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Abstract—
The security of communication or computational systems protected by traditional error detecting codes rely on the assumption that the
information bits of the message (output of the device-under-attack) are not known to attackers or the error patterns are not controllable
by external forces. For applications where the assumption is not valid, e.g. secure cryptographic devices, secret sharing, etc, the
security of systems protected by traditional error detecting codes can be easily compromised by an attacker. In this paper, we present
constructions for strongly secure codes based on the nonlinear encoding functions. For (k,m, r) strongly secure codes, a message
contains three parts: k-bit information data y, m-bit random data x and r-bit redundancy f(y, x). For any error e and information y, the
fraction of x that masks the error e is less than 1. In this paper we describe lower and upper bounds on the proposed codes and show
that the presented constructions can generate optimal or close to optimal codes. An efficient encoding and decoding method for the
codes minimizing the number of multipliers using the multivariate Horner scheme is presented.

Index Terms—Nonlinear Codes, Reed-Muller Codes, Secure Hardware, Fault Injection Attacks
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1 INTRODUCTION

Error detecting codes are widely used for communica-
tion channels and for computation channels to protect re-
liable and secure devices against soft errors, hard errors
and malicious attacks in applications like Internet, data
storage, cryptosystems and wireless communications.

Most of the existing secure architectures [1], [2], [3],
[4], [5], [6] are based on linear codes such as 1-d parity
codes, duplication codes, Hamming codes, BCH codes,
Reed-Solomon codes, etc. The error detecting capabilities
these architectures largely depend on the accuracy of
the error model and may not be sufficient if an attacker
can control errors distorting the received messages for
communication channels or errors distorting outputs
of a device protected by an error detecting code for
computation channels. For example, devices protected
by linear 1-d parity codes can detect all errors with odd
multiplicities but cannot provide any protection against
errors with even multiplicities. An advanced attacker can
easily bypass the protection mechanism based on 1-d
parity codes by only injecting faults manifesting as errors
with even multiplicities at the output of the protected
devices [7].

Robust codes based on nonlinear encoding functions
were proposed by the authors in [8], [7], [9], [10], [11],
[12]. A code C ∈ GF (2n) is robust if {e|c ⊕ e ∈ C, ∀c ∈
C} = {0 ∈ GF (2n)}. These codes can provide nearly
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equal protection against all error patterns. The error
masking probabilities QC(e) = |C|−1|{c ∈ C, c⊕ e ∈ C}|
(|C| is the size of the code) for robust codes are upper-
bounded by a number less than 1 for all non-zero
errors. Compared to the systems based on linear codes,
systems based on robust codes can provide a guaranteed
protection regardless of the accuracy of the error model
under the assumption that all messages(codewords) are
equiprobable. Variants of robust codes – partially robust
and minimum distance robust codes – were proposed
in [13], [10], which allow tradeoffs in terms of the
robustness and the hardware overhead.

One limitation of robust codes is that these codes
assume the information bits of messages or outputs of
the device-to-be-protected are uniformly distributed and
are not known to attacker, e.g. to an attacker during
error injection attacks on devices. The security of the
communication or computation channels protected by
robust codes will be largely compromised if information
bits of the messages are known to the attacker and the
non-zero error patterns can be controlled by the attacker.

Example 1.1: Block ciphers such as AES are vulnerable
to fault injection attacks. It has been shown that by
injecting undetected errors into intermediate computa-
tion results of the encryption or decryption process,
the attacker can compromise the security level of the
cipher by revealing the secret key that is used for en-
cryption and decryption [14]. Suppose the intermediate
computation results of one AES block is buffered in a
32-bit storage device, e.g. registers, caches, etc, and is
protected by a robust duplication code C = {y, f(y)},
where y, f(y) ∈ GF (232), f(y) = y3 and all operations are
in GF (232) (see Figure 1a). Let e = (ey, ef ) be the error
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Fig. 1: (a) Secure storage device protected by a systematic (k + r, k) error detecting code. (b) Secure computational
device protected by a systematic (k+ r, k) error detecting code. (c) Secure storage device protected by a systematic
error detecting code with k information bits, m random bits and r redundant bits. (RNG is the random number
generator. EDN is the error detecting network.)

vector. An error e is masked by a codeword c = (y, f(y))
if and only if

f(y ⊕ ey) = f(y)⊕ ef , (1)

or equivalently

eyy
2 ⊕ e2yy ⊕ e3y ⊕ ef = 0 (2)

Since the error masking equation (2) is in quadratic form,
for any non-zero e there are at most two solutions for
y. Thereby, any non-zero error e will be masked by at
most two codewords. Assume that an attacker have no
knowledge of intermediate computation result y during
attacks and y is uniformly distributed in GF (232), then
the probability that the attacker conducts a successful
attack (e = (ey, ef ) is not detected) is upper bounded by
2× |C|−1 = 2× 2−32 = 2−31, where |C| is the number of
the codewords in C. If an attacker has the ability to ear-
drop the data bus of the storage device (see Figure 1) and
has full knowledge of y and and can inject any arbitrary
bit vector pattern to the storage cells, then the attacker
can easily select e∗ = (e∗y, e

∗
f ) for the given y∗ so that (2) is

satisfied. In this case, the error will always be missed and
the following computations in the block cipher will be
incorrect. As a result, the security of the block cipher can
be compromised. Similar problems occur when robust
codes are used to protect computational devices, where
the goal of the attacker is to distort the outputs y
to jeopardize the following computations by injecting
faults into the computational device (see Figure 1b). If
the attacker has knowledge of the detailed hardware
implementation and the correct output y of the original
device, he can succeed by injecting faults manifesting as
an error pattern e = (ey, ef ) at the output of the device,
which can never be detected by robust codes.

For the situation shown in the above example, the
attacker is able to observe the original information bits
of the message (output of the device-under-attack) and

then apply fault injection attacks correspondingly. All
previous protection technologies based on traditional
error detecting codes will not be sufficient.

Intuitively, the limitation of robust code described
above can be efficiently eliminated by introducing ran-
domness into the encoding procedure of the code. Due
to the fact that the random data are independent of the
user information y, they can always be made uniformly
distributed. As a result, the assumption for robust codes
that y is uniformly distributed is no longer required.
Moreover, since the user has zero knowledge and no
control of the random bits generated for each encoding
operation, no matter how the attacker selects e for a
given y, the probability that e is masked will be upper
bounded by a number determined by the size of the set
of possible random numbers. A coding technique based
on adding to k information bits m random bits and r
redundant bits (see Figure 1c)), which can still provide
guaranteed security under the above circumstance, is
called strongly secure algebraic manipulation detection
(AMD) code . (The formal definition of these codes will
be given in the next Section, see Definition 2.2).

A simple AMD code was first presented in [15]. A
much more versatile strong AMD code was introduced
in [16], where the construction of optimal AMD codes
was presented for k = br information digits and m = r
random digits (r is the number of redundant digits).
In [17], the authors introduced the concept of AMD
codes and put all previous constructions in a unified
framework. Compared to the widely used Message Au-
thentication Codes, AMD codes do not require a secret
key and have simpler encoding and decoding. Codes
combining AMD codes and list-decoding are described
in [18]. Applications of AMD codes for the design of non-
malleable codes are presented in [19]. Algebraic manip-
ulation correction codes are presented in [20]. The main
contributions of this paper are as follows. We present
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QV (y, e) = 2−m|{x (y, x, f(y, x)) ∈ V, (y ⊕ ey, x⊕ ex, f(y, x)⊕ ef ) ∈ V }|. (4)

lower bounds for the probability of error masking for
systematic AMD codes (Section 2) and propose several
new constructions of systematic AMD codes (Section 3)
for a wide range of parameters k, m and r, which are
generalizations of the construction shown in [17]. Some
of the proposed codes are optimal or close to be optimal.
We show the relationship between the proposed codes
and classical codes such as the Generalized Reed-Muller
codes and the Reed-Solomon codes (Section 2 and 3).
We also describe in Section 4 an efficient encoding and
decoding algorithm for the presented codes based on the
multivariate Horner scheme.

The proposed codes can be used for many different ap-
plications such as robust secret sharing schemes, robust
fuzzy extractors [17] and secure cryptographic devices
resistant to fault injection attacks [21].

All the codes described in this paper are binary. Gen-
eralization to a nonbinary case is straightforward.

2 DEFINITIONS AND BOUNDS FOR ALGE-
BRAIC MANIPULATION DETECTION CODES

Throughout the paper we denote by ⊕ the component-
wise modulo two addition in GF (q), q = 2r. All the
results presented in the paper can be easily generalized
to the case where q = pr (p is a prime).

