introduction to parallel processing: Algorithms and architectures. 

New York, NY: Plenum Press. 



DEADLOCK PREVENTION IN MULTIPROCESSOR SYSTEMS 34 

 

Parhami, B., & Kwai, D.-M. (2001). A unified formulation of honeycomb and diamond 

networks. IEEE Transactions on Parallel and Distributed Systems, 12 (1), 74-80. 

Pellegrini, F. D., Starobinski, D., Karpovsky, M., & Levitin, L. (2004). Scalable cycle-

breaking algorithms for gigabit Ethernet backbones. Proceedings of IEEE 

Infocom 2004. 

Pellegrini, F. D., Starobinski, D., Karpovsky, M. G., & Levitin, L. B. (2006, February). 

Scalable, distributed cycle-breaking algorithms for gigabit Ethernet backbones. 

Journal of Optical Networks, 5 (2), 122-144. 

Sancho, J. C., & Robles, A. (2000). Improving the Up*/Down* routing scheme for 

networks of workstations. European Conference on Parallel Computing (Euro-

Par 2000). 

Sancho, J. C., Robles, A., & Duato, J. (2004, August). An effective methodology to 

improve the performance of the Up*/Down* routing algorithm. IEEE 

Transactions of Parallel and Distributed Systems, 15 (8), 740-754. 

Schroeder, M. D., Birrell, A. D., Burrows, M., Murray, H., Needham, R. M., Rodeheer, 

T. L., et al. (1990, April). Autonet: A high-speed self configuring local area 

network using point-to-point links (Tech. Rep. No. SRC Research Report 59). Palo 

Alto, CA: Digital Equipment Corporation, SRC. 

Sivaram, R., Panda, D., & Stunkel, C. B. (1997). Multicasting in irregular networks 

with cut-through switches using tree-based multidestination worms. Proceedings 

of the 2nd Parallel Computing, Routing and Communication Workshop, 35-48. 

Skeie, T., Lysne, O., & Theiss, I. (2002). Layered shortest path (LASH) routing in 

irregular system area networks. In International parallel and distributed 

processing symposium: IPDPS 2002 workshops (p. 0162-0170). Fort 



DEADLOCK PREVENTION IN MULTIPROCESSOR SYSTEMS 35 

 

Lauderdale, FL. 

Stojmenovic, I. (1997). Honeycomb networks: Topological properties and 

communication algorithms. IEEE Transactions on Parallel and Distributed 

Systems, 8 (10), 1036-1042. 

Zakrevski, L., Jaiswal, S., & Karpovsky, M. (1999). Unicast message routing in 

communication networks with irregular topologies. Proceeding of Computer 

Aided Design (CAD-99). 

Zakrevski, L., Jaiswal, S., Levitin, L., & Karpovsky, M. (1999). A new method for 

deadlock elimination in computer networks with irregular topologies. 

Proceedings of the International Association of Science and Technology for 

Development (IASTED) Conference, Parallel and Distributed Computing 

Systems (PDCS-99), 1, 396-402. 

 Zakrevski, L., Mustafa, M., & Karpovsky, M. (2000). Turn prohibition based routing 

in irregular computer networks. Proceedings of the IASTED International 

Conference on Parallel and Distributed Computing and Systems, 175-179. 