A code V with codewords (y, x, f(y, x)), where y ∈
GF (2k), x ∈ GF (2m) and f(y, x) ∈ GF (2r), will be
referred to as a (k,m, r) code. We will assume that y is
a k-bit information, x is an m-bit uniformly distributed
random vector (generated by a random number gener-
ator) and f(y, x) is an r-bit redundant portion of the
message (y, x, f(y, x)).

Definition 2.1: (Security Kernel) For any (k,m, r) error
detecting code V with the encoding function f(y, x),
where y ∈ GF (2k), x ∈ GF (2m) and f(y, x) ∈ GF (2r),
the security kernel KS is the set of errors e =
(ey, ex, ef ), ey ∈ GF (2k), ex ∈ GF (2m), ef ∈ GF (2r), for
which there exists y such that f(y⊕ey, x⊕ex)⊕f(y, x) =
ef is satisfied for all x.

KS = {e|∃y, f(y⊕ ey, x⊕ ex)⊕ f(y, x)⊕ ef = 0,∀x}. (3)

For any error e∗ = (e∗y, e
∗
x, e
∗
f ) ∈ KS , e

∗ 6= 0, there exists
y∗ (the output of the device to-be-protected) such that for
this y∗ the error e∗ is not detected for any choice of the
random variable x (the probability of not detecting e∗

for the information y∗ is equal to 1). Thus to conduct a
successful attack, it is sufficient for the attacker to inject
e∗ ∈ KS when the expected output is in the format of
(y∗, x, f(y∗, x)).

We note that in many applications ey 6= 0 is a necessary
condition for an attacker to conduct a successful fault
injection attack. However, for secure architectures such
as the one shown in [9], [22], the integrity of not only

the information bits but also the redundant bits of the
codes can be critical. Thereby, to conduct a more general
analysis, we do not impose ey 6= 0 in the above definition
of the security kernel.

For the case of communication channels we assume
that an attacker can select any k-bit vector y as the
information bits of a message (y, x, f(y, x)) and any error
e = (ey, ex, ef ) that distorts the message. For the case of
computation channels, we assume the attacker can inject
faults that manifest as e ∈ KS at the output of the device
and select y for which e is always masked. Under the
above attacker model for communication or computation
channels, the attacker can always mount a successful
attack (see Example 1.1). Thereby an AMD code that can
provide a guaranteed error detecting probability under
the above strong attacker model should have no errors
in the security kernel except for the all zero vector in
GF (2n), where n = k +m+ r is the length of the code.

Definition 2.2: A (k,m, r) error detecting code is called
Algebraic Manipulation Detection (AMD) code iff KS =
{0}, where 0 is the all zero vector in GF (2n), n = k +
m+ r.

Remark 2.1: The original definition of AMD codes in
[17] is for both systematic and nonsystematic codes
defined in any group. In this paper we consider binary
systematic AMD codes, which is the most practical for
hardware implementation. The above definition and all
other results in this paper can be easily generalized for
non-binary cases.

AMD codes V = {(y, x, f(y, x))} have no undetectable
errors no matter how the attacker select e = (ey, ex, ef )
and y. AMD codes for the case m = r and k = br were
introduced in [16] and were used in [17] for robust secret
sharing schemes and for robust fuzzy extractors.

For a (k,m, r) code V , denote by QV (y, e) the probabil-
ity of missing an error e once y is fixed. Then QV (y, e)
can be computed as the fraction of random vectors x
such that e is masked (see (4)) and KS = {e|∃y :
QV (y, e) = 1}. The code V is an AMD code if and only
if QV (y, e) < 1 for any y and any e 6= 0.

For a (k,m, r) AMD code V = {(y, x, f(y, x)), y ∈
GF (2k), x ∈ GF (2m), f(y, x) ∈ GF (2r)}, for any given
y∗ ∈ GF (2k) and e∗ = (e∗y, e

∗
x, e
∗
f ), e∗y ∈ GF (2k), e∗x ∈

GF (2m), e∗f ∈ GF (2r), f(y∗ ⊕ e∗y, x⊕ e∗x)⊕ e∗f considered
as functions of x ∈ GF (2m) should all be different.

Example 2.1: Let k = m = tr, y =
(y0, y1, · · · , yt−1), yi ∈ GF (2r) be the information
digits and x = (x0, x1, · · · , xt−1), xi ∈ GF (2r) be the
random digits. Let f(y, x) = x0 ·y0⊕x1 ·y1⊕· · ·⊕xt−1 ·yt−1
be the encoding function, where all the operations are
in GF (2r).

Suppose ey = 0 and ex, ef are not both 0. The error
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masking equation is

ef = ex0
y0 ⊕ ex1

y1 ⊕ · · · ⊕ ext−1
yt−1, (5)

where ex = (ex0
, ex1

, · · · , ext−1
) and exi

∈ GF (2r). For
any ex and ef , there always exist y such that e =
(0, ex, ef ), e 6= 0 will be masked for all x. Thereby, this
code is not a AMD code. In this case, KS contains all
vectors e = (0, ex, ef ).

Suppose ey = (ey0 , ey1 , · · · , eyt−1
), eyi ∈ GF (2r) is not

zero. Without loss of generality, let us assume ey0 6= 0.
Then the monomial ey0 · x0 will appear in the error
masking equation f(x ⊕ ex, y ⊕ ey) ⊕ f(y, x) ⊕ ef = 0.
Since ey0 6= 0, for every e, y and x1, x2, · · · , xt−1, there
is a unique solution for x0. Thereby the error is masked
with probability 2−r.

We will now establish a relationship between binary
AMD codes and classical non-binary codes with given
Hamming distances. We will show that for any (k,m, r)
AMD code V there exists a q-ary code CV with CV =
2k+m+r and q = 2r such that the Hamming distance
of CV will determine the maximal error masking prob-
ability maxy,e6=0QV (y, e) for the AMD code V . This
relationship combined with the well known bounds for
Hamming distances results in a necessary condition for
the existence of AMD codes given k,m, r and lower
bounds for the maximal probability of missing errors
Q(k,m, r) = minV ∈Vk,m,r

maxy,e6=0Q(y, e) for the best
AMD codes, where Vk,m,r is the set of (k,m, r) error
detecting codes (see Theorem 2.1 and Corollary 2.1 ∼
2.4).

Let C be a q-ary code (q = 2r) of length 2m with an
encoding function f : GF (2m) → GF (2r). Let us define
the orbit of f by (6). We note that for any f ∈ C, 1 ≤
|Orb(f)| ≤ q2m = 2m+r. If |Orb(f)| = 2m+r, then for any
ex and ef there exists x such that f(x) 6= f(x⊕ ex)⊕ ef
(f(x) and f(x⊕ex)⊕ef are different functions). Moreover,
if ϕ 6∈ Orb(f), then Orb(ϕ)

⋂
Orb(f) = ∅.

Orb(f) = {ϕ|ϕ(x) = f(x⊕ ex)⊕ ef}, (6)

where ex ∈ GF (2m), ef ∈ GF (2r).
Definition 2.3: We will say that a q-ary (q = 2r) code C

of length 2m is a code with full orbit if for any f ∈ C,
|Orb(f)| = 2m+r and Orb(f) ⊆ C.

The notion of codes with full orbit will be used in
the lower bound for the probability of error masking
(see Theorem 2.1). For a (k,m, r) error detecting code
V = {(y, x, f(y, x))}, when y is fixed to be y∗, f(y∗, x) is
a function of x. Let us denote f(y∗, x) by f(y∗). If an error
e = (0, ex, ef ) is masked with probability 1, then f(y∗)(x⊕
ex) ⊕ ef = f(y∗)(x) for all x. As a result |Orb(f(y∗))| <
2m+r. The code CV that f(y∗) belongs to is not a code
with full orbit. The existence of a q-ary (q = 2r) code C
of length 2m with full orbit is a necessary condition for
the existence of a (k,m, r) AMD code (see the proof of
Theorem 2.1).

Any q-ary code C of length 2m with full orbit is a
union of disjoint orbits of size q2m. The size of C is a

multiple of q2m. We note that codes with full orbit are
nonlinear and for any code C with full orbit, 0 ∈ GF (2m)
is not a codeword of C.

Example 2.2: Let C be a binary code of length 8 and
Hamming distance 2 containing all vectors with an odd
number of 1′s. Let y = (y0, y1, y2), yi ∈ GF (2) and
f(y)(x) = y0 ·x0⊕y1 ·x1⊕y2 ·x2⊕x0 ·x1 ·x2 is a nonlinear
function of x with y as the coefficient. Since f(y)(x) is
nonlinear, for any given ex and ef , there always exists x
such that f(y)(x⊕ ex)⊕ ef 6= f(y)(x), i.e. f(y)(x⊕ ex)⊕ ef
and f(y)(x) are different functions. Thus |Orb(f(y))| = 16
for any y ∈ GF (23). C is a code with full orbit and
|C| = | ∪y∈GF (23) Orb(f(y))| = 128.

The optimal AMD code minimizes maxy,e6=0QV (y, e)
among all codes with the same parameters. Thus, the
criterion we use to construct good AMD codes is

min
V ∈Vk,m,r

max
y,e6=0

QV (y, e), (7)

where Vk,m,r is the set of all (k,m, r) error detecting
codes.

Definition 2.4: An AMD code is optimal if it achieves
the minimum possible worst error masking probability
among all codes with the same k,m and r, i.e. QV =
maxy 6=0QV (y, e) = minV ∈Vk,m,r

QV .
We note that the optimization criterion selected in this

paper is different from the one shown in [17]. The com-
putational complexity of the encoding function for AMD
codes is determined by both m and r. In cryptographic
applications, the m random digits can be generated by
a random number generator (RNG), which is already
integrated in most of the modern cryptographic devices.
Since the RNG is also used for other purposes such
as generating the random mask for countermeasures
against power analysis attacks, the number of random
digits available for AMD codes in every clock cycle may
be limited. The above criterion was selected to maximize
the security level of the cryptographic device given the
number of available random digits in every clock cycle
and the amount of hardware redundancy we can bear.

Let us discuss now the relationship between the maxi-
mum Hamming distance of q-ary (q = 2r) full-orbit codes
of length 2m with 2k+m+r codewords and the worst case
error masking probability for the optimal (k,m, r) AMD
codes.

Let QV = maxy,e6=0QV (y, e) and Q(k,m, r) =
minV ∈Vk,m,r

QV . Denote by d̂q(2
m,M) the maximum

Hamming distance of a q-ary (q = 2r) code of length
2m with full orbit containing M codewords. We have

d̂q(2
m,M) ≤ dq(2m,M), (8)

where dq(2
m,M) is the maximum possible Hamming

distance of a q-ary code with length 2m and M code-
words.

We next present a lower bound for Q(k,m, r). The
constructions of codes providing tight upper bounds for
Q(k,m, r) can be found in Section 3.

Theorem 2.1: For any (k,m, r) AMD code, where k is
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the number of information bits, m is the number of
random bits and r is the number of redundant bits,

Q(k,m, r) = min
V ∈Vk,m,r

max
y,e6=0

QV (y, e)

≥ 1− 2−mdq(2
m,M), (9)

where dq(2
m,M) is the maximum possible Hamming

distance of a (not necessarily systematic) q-ary code C
(q = 2r) with length 2m and M = |C| = 2k+m+r

codewords.
Proof: Let V be a (k,m, r) AMD code composed of

vectors (y, x, f(y, x)), where y ∈ GF (2k), x ∈ GF (2m)
and f(y, x) ∈ GF (2r). When y is fixed, f is a function of
x. Let us denote this function by f(y). Since V is an AMD
code, f(y)(x⊕ex)⊕ef is not the same as f(y′)(x⊕e′x)⊕e′f
for any y, y′, ex, e

′
x, ef , e

′
f , assuming that elements of at

least one of the pairs (y, y′), (ex, e
′
x) and (ef , e

′
f ) are not

equal. Thereby, for different y, ex and ef , f(y)(x⊕ex)⊕ef
corresponds to 2k+m+r different functions.

Let CV = ∪y∈GF (2k)Orb(f(y)) be a q-ary (q = 2r) code
of length 2m with full orbit. Then |Orb(f(y))| = 2m+r,
|CV | = 2k+m+r and QV = maxy,e6=0Q(y, e) = 1 −
2−md(CV ), where d(CV ) is the Hamming distance of CV .
By (8) and (9) we have

Q(k,m, r) = 1− 2−m max
V ∈Vk,m,r

d(CV )

≥ 1− 2−md̂q(2
m,M) (10)

≥ 1− 2−mdq(2
m,M).

The following Corollary follows directly from The-
orem 2.1 and provides a necessary condition of the
existence of (k,m, r) AMD codes.

Corollary 2.1: There is no AMD codes V with k >
r2m −m− r. (Q(k,m, r) = 1 if k > r2m −m− r.)

Proof: According to the proof of Theorem
2.1, for any given y, |Orb(f(y))| = 2m+r. The 2k

orbits Orb(f(0)), Orb(f(1)), · · ·Orb(f(2k−1)) are non-
overlapping. Thereby if there exists an (k,m, r) AMD
code (QV < 1), then q2

m ≥ 2k+m+r, or equivalently
k ≤ r2m −m− r.

Remark 2.2: We note that the bound in Theorem 2.1 is
much stronger than the trivial bound Q(k,m, r) ≥ 2−r. In
fact, Q(k,m, r) ≥ 2−r is equivalent to dq(2m, 2k+m+r) ≥
2m − 2m−r, which is a sub-case of Theorem 2.1.

Theorem 2.1 shows the relationship between the worst
case error masking probability QV for an AMD code V
and the Hamming distance of the corresponding code
CV with full orbit. The exact value of d̂q(2m,M) is hard
to derive. However, the Hamming distance of CV should
not exceed the maximum possible distance for a q-ary
code with length 2m and 2k+m+r codewords, q = 2r. We
note that dq(2m,M) can be estimated by classical bounds
from coding theory such as the Hamming bound, the
Johnson bound, the Singleton bound, the Plotkin bound,
etc [23].

When dq(2
m,M) is estimated by the Singleton bound,

the lower bound for Q(k,m, r) can be written in a
compact form as it is shown in the following Corollary.

Corollary 2.2: For any (k,m, r) AMD code,

Q(k,m, r) ≥ dk +m

r
e2−m. (11)

Proof: According to the Singleton bound, for any q-
ary code with length n and distance d, |CV | ≤ qn−d+1.
For the code CV in the proof of Theorem 2.1, n = 2m, q =
2r and |CV | = 2k+m+r. Therefore 2k+m+r ≤ 2r(2

m−d+1),
or equivalently d ≤ 2m−dk+mr e. Then from (9), we have
(11).

The constructions of codes achieving the bound de-
scribed above are shown in Corollary 3.1, 3.2 and 3.4.

The error masking equation of a (k,m, r) AMD code
can be written as

f(y)(x)⊕ f(y⊕ey)(x⊕ ex)⊕ ef = 0. (12)

When m is a multiple of r (m = tr), the left hand side
of (12) is a function from GF (qt) to GF (q), q = 2r. Let
x = (x0, x2, · · · , xt−1) ∈ GF (qt), xi ∈ GF (q), 0 ≤ i ≤ t−1.
It is shown in [24] that {xi00 x

i1
1 · · ·x

it−1

t−1 }, where 0 ≤ iv ≤
q−1, v = 0, 1, 2, . . . , q−1, is a basis of the function space
for functions from GF (qt) to GF (q), i.e., (12) can always
be written in a polynomial form composed of monomials
xi00 x

i1
1 · · ·x

it−1

t−1 . Theorem 2.1 can be further improved as
shown in the next two Corollaries.

Corollary 2.3: When r = 1,

Q(k,m, 1) ≥ 1− 2blog2d2(2
m,M)c−m,M = 2k+r+1. (13)

Proof: When r = 1, let s be the maximal degree of the
left hand side (LHS) of (12) over all y and e = (ey, ex, ef )
for the a AMD code V with given k and m. Then the
LHS with degree s is a codeword of a binary Reed
Muller code RM2(s,m) with length 2m and Hamming
distance 2m−s. (For the definition and the properties
of binary Reed Muller codes, please refer to [23].) The
maximum possible error masking probability for the
AMD code is equal to the maximum number of nonzero
components in a codeword of RM2(s,m) divided by
the length of the Reed Muller code 2m. Thereby the
error masking probability for the AMD code is at most
(2m − 2m−s)2−m = 1− 2−s. We have

1− 2−s ≥ Q(k,m, 1) ≥ 2−md2(2m,M),M = 2k+m+1.
(14)

or equivalently (s is an integer)

s ≥ m− blog2d2(2m,M)c. (15)

When the maximal degree of the error masking equa-
tions for the AMD code achieves the equality in the
above equation, the code has the smallest possible
Q(k,m, 1). Thus

Q(k,m, 1) ≥ 1− 2blog2d2(2
m,2M )c−m.

Corollary 2.4: For any k and m, Q(k,m, 1) ≥ 0.75.
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Proof: Since for any k > 0 and m, d2(n = 2m,M =
2k+m+1) < 2m−1, we have

blog2d2(2m,M)c ≤ m− 2.

According to (13), Q(k,m, 1) ≥ 0.75.
The constructions of codes achieving the bound de-

scribed above are shown in Corollary 3.2.
Example 2.3: Let k = m = 3 and r = 1. According to

(11), Q(3, 3, 1) ≥ 6
8 . Let V be the code composed of all

vectors (y, x, f(y, x)), where y, x ∈ GF (23) and

f(y, x) = x0 ·x1 ·x2⊕x0 ·y0⊕x1 ·y1⊕x2 ·y2, f(y, x) ∈ GF (2).
(16)

The error masking equation is f(x⊕ex, y⊕ey)⊕f(y, x) =
ef , which is a polynomial of x with degree 2. The
function on the left hand side of the error masking
equation corresponds to a codeword of the second order
binary Reed-Muller code RM2(2, 3) with 3 variables [23].
Any codeword of RM2(2, 3) has a Hamming weight of
at least 2. Thus the number of solutions for the error
masking equation is upper bounded by 6. V is a AMD
code with QV = 6

8 . It follows from (11) that this code
is optimal and Q(3, 3, 1) = 0.75. (The optimality of the
code can also be directly derived from Corollary 2.4.)

Optimal (k,m, r) AMD codes attain the equality in
(9) or (13) and minimize the worst case error masking
probability among all codes with the same parameters.

Remark 2.3: We note that AMD codes V with QV close
to 1 may still be very useful for channels with memories
where errors tend to repeat themselves, e.g. for the pro-
tection of cryptographic hardware against fault injection
attacks when errors have a high probability to repeat
for several clock cycles (slow fault injection attacks and
lazy channels). This assumption can be true for most
of the modern fault injection mechanisms due to their
limited timing resolutions [25], [26], [27], [28], [29], [30].
In this case a repeating error will be ultimately detected
by AMD codes after it distorts several consecutive mes-
sages.

In the next section, we will present several general
constructions of AMD codes. Some of the generated
codes are optimal with respect to the lower bounds (9)
or (11).

3 CONSTRUCTIONS OF CODES

In the previous Section we have seen that there is an
one-to-one mapping between the (k,m, r) AMD codes
and the q-ary (q = 2r) codes CV of length 2m with full
orbit and |CV | = 2m+k+r. In this Section we will use
Generalized Reed-Muller codes of length 2m to construct
CV and the corresponding AMD codes. These AMD
codes are optimal or close to optimal for many k,m and
r.

The codewords of a (k,m, r) AMD code V are in the
format (y, x, f(y, x)), where y ∈ GF (2k), x ∈ GF (2m)
and f(y, x) ∈ GF (2r). When y is fixed, f(y) is a function
of x. In the proof of Theorem 2.1, we have shown that

the necessary condition for V to be an AMD code is that
f(y)(x⊕ex)⊕ef cannot be the same function as f(y′)(x⊕
e′x)⊕ e′f for any y, y′, ex, e

′
x, ef , e

′
f , assuming elements in

at least one of the pairs (y, y′), (ex, e
′
x) and (ef , e

′
f ) are

not equal.
To compute QV (y, e) for the code V , the error masking

equation f(x ⊕ ex, y ⊕ ey) ⊕ f(y, x) ⊕ ef = 0 should be
evaluated for all 2m possible x ∈ GF (2m).

We will say that an AMD code V = {(y, x, f(y, x))}
is based on code C if the error masking polynomial
f(y ⊕ ey, x ⊕ ex) ⊕ f(y, x) ⊕ ef is a codeword of C for
all y, ex, ey and ef . Let us re-write f(y, x) as f(y, x) =
A(x) ⊕ B(y, x), where A(x) is independent of y. We
next show that by selecting A(x) and B(y, x) based on
different error detecting codes such as the Generalized
Reed-Muller codes and the Reed-Solomon codes, we can
construct good (and in many cases optimal) AMD codes
for different k and different QV = maxy,e6=0QV (y, e) for
given m and r.

3.1 Constructions of codes Based on the General-
ized Reed-Muller Codes

Let x = (x0, x1, · · · , xt−1), xi ∈ GF (q), q = 2r. A bth

order q-ary Generalized Reed-Muller code GRMq(b, t)
[24] with t variables (1 ≤ b ≤ t(q − 1)) consists of
all codewords (f(0), f(γ0), · · · , f(γq

t−2)), where f(x) is
a polynomial of t variables x0, x1, · · ·xt−1 and γ is a
primitive element of GF (qt). The degree of f(x) is less
or equal to b.

It is shown in [24] that the dimension of GRMq(b, t)
is

kGRMq(b,t) =

t∑
j=0

(−1)j
(
t

j

)(
t+ b− jq
b− jq

)
, (17)

where q = 2r and
(
i
j

)
= 0 when j < 0.

If b = u(q − 1) + v, 0 ≤ v ≤ q − 2. Then the distance of
GRMq(b, t) is dGRMq(b,t) = (q − v)qt−u−1 [24].

Suppose b+ 2 = α(q − 1) + β ≤ t(q − 1), 0 ≤ α ≤ t, 0 ≤
β ≤ q − 2. Assume that b is odd when t = 1. Let

A(x) =



⊕t−1
i=0 x

b+2
i if α = 0, b is odd;⊕t−1

i=1 x0x
b+1
i , t > 1 if α = 0, b is even;⊕t−1

i=0 x
β
i

∏α
j=1 x

q−1
|i+j|t if α 6= 0, α 6= t;∏α−1

i=0 x
q−1
i if α = t;

(18)

where xi ∈ GF (2r), |i+ j|t is the modulo t addition,
⊕

is the sum in GF (2r).
Let

B(y, x) =
⊕

1≤j0+j1+···+jt−1≤b+1

yj0,j1,··· ,jt−1

t−1∏
i=0

xjii , (19)

where 0 ≤ ji ≤ q−1, yj0,j1,··· ,jt−1 ∈ GF (2r), xi ∈ GF (2r),∏t−1
i=0 x

ji
i is a monomial of x0, x1, · · · , xt−1 of a degree

between 1 and b+1 and
∏t−1
i=0 x

ji
i 6∈ ∆B(x), where ∆B(x)

is defined by (20).
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∆B(x) =


{xb+1

0 , xb+1
1 , · · · , xb+1

t−1} if α = 0, b is odd;

{xb+1
1 , x0x

b
1, x0x

b
2, · · · , x0xbt−1, t > 1} if α = 0, b is even;

{xβi x
q−2
|i+1|t

∏α
j=2 x

q−1
|i+j|t , 0 ≤ i ≤ t− 1} if α 6= 0.

(20)

We note it follows from (20) that when α = t, ∆B(x) =
{xq−2i

∏
j 6=i x

q−1
j , 0 ≤ i ≤ t− 1}.

Example 3.1: Let r = 3, q = 8, t = 2 and b = 10. Since
b+ 2 = 12 = α(q − 1) + β, we have α = 1 and β = 5. By
(18) and (20), we have A(x) = x50x

7
1⊕x70x51 and ∆B(x) =

{x50x61, x60x51}. A(x⊕ex)⊕A(x)⊕B(y⊕ey, x⊕ex)⊕B(y, x) is
always a non-zero polynomial of x that has a degree of at
most 11 and corresponds to a codeword in GRM8(11, 2).

AMD codes can be constructed based on A(x), B(y, x)
and the Generalized Reed-Muller codes as shown in the
next Theorem.

Theorem 3.1: Let f(y, x) = A(x) ⊕ B(y, x) be a q-ary
polynomial with yj0,j1,··· ,jt−1

∈ GF (q) as coefficients and
x ∈ GF (qt) as variables, where 1 ≤ b ≤ t(q−1)−2, q = 2r

and A(x), B(y, x) are as shown above. Suppose b + 2 =
α(q − 1) + β and b + 1 = u(q − 1) + v, 0 ≤ α, u ≤ t, 0 ≤
β, v ≤ q − 2. Assume b + 2 6= t(q − 1) − 1 and b is odd
when t = 1. Then the code V composed of all vectors
(y, x, f(y, x)) is an AMD code with m = tr,

k = (kGRMq(b+1,t) − t− 1)r

= (

t∑
i=0

(−1)i
(
t

i

)(
t+ b+ 1− iq
b+ 1− iq

)
− 1− t)r, (21)

and

QV = 1− dGRMq(b+1,t)2
−m

= 1− (2r − v)2−(u+1)r. (22)

Thus

Q((

t∑
i=0

(−1)i
(
t

i

)(
t+ b+ 1− iq
b+ 1− iq

)
− 1− t)r, tr, r)

≤ 1− (2r − v)2−(u+1)r. (23)

Proof: An error e is masked by V if and only if for
all x

A(x⊕ex)⊕A(x)⊕B(y⊕ey, x⊕ex)⊕B(y, x)⊕ef = 0. (24)

1) If ex = 0 and ey = 0, the error is always detected
unless ef is also 0. If ex = 0 and ey 6= 0,
the left hand side of the error masking equation
(24) is a polynomial of degree from 1 to b + 1,
which corresponds to a codeword of a (b + 1)th

order q-ary Generalized Reed-Muller code. Since
dGRMq(b+1,t) = (q − v)qt−u−1, there are at most
qt − (q − v)qt−u−1 solutions for the error masking
equation.

2) If ex 6= 0, the left hand side of (24) does not contain
any monomials of degree b + 2 due to the fact
that A(x) and A(x ⊕ ex) have exactly the same

monomials of degree b+ 2. Moreover,
a) If α = 0 and b is odd, xb+1

i appears in (24) iff
xi is distorted, 0 ≤ i ≤ t− 1;

b) If α = 0 and b is even, xb+1
1 appears in (24)

iff x0 is distorted, x0xbi appears in (24) iff xi is
distorted 1 ≤ i ≤ t− 1;

c) If α 6= 0, since b + 2 6= t(q − 1) − 1,
xβi x

q−2
|i+1|t

∏α
j=2 x

q−1
|i+j|t appears in (24) iff x|i+1|t

is distorted, 0 ≤ i ≤ t − 1. (When α = t,
xi
q−2∏

j 6=i x
q−1
j appears in (24) if xi is dis-

torted.)
Thereby, (24) always contains monomials of degree
b + 1, the left hand side of the error masking
equation again is a codeword in GRMq(b + 1, t).
Thus the number of solutions for the error masking
equation is still upper bounded by qt−(q−v)qt−u−1.

Thus for any fixed y and e, the probability QV of error
masking is upper bounded by

(qt − (q − v)qt−u−1)q−t = 1− (2r − v)2−(u+1)r.

The left hand side of (24) contains monomials of a degree
from 1 to b+ 1 except for the t monomials from ∆B(x).
Hence the number of different monomials in B(y, x) is

kGRMq(b+1,t)−1−t =

t∑
i=0

(−1)i
(
t

i

)(
t+ b+ 1− iq
b+ 1− iq

)
−1−t.

(25)
The number, k, of bits in y is equal to the number of
monomials in B(y, x) multiplied by r, which is

(

t∑
i=0

(−1)i
(
t

i

)(
t+ b+ 1− iq
b+ 1− iq

)
− 1− t)r. (26)

Example 3.1 (Continued) For the code shown in Example
3.1, k = 55× 3 = 165. Since b = 10 = u(q − 1) + v, q = 8,
we have u = 1 and v = 3. The worst case error masking
probability is QV = 1−5×2−6. Thus by (11), 1−7×2−6 ≤
QV (165, 6, 3) ≤ 1− 5× 2−6.

We will show next that the proposed AMD codes are
optimal or close to be optimal (providing for minimum
QV ) for many combinations of k,m and r.

Corollary 3.1: When b = t(q − 1) − 2, q = 2r, codes
generated by Theorem 3.1 are optimal. We have

Q(2trr − tr − 2r, tr, r) = 1− 2−tr+1. (27)

Proof: According to (11), Q(2mr − m − 2r,m, r) ≥
1−2−m+1, where m = tr. The number, k, of information
bits for the AMD code V generated by Theorem 3.1 is
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(qt − t− 2)r. Thus, we have

b+ 1 = t(q − 1)− 1 = (t− 1)(q − 1) + q − 2.

Thereby u = t − 1 and v = q − 2. The worst case error
masking probability for V is

QV = 1− (2r − (q − 2))2−tr = 1− 2−tr+1.

The code is optimal with respect to the lower bound (11).

Fig. 2: Lower bounds and upper bounds for AMD codes
with t = 2, r = 3, q = 8 and 1 ≤ b ≤ 12. Lower
bound (Corollary 2.2) derives dq(2m,M) using Singleton
bound. Lower bound (Theorem 2.1) derives dq(2m,M)
using upper bounds given in [31]. Lower bound - Best
Existing Linear Code derives dq(2

m,M) based on the
best available q-ary linear codes with length 2m and size
M .

The tightness of the lower bound given by Theorem
2.1 is strongly correlated to the tightness of existing
classical upper bounds for the Hamming distance of
error correcting codes. Figure 2 shows the lower bounds
on the worst case error masking probability Q given by
Theorem 2.1 and QV for codes constructed by Theorem
3.1 for t = 2, r = 3, q = 8 and 1 ≤ b ≤ 12. When
dq(2

m,M) in Theorem 2.1 is derived from the Singleton
bound (Corollary 2.2), codes constructed by Theorem 3.1
are not very close to the lower bound except for t = 11
and t = 12 where the codes are optimal. As stronger
upper bounds for Hamming distance are used to derive
dq(2

m,M), codes constructed by Theorem 3.1 become
closer and closer to the lower bound. (For a summary
of upper bounds for Hamming distance of linear codes,
please refer to [31].)

We note that in the literature the best available error
correcting codes usually cannot achieve the upper bound
for the Hamming distance [31]. If dq(2m,M) is derived
from the maximum Hamming distance of existing q-
ary codes with length 2m and size M , the codes con-
structed by Theorem 3.1 become even closer to the lower
bound (see Figure 2). Generally speaking, the optimality
of constructions of AMD codes based on generalized
Reed-Muller codes is related to the optimality of Reed-

Muller codes. For parameters where AMD codes based
on GRMq codes are non-optimal, better AMD codes can
be constructed in a similar way if codes with larger
Hamming distance than GRMq codes exist.

More cases where codes constructed by Theorem 3.1
will be shown in the left part of the Section.

3.1.1 Special Case: r = 1

For this case the dimension of a (b + 1)th order binary
Reed-Muller code of t variables is kRM2(b+1,t) =

∑b+1
i=0

(
t
i

)
(t = m) [23]. The distance of RM2(b+1, t) is dRM2(b+1,t) =
2t−b−1. As a result, the dimension of the resulting AMD
code V constructed by Theorem 3.1 is k =

∑b+1
i=0

(
t
i

)
−t−1.

The worst case error masking probability of the code is
QV = 1− 2−(b+1).

Example 3.2: Suppose m = 7 and r = 1. Let b = 1 and

f(y, x) = x0 ·x1 ·x2⊕x3 ·x4 ·x5⊕x0 ·x3 ·x6⊕
6∑
i=0

xi ·yi. (28)

Because of the term x0 ·x1 ·x2⊕x3 ·x4 ·x5⊕x0 ·x3 ·x6, f(y⊕
ey, x⊕ex)⊕f(y, x)⊕ef is always a polynomial of degree
2, which is a codeword of RM2(2, 7). The distance of
RM2(2, 7) is 32. The worst case error masking probability
of the resulting AMD code is QV = 0.75. since d2(n =
128, |C| = 512) = 56, the code is optimal according t o
Corollary 2.4. (The optimality of the code can also be
derived from (13).)

Corollary 3.2: When q = 2, the code V generated by
Theorem 3.1 is a (

∑b+1
i=0

(
t
i

)
− t− 1, t, 1) AMD code with

QV = 1 − 2−(b+1). The code is optimal when b = 1 or
b = t− 2.

Proof: Corollary 3.2 follows from Corollary 2.4 (for
the case b = 1) and Corollary 3.1 (for the case b = t− 2).

Remark 3.1: When r = 1(q = 2) and b = 1, the code
V generated by Theorem 3.1 is an optimal AMD code
with k =

(
t
2

)
and Q = 0.75. Removing codewords

from an AMD code will not increase the worst case
error masking probability Q of the code. Thereby, for all
k <

(
t
2

)
, an AMD code with the same m, r and Q = 0.75

can be constructed by deleting some codewords from
V . According to Corollary 2.4, the new code is also an
optimal AMD code.

3.1.2 Special Case: b ≤ q − 3

Another special case of Theorem 3.1 is the case b ≤ q−3.
In this case kGRMq(b+1,t) =

(
t+b+1
t

)
and dGRMq(b+1,t) =

(q− b−1)qt−1 [24]. The dimension of the resulting AMD
code is (

(
t+b+1
t

)
− 1− t)r. The worst case error masking

probability is (b+ 1)2−r.
Corollary 3.3: Assume b is odd when t = 1. When

b ≤ q − 3, the code V generated by Theorem 3.1 is a
((
(
t+b+1
t

)
−1−t)r, tr, r) AMD code with QV = (b+1)2−r.

Proof: By Theorem 3.1, k and QV of the AMD code V
can be easily derived from the parameters of GRMq(b+
1, t) for b ≤ q − 3, q = 2r.
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When b = 1 B(y, x) is the quadratic form x0·y0⊕x1·y1⊕
· · ·⊕xt−1 ·yt−1, where all the operations are in GF (2r). If
ey is always nonzero, let A(x) = 0 and f(y, x) = B(y, x).
Without lost of generality, assume ey0 6= 0. Then the error
masking equation can be written as

x0 · ey0 = F (y, x1, x2, · · ·xt−1, ey, ex, ef ), (29)

where F is a function independent of x0. For any given
y, ey, ex and ef , there is at most one x0 satisfying the
above equation. Thereby the worst case error masking
probability is q−1. The construction of AMD codes does
not require the term A(x) when ey is always nonzero.

3.1.3 Special Case: t = 1 [16], [17]

When t = 1 and b is odd, A(x) = xb+2 and B(y, x) =
x · y0 ⊕ x2 · y1 ⊕ · · · ⊕ xb · yb−1. The code generated by
Theorem 3.1 coincides with the construction shown in
[16], [17]. For this code, k ≤ r(q − 3) = r(2r − 3).

Corollary 3.4: [16], [17] When b ≤ q−3 is an odd num-
ber, the code V composed of all vectors (y, x, f(y, x)),
where y ∈ GF (qbt), x ∈ GF (q), q = 2r and f(y, x) =
xb+2⊕x·y0⊕x2·y1⊕· · ·xb·yb−1, f(y, x) ∈ GF (q), is an opti-
mal (br, r, r) AMD code with QV = maxy,e6=0QV (y, e) =
(b+ 1)2−r. Thereby, Q(br, r, r) = (b+ 1)2−r.

Proof: For codes generated by Corollary 3.4, m = r,
k = br and QV = (b + 1)2−r. According to Corollary
2.2, Q(k,m, r) ≥ d(k + m)r−1e2−m. Thereby we have
Q(br, r, r) = (br + r)r−12−m = (b+ 1)2−r.

Remark 3.2: One limitation of Corollary 3.4 is that b
can only be an odd number when the characteristic of
the field GF (q) is 2. Otherwise, A(x⊕ex) for A(x) = xb+2

and ex 6= 0 does not contain any monomial of degree
b + 1. The resulting code is not a secure AMD code as
pointed out in [17]. When b is even, A(x) can be chosen
as xb+3. In this case, QV = (b+ 2)2−r.

Remark 3.3: When t = 1, the left hand side of the error
masking equation f(y⊕ ey, x⊕ ex)⊕ f(y, x)⊕ ef = 0 is a
codeword of an extended q-ary (q, b+ 2, q− b− 1) Reed-
Solomon code, q = 2r [23].

When t > 1, codes V generated by Theorem 3.1
may have a larger number of codewords than codes
generated by Corollary 3.4 (t = 1), assuming the two
codes have the same QV and the same r.

Example 3.3: Suppose r = 16, QV = 2−14. Then for
t = 1 and b = 3, for codes generated by Corollary 3.4,
the maximum number of codewords is 2br = 248. When
t > 1, the maximum number of codewords for codes
generated by Theorem 3.1 depends not only on b but
also on t. When t = 2, for example, the number of
codewords of codes generated by Theorem 3.1 can be
2((

t+b+1
t )−1−t)r = 2192.

We note that the lower bounds for Q(k,m, r) presented
in Section 2 can be further improved for cases where
constructions based on Generalized Reed-Muller codes
are available.

Theorem 3.2: Let k ≤ (
∑t
i=0(−1)i

(
t
i

)(
t+s−iq
s−iq

)
− 1 − t)r,

and m = tr, where q = 2r. Let s = u(q − 1) + v, 0 ≤ u ≤

t− 1, 0 ≤ v ≤ q − 2. Then

Q(k, tr, r) ≥ min
1≤j≤u+1

(1− 2−jrbdq(2m, 2m+k+r)2−m+jrc),
(30)

where dq(2
m, 2m+k+r) is the maximal distance of q-ary

codes with length 2m and 2m+k+r codewords.

Proof: When k ≤ (
∑t
i=0(−1)i

(
t
i

)(
t+s−iq
s−iq

)
−1− t)r and

m = tr, the AMD code can be constructed based on
Generalized Reed-Muller codes as described in Theorem
3.1. The LHS of the error masking equation f(y, x)⊕f(y⊕
ey, x⊕ex)⊕ef = 0 can always be written as a monomial
of degree at most s. For any specific e∗ = (e∗y, e

∗
x, e
∗
f ) and

y∗, let s∗ = u∗(q − 1) + v∗ be the degree of the LHS
of the error masking equation. Following the proof of
Theorem 3.1, we know that this error is masked with
a probability Q∗ of at most 1 − (2r − v∗)2−(u

∗+1)r, i.e.
Q∗ ≤ 1−(2r−v∗)2−(u∗+1)r. By the definition of Q(k,m, r),
we have

Q(k,m, r) ≥ max
u∗,v∗

Q∗ = 1− (2r − v∗)2−(u
∗+1)r. (31)

On the other hand, maxQ∗ should be still larger or equal
to the lower bound of Q(k,m, r) given by (9). Thus

1− (2r − v∗)2−(u
∗+1)r ≥ 1− 2−mdq(2

m, 2m+k+r), (32)

or equivalently

v∗ ≥ 2r − 2(u
∗+1)r−mdq(2

m, 2m+k+r). (33)

Since v∗ is an integer, we have

v∗ ≥ 2r − b2(u
∗+1)r−mdq(2

m, 2m+k+r)c. (34)

From (31) and (34), we have

Q(k,m, r) ≥ 1− 2−(u
∗+1)rb2(u

∗+1)r−mdq(2
m, 2m+k+r)c.

(35)
Since 0 ≤ u∗ ≤ u, we have the lower bound (30).

The lower bound given by Theorem 3.2 is stronger
than the lower bound described in Theorem 2.1. How-
ever, Theorem 3.2 is only valid when m = tr and

k ≤ (

t∑
i=0

(−1)i
(
t

i

)(
t+ s− iq
s− iq

)
− 1− t)r.

In some cases, AMD codes based on Generalized
Reed-Muller codes are optimal AMD codes achieving the
equality of (30) as shown in the following example.

Example 3.4: Let r = 3, t = 2 and s = 12. Then the
AMD code V constructed by Theorem 3.1 has q = 8,
b = 11 and

k = 3(

2∑
i=0

(−1)i
(

14− 8i

12− 8i

)
− 1− 2) = 174. (36)

For this code u = 1 and v = 5. According to Theorem 3.1,
we hvae QV = 61 · 2−6. Thereby Q(174, 6, 3) ≤ 61 · 2−6.
On the other hand, since d8(82, 861) = 3, from (30) we
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have

Q(174, 6, 3) ≥ min(1− 2−3bd8(82, 861)2−3c,
1− 2−6bd8(82, 861)c)

= 61 · 2−6. (37)

Thus Q(174, 6, 3) = 61·2−6 an the AMD code constructed
by Theorem 3.1 is optimal.

Corollary 3.5: Let k ≤ (
(
t+s
t

)
− 1 − t)r, where q = 2r

and s ≤ q − 2. Then

Q(k, tr, r) ≥ 1− 2−rbdq(2m, 2m+k+r)2−m+rc. (38)

Proof: The above corollary follows directly from
Theorem 3.2 (j = 1 in (30)).

Corollary 3.6: If k ≤ (
(
t+2
t

)
− 1− t)r, then Q(k, tr, r) =

2−r+1.
Proof: The upper bound Q(k, tr, r) ≤ 2−r+1 follows

from Corollary 3.3. Since A(n, (q − 1)nq−1) = qd, where
d = (q − 1)nq−1 and A(n, d) is the maximal number of
codewords given the length n and the distance d [32],
we have

A(qt, (q − 1)qt−1) = (q − 1)qt < qt+1

= 2m+r < 2k+m+r, (k ≥ 1). (39)

Thereby, bdq(2m, 2m+k+r)2−m+rc ≤ q−2. From Corollary
3.5, we have Q(k, tr, r) ≥ 2−r+1.

It follows from Corollary 3.6 that when b = 1, the
AMD codes constructed by Theorem 3.1 are optimal. In
this case the error masking probability for AMD codes
decreases exponentially as the number of redundant bits
r increases.

Example 3.5: Let r = 3, t = 2 and b = 1. The code
constructed by Theorem 3.1 has k = 9, m = 6, q = 8 and
Q(9, 6, 3) ≤ 2−2. Since d8(64, 86) ≤ 52. By Corollary 3.5
we have Q(9, 6, 3) ≥ 1−6·2−3 = 2−2. Thereby Q(9, 6, 3) =
2−2 and the code generated by Theorem 3.1 is optimal.

When y is fixed, the error masking probability for an
error e is equal to the fraction of x′s that satisfy the error
masking equation. The distribution of the error masking
probability when both y and e are fixed for the AMD
code described above is shown in Figure 3. Most of
the errors are masked by less than 10 x′s resulting in
a error masking probability of smaller than 0.15. (The
total number of x is 2m = 64.) More than 40% of errors
are masked by a probability close to 0.1. The portion
of errors masked by a probability of QV = 0.25 is very
small.

For AMD codes generated by Theorem 3.1, k and
m are both multiples of r. We will now present three
modification methods, which can largely increase the
flexibility of parameters of the resulting AMD codes.

Theorem 3.3: Suppose there exists an (k,m, r) AMD
code generated by Theorem 3.1 with r ≥ 1, m = tr,
k = sr and QV = maxy,e6=0QV (y, e).

1) For the same r,m and r ≤ k < sr, a shortened
AMD code with the same QV can be constructed

Fig. 3: The distribution of the error masking probability
QV (y, e) for the AMD code in Example 3.5 with r =
3, t = 2 and b = 1.

by appending 0′s to y so that (0, y) ∈ GF (2sr) and
then apply the same encoding procedure as for the
(sr, tr, r) code.

2) For the same m, k and 1 ≤ r′ < r, an AMD code
can be constructed by deleting r − r′ redundant
bits from each codeword of the original (k,m, r)
code. The maximum error masking probability of
the resulting code will be min{QV 2r−r

′
, 1}.

3) Suppose there exists a (k1,m, r1) AMD code
V1 with maxy,e6=0QV1(y, e) = QV1 and another
(k2,m, r2) AMD code V2 with maxy,e6=0QV2(y, e) =
QV2

. By computing the redundant bits of the two
codes separately and then concatenating them, we
can construct a (k1 +k2,m, r1 +r2) AMD code with
QV ≤ max{QV1 , QV2}.

Proof:
1) For codes constructed by Theorem 3.1, the error

masking polynomial f(y ⊕ ey, x ⊕ ex) ⊕ f(y, x) ⊕
ef has a degree at most b + 1, where x =
(x0, x1, · · · , xt−1) is a variable and y, ey, ex and ef
are coefficients. Modifications of coefficients do not
change the maximum possible degree of the poly-
nomial thus do not change the maximum number
of solutions for the error masking equation.

2) For the (sr, tr, r) AMD code with QV =
maxy,eQV (y, e), every fixed ey, ex, ef and y is
masked by no more than QV 2m different x. After
deleting r − r′ bits from the values of the function
f(y, x), the vectors (y, x) which previously mapped
to f(y, x) that are different in the deleted r−r′ bits
will now map to the same value of the redundant
bits. Thereby, when r − r′ bits are deleted, for any
fixed ey, ex, ef and y, the error is masked by at most
min{QV 2m+r−r′ , 2m} different x′s.

3) For the concatenated (k1+k2,m, r1+r2) AMD code
V , codewords are

(y1, y2, x, f1(y1, x), f2(y2, x)),

where y1 ∈ GF (2k1), y2 ∈ GF (2k2), x ∈ GF (2m),
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f1(y1, x) ∈ GF (2r1) and f2(y2, x) ∈ GF (2r2).
For any y = (y1, y2) and any error e =
(ey1 .ey2 , ex, ef1 , ef2), ey1 ∈ GF (2k1), ey2 ∈ GF (2k2),
ex ∈ GF (2m), ef1 ∈ GF (2r1), ef2 ∈ GF (2r2), denote
N(y, e) a number of x′s satisfying simultaneously
the following two error masking equations{

f1(y1 ⊕ ey1 , x⊕ ex)⊕ f1(y1, x)⊕ ef1 = 0

f2(y2 ⊕ ey2 , x⊕ ex)⊕ f2(y2, x)⊕ ef2 = 0
(40)

Suppose QV1
≥ QV2

, then by the definition of
the error masking probability QV , when ey2 =
ex = ef2 = 0, we have maxy,e6=0N(y, e) ≤
2mQV1

= 2m max{QV1
, QV2

}. Thereby, QV ≤
2−m maxy,e6=0N(y, e) ≤ max{QV1 , QV2}.

Concatenation of L copies of a (k,m, r) AMD code
constructed by Theorem 3.1 generates a (k′,m′, r′) code
with k′ = Lk,m′ = m and r′ = Lr. According to the
Singleton bound,

Q(Lk,m,Lr) ≥ dLk +m

Lr
e2−m. (41)

When b ≤ q − 3, from Corollary 3.3 we have

Q(Lk,m,Lr) ≤ (b+ 1)2−r.

Thus

dLk +m

Lr
e2−m ≤ Q(Lk,m,Lr) ≤ (b+ 1)2−r, b ≤ q − 3.

(42)
Corollary 3.7: Let V be an optimal (k,m, r) AMD code

with k = sr,m ≤ r and QV = dk+mr e2
−m. Then for any

L, the (Lk,m,Lr) code V ′ obtained by concatenation of
L copies of V is also optimal.

Proof: By part 3 of Theorem 3.3, we have QV ′ ≤
QV = dk+mr e = (s+1)2−m. On another hand by (11), we
have QV ′ ≥ dLk+mLr e2

−m = ds+ m
Lr e = (s+ 1)2−m.

The concatenation of AMD codes based on GRMq(b+
1, 1) is optimal for b ≤ q−3 and Q(Lbr, r, Lr) = (b+1)2−r.

To end the section, we summarize cases the when
codes constructed by Theorem 3.1 are optimal in the
Table 1.

3.2 Constructions of Codes Based on Products of
Generalized Reed-Muller Codes

Theorem 3.4: Let CVi , 1 ≤ i ≤ L be a (bi + 1)th order q-
ary Generalized Reed-Muller code defined over ti vari-
ables with dimension ki and distance di, q = 2r. Let
Vi be an AMD code constructed based on CVi

with the
encoding function fi(y, x) = Ai(x) ⊕ Bi(y, x) as shown
in (18) - (20) in Theorem 3.1. Let A(x) =

⊕L
i=1Ai(x) and

B(y, x) =
⊕

P1,P2,··· ,PL

y
P1,P2,··· ,PL

L∏
i=1

Pi, (43)

where Pi is a polynomial of the ti variables in CVi ,
deg(Pi) ≤ b + 1, Pi 6∈ ∆Bi(x) and

∏L
i=1 Pi is not a con-

stant. Then code V defined by f(y, x) = A(x) ⊕ B(y, x)

is a (k,m, r) AMD code V with m = r
∑L
i=1 ti,

k = (

L∏
i=1

(ki − ti)− 1)r, (44)

and

QV = 1− 2−r
∑L

i=1 ti

L∏
i=1

di. (45)

Proof: The error masking polynomial f(y ⊕ ey, x ⊕
ex) ⊕ f(y, x) ⊕ ey is a non-zero codeword of the prod-
uct of CVi

, 1 ≤ i ≤ L. The distance d of the prod-
uct code is

∏L
i=1 di. Hence QV for the AMD code is

QV = 1 − d2−m = 1 − 2−r
∑L

i=1 ti
∏L
i=1 di. By (19) and

(20), the number of Pi such that deg(Pi) ≤ b + 1 and
Pi 6∈ ∆Bi(x) is ki− ti. Thus the number of monomials in
B(y, x) is

∏L
i=1(ki − ti) − 1. (

∏L
i=1 Pi is not a constant.)

The dimension of the AMD code V is equal to the
number of monomials in B(y, x) multiplied by r, which
is (
∏L
i=1(ki − ti)− 1)r.

In the previous Section we’ve seen that the left hand
side of the error masking equation for codes generated
by Corollary 3.4 (special case of Theorem 3.1 when t = 1)
is a codeword from a q-ary extended Reed-Solomon code
with length 2m and dimension b+2. When ti = 1, 1 ≤ i ≤
L, the AMD codes generated by Theorem 3.4 are based
on the product of L q-ary extended Reed-Solomon codes
(PRS) [33]. The construction and the parameters of AMD
codes based on the extended PRS code are shown in the
next Corollary.

Corollary 3.8: When t = 1, the AMD code V generated
by Theorem 3.4 are based on the extended PRS codes.
Suppose each extended Reed-Solomon code has dimen-
sion b+ 2 and length q = 2r, q ≥ b+ 3. Let

A(x) = xb+2
1 ⊕ xb+2

2 ⊕ · · · ⊕ xb+2
L . (46)

Let

B(y, x) =
b⊕

s1=0

· · ·
b⊕

sL=0

ys1,··· ,sL

L∏
i=1

xsii , (s1, · · · , st) 6= 0.

(47)
The resulting AMD code V is a (((b + 1)L − 1)r, Lr, r)
code with

QV = max
y,e6=0

QV (y, e) = 1− 2−Lr(2r − b− 1)L. (48)

Proof: The Corollary can be easily proved by sub-
stituting the parameters of the extended Reed-Solomon
codes into (44) and (45).

Example 3.6: Let r = 3, L = 2 and b = 3. For
the AMD code V generated by Corollary 3.8, m = 6
and k = ((b + 1)L − 1)r = 45. Each extended Reed-
Solomon (RS) code has Hamming distance 5. For the
extended PRS code, dPRS = 25. Thereby the worst case
error masking probability of the (45, 6, 3) AMD code is
QV = 1− 25 · 2−6 = 39 · 2−6.

For codes generated by Corollary 3.3, the worst case
error masking probability is Q1 = (b1 + 1)2−r. For codes
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TABLE 1: Optimality of (k,m, r) AMD codes constructed by Theorem 3.1

k m r QV Optimality
2trr − tr − 2r tr r 1− 2−tr+1 Optimal (Corollary 3.1)∑b+1
i=0

(
t
i

)
− t− 1 t 1 1− 2−(b+1) Optimal when b = 1 or b = t− 2 (Corollary 3.2)

(
(
t+b+1
t

)
− t− 1)r tr r (b+ 1)2−r Optimal when t = 1 (Corollary 3.4) or b = 1 (Corollary 3.6))

generated by Corollary 3.8, Q2 = 1− 2−Lr(2r − b2 − 1)L.
Suppose the two codes have the same r and Q1 = Q2.

Let b1 + 1 = 2r − u, where u ≥ 2. Then it can be easily
proved that

b2 + 1 = 2r − 2r(
u

2r
)

1
L = 2r − 2(1−

1
L )ru

1
L .

As it is illustrated by the following example, when
r is large and b1 (and b2) is close to 2r, the number of
information bits for codes generated by Corollary 3.8 can
be much larger than for codes generated by Corollary
3.3.

Example 3.7: Let r = 8, q = 2r = 256, u = 4 and m =
16. For codes generated by Corollary 3.3, t = 2, b1 + 1 =
2r − u = 252, k = (

(
t+b1+1

t

)
− 1 − t)r = 32, 131 × 8 bits.

For codes generated by Corollary 3.8, L = 2, b2 + 1 =
2r−2(1−

1
L )ru

1
L = 224, k = ((b+1)L−1)r = 50, 175×8 bits.

These two codes have the same worst case error masking
probability QV . However, the number of information bits
for the AMD code based on the extended PRS code is
much larger than that based on the Generalized Reed-
Muller code.

4 ENCODING AND DECODING COMPLEXITY
FOR AMD CODES

In this section, we estimate the hardware complexity for
the encoders and decoders for AMD codes based on q-
ary Generalized Reed-Muller codes (Theorem 3.1). The
hardware complexity for the encoders and decoders for
AMD codes based on the product of GRM codes can be
estimated in a similar way.

It is well known that a multivariate polynomial of t
variables xi, 0 ≤ i ≤ t− 1, xi ∈ GF (2r) can be efficiently
computed using the multivariate Horner scheme [34].
When t = 1, any polynomial of degree b + 1 defined
over GF (2r) can be represented as

f(x) = a0 ⊕ x(a1 ⊕ x(· · · (ab ⊕ ab+1x))), (49)

where ai ∈ GF (2r), x ∈ GF (2r). The computation of the
polynomial requires b+1 multipliers and b+1 adders in
GF (2r).

When t > 1, we can first apply Horner scheme as if
x0 is the variable and x1, x2, · · · , xt−1 are coefficients. In
this case coefficients will be polynomials of t−1 variables
x1, x2, · · · , xt−1. To compute these polynomials, we can
select one of the remaining xi, 1 ≤ i ≤ t − 1 as variable
and apply the Horner scheme again. We repeat the
procedure until all xi, 0 ≤ i ≤ t− 1 are factored out.

The encoder for the (k,m, r) AMD codes constructed
by Theorem 3.1 needs to compute f(y, x) = A(x) ⊕
B(y, x), where B(y, x) contains dkr e monomials of de-
grees less or equal to b + 1 and A(x) contains at most
t = m

r monomials of degree b + 2. Assume we always
select a set of monomials with the smallest possible
degrees for B(y, x). For Horner scheme, the number of
multiplication required for the computation is no more
than the total number of monomials in f(x) and is upper
bounded by dkr e+ m

r .

Example 4.1: In Theorem 3.1, let t = b = 2 and assume
r is large enough. Then the resulting code is a (7r, 2r, r)
AMD code. We have

f(y, x) = x0x
3
1 ⊕ x0y0 ⊕ x1y1 ⊕ x20y2 ⊕ x0x1y3

⊕x21y4 ⊕ x30y5 ⊕ x20x1y6. (50)

At most 8 multipliers in GF (2r) are required for the
encoding or the decoding. The corresponding encoding
network is shown in Figure 4. The critical path of the
encoder contains 4 multipliers and 4 adders in GF (2r).

The encoder and decoder for AMD codes constructed
by Theorem 3.1 are inherently suitable for parallel im-
plementations. For instance, the three branches shown in
Figure 4 can be implemented in parallel. Moreover, the
encoder and decoder can be further parallelized by using
two multipliers for computing x1y6 and x0y5 on the
second branch. The same idea works on the encoder and
decoder for any AMD codes constructed by Theorem 3.1.

We note that the actual number of multipliers in the
encoder and decoder may be smaller than the number
of monomials in f(y, x) due to the fact that the power
operation (exponentiation in GF (2r)) can be simplified.
For example, in the normal base Galois field, the square
operation can be implemented by cyclic shifting [35]. In
this case, the multiplier marked in Figure 4, which is
used to compute x21, is not needed and the total number
of multipliers in the encoder becomes 7.

A case study of using AMD codes with b = 1 or
t = 1 for the protection of digit-serial Massey-Omura
multipliers in normal base Galois fields was shown in
[21]. The overheads for several different secure Massey-
Omura multiplier architectures based on AMD codes
with b = 1 or t = 1 in GF (2239) and GF (2409) for
the elliptic curve cryptographic devices were studied. It
was showed that the area overheads for the presented
architectures based on AMD codes were between 110%
and 160%.
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Fig. 4: Encoder Architecture for the (7r, 2r, r) AMD Code
Based on GRMq(3, 2) code
.

5 CONCLUSIONS
In this paper, we presented bounds, general construc-
tions and encoding/decoding procedures for algebraic
manipulation detection (AMD) codes based on q-ary
Generalized Reed-Muller codes and their products.
Some of the presented codes are optimal. These codes
can provide a guaranteed level of security even if the
information bits are known to the attackers and the non-
zero error patterns are controllable by external forces.
The same characteristic cannot be achieved by any previ-
ously known secure architectures based on error detect-
ing codes. These codes can be applied for many different
applications such as robust secret sharing scheme, robust
fuzzy extractors and secure cryptographic devices resis-
tant to fault injection attacks. An efficient encoding and
decoding method minimizing the number of required
multipliers are given for the presented AMD codes.
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